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with F, an adequately chosen matrix. Introducing (32) in (30a) we
obtain that X satisfies (6). Relations (31) and (29) with (32) show
that (7) and (8) are also satisfied.

Now some algebraic manipulations using known properties of the
Moore-Penrose pseudo-inverse show that Go given by (9) satisfies
(1) and that G; given by (10) satisfies (3) and (4). A right inverse
of Go in RH® is given by

G{(s)

_[A-B(D"D)Y*(D'C+B"X)+ B(I- D*D)F,|BV*
- —(DTD)*(DTC + BTX) + (I - D*D)F, v+
(33)

which is stable by the choice of F, and the theorem is proved. H

III. CONCLUSION

The above theorem shows that spectral factorization can be per-
formed by computing the stabilizing solution of the constrained
Riccati equation (6), (7). The proof of the theorem leads to a Schur-
like method for computing this solution. The procedure is quite
clear. An ordered QZ algorithm must be performed on the extended
Hamiltonian pencil to obtain the stable reducing subspaces of the
pencil and then a basis matrix for an n-dimensional stable proper
deflating subspace. If the first n rows form a nonsingular matrix,
then X and F can be computed with (28) and used for obtaining the
realizations of Go and Gi.

The problem can be very ill-posed, so one has to be cautious about
the implementation. For numerical computations on possibly singular
pencils, we cite here [14] and [15], although there are also other
papers on this subject.

One of the reviewers drew my attention to [16] whose main
result has important connections with the present paper. In fact the
problem considered in [16] is more general, but the result presented
above suggests that the sequence of equivalent statements given there
could be completed with one giving the existence of the stabilizing
solution to the constrained Riccati equation. This has the important
advantage of being easier to extend to more general factorizations
such as the J-spectral factorization, for example, than the linear
matrix inequality. Also, the proof given above gives further insight
on the nonuniqueness of the spectral factor due to the use of the
notion of proper deflating subspace for a singular pencil.
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Stability Analysis for Manufacturing Systems
with Unreliable Machines and Random Inputs

Han-Fu Chen and Qian-Yu Tang

Abstract—The manufacturing system considered in the paper consists
of possibly unreliable machines, whose inputs may be random and
may be in batches. The key assumption on the system is that events
of unsatisfactory processing independently occur at all machines. We
derive a set of inequalities relating processing rates with probabilities
of successful processing at unreliable machines. It is shown that the
manufacturing system with a CFWL scheduling policy applied is stable if
these inequalities are satisfied simultaneously; by CFWL policy we mean
the policy that chooses any part-type with a work load exceeding a certain
portion of the total one for the next run. This policy is motivated by CAF
policy introduced in [7] and is the stochastic extension of CFW policy
used in [9].

1. INTRODUCTION

We consider a manufacturing system, which consists of N ma-
chines and processes L part-types from the outside of the system.
In contrast to the static, open-loop approach to scheduling (e.g., see
[2]), this paper takes the dynamic, closed-loop approach pioneered
by Kimemia and Gershwin [3] and continued by Akella and Kumar
(4], Sharifnia [5], Flemming, Sethi and Soner [6], and many others.

In recent years, the analysis for sample-path-based stability of dis-
tributed real-time scheduling of deterministic manufacturing systems
has been studied in many papers [8]-[10]. The authors of these papers
pointed out that the stochastic extension of the deterministic manu-
facturing system is of interest, and it may include uncertainties such
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as random processing time, unreliable machines, random machine
failures, random inputs, and so on. In this paper we consider two
kinds of randomness. In the first type, machines in the system are
unreliable; by unreliable machine we mean that a part processed by
it is of satisfactory quality only with some probability p less than or
equal to one. With probability 1 — p, a part after processing should
reenter the same machine for a rework. Thus, in the system parts
of some type, say type [, entering the buffer of the ith machine
from the jth machine form a random sequence. More precisely, with
probability p; there is a part of type I coming from the jth machine
to the buffer of the ith machine if the jth machine is producing
parts of this type. In the second type of randomness, parts from the
outside of the system enter the manufacturing system in batches with
random sizes; the case where parts are transferred by pellets or by
automatically guided vehicles may serve as examples of batch inputs.

We will apply clear-a-fraction-of-work-load (CFWL) policy, by
which we mean the policy that chooses for the next run any part-
type with a work load exceeding a certain portion of the total load.
This policy is motivated by CAF policy introduced in [7] and is
the stochastic extension of CFW policy used in [9]. For the system
containing uncertainties with CFWL policy applied to it, this paper
gives sufficient conditions guaranteeing stability in the average sense.
This paper is concerned about the stability analysis of the CFWL
policy only, because with e appropriately chosen in (2.3), the CFWL
policy implies other policies such as CAF, CLB, CLW policies [7],
[8] and CFW policies [9]. The results of the paper are the extensions
of Perkins’ and Kumar’s work [7] to the stochastic case. We hated but
could not avoid using rather complicated notations in dealing with
the system we now describe.

1) There are N machines labeled 1, 2,---, N in the system, and
there are L part-types labeled 1(1), 2(1),- - -, L(1) which come from
the outside to the system for processing. We might use ! instead
of I(1), ! = 1,2,---,L to denote a part-type from the outside.
The processing routes are given as a prerequisite. Parts of type ! 1)
successively visit machines M; 1, M2, -+, M; , and finally leave
the system from machine M; »,, as products. A part may visit the same
machine for many times, i.e., it may happen that M = M, ; for
i # j. After a successful processing at a machine, parts are assumed
to be of a new type, and are assumed to be of the same type after an
unsatisfactory processing. Denote by I(j+1) the new type formed by
parts of type I(j) after processing at machine M ,j=1,2,---,ng
I=1,2,---, L. Let J(3) be the set of all part-types to be processed
at machine ¢, ie.,

JE) ={1(5): Mi; =i, 1<j<n; 1<I< L),
fori =1,2,---,N.

2) Parts of type I(j) coming to machine M;; for processing
first arrive at the buffer denoted by ;. A part of type I(j) needs
(1/7y;y), for processing at machine M, ;.

3) From outside the system, parts of type (1) enter buffer b;; of
machine M;; for processing in batches with size {W,i(l), k>1}
at the demand rate ryo), ie., a batch of type I(1) is sent to the
system per (1/r)) time-unit, and the size of the kth batch is
written as a random variable (r.v.) W,z(l) . The random variables (r.v.s)
W, 1(1) = 1(1), 2Q1),---,LQ); k = 1,2,---, are mutually
independent, E(W} V)™ < o5 for some m >1,1<1<L,and
for fixed I(1), W™, k =1, 2,--, are identically distributed with
EW, = poy and pu(m') & BWIOY™ ie (WD, k> 1} is
an i.i.d. sequence. In particular, W,i(l) may identically equal 1, and
this corresponds to the deterministic part flow.

4) Machines in the system are unreliable. The kth processing of
parts of type I(j) at machine M, ; yields a r.v. W,:(H'l), which

values at 1 if the processed part is of satisfactory quality, and
0 if unsatisfactory, & = 1,2,---. The events of unsatisfactory
processing independently occur at machines, and they are mutually
independent of the input sequences {W,i(l), k > 1} from the outside
of the system. Thus, {W,z(j"'l), k > 1} is an iid. sequence with
P =1} = pyjy, PO = 0} = q5(= 1 - piy),
and the sequences {W,"), k > 1}, 1<j<m+L1<I<L
are mutually independent.

5) A part of type I(j) after processing at machine M; ; either
eventually leaves the system (when j = n;) or visits a downstrearh
machine (when j < n;) in the case W,i(”'l) = 1, and reenters the
buffer b;,; for a rework in the case W,i(’ *1) = 0. Thus, the feedback
is under consideration.

6) A setup time &) ;) is required when the ith machine
changes from processing parts of type I(j) to type I'(j') where
10G), 1) € ).

7) The setup time bi(j),v(j7)» the demand rates r(o), and processing
rates 7y, 1 < j <npy 1 KIS Ly 1(5), () € JG); 1<i < N
all are deterministic.

II. MAIN RESULTS

Denote by Xy(;)(t) and Ay(j)(¢) the buffer level at M; ; and the
work load of parts of type I(j) at time ¢ respectively, where

X (t)

) @2.1)
TI)PiGs)

Ay (t) = Vi<j<n,1<I<L

For the ith machine, set

A= Y Ap®), X(@)= 3 X @),
(J)eJ() 1()e(s)
i=1,2,---,N (22)

where and thereafter the superscript ¢ always indicates that the
quantity in question is connected with machine i; it should not be
confused with the power of that quantity.

A scheduling policy is called a CFWL policy if the ith machine
at time T'; commences a setup for processing parts of type I (ja) €
J (i) whenever

Ap i) (T3) > €A (TS), for some fixed € € (0,1) (2.3)
and the production of parts of type I,(j.) is started at time T: +
s;n—l(jn~1)rln(jn) and continued until the first time Ty, at which
the buffer level Xy, (;,.)(t) hits 0, ie., X, (;.y(Tns1) = 0, where
T3 = 0 by setting s = 1, 2,---, N and n numbers setups. If there
are many part-types satisfying (2.3), then we choose any of them for
the next run.
Definition: The ith machine is said to be L,-stable if

supE(X (T%))* < Bi(s) orequivalently,

supE(A'(T2))* < Ba(s) 24

where Bi(s), i = 1, 2 are constants, depending on s only.
A manufacturing system is said to be L,-stable if all machines in
the system are L,-stable.

then the system considered in this paper degenerates to a deterministic
one, and for some cases, results derived here directly lead to the
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corresponding ones obtained in [7]-[9] (e.g., Theorem 1 in [7],
Theorem 2 in [9], and Example 2, condition (14) in [8]).

‘We now present main results of the paper; the proof will be given
in Section III.

Theorem 1: For the manufacturing system described in the Intro-
duction by 1)-7) with CFWL policy applied, if parameters r;(;) and
pi(;) satisfy the following system of inequalities

A
= Z Gy <1,
(EI()

vVi=1,2,---,N (2.5)

with

A TG-)PIG-1)

1<jsm, 1K1
i) PIG)

216) (2.6)

then the system is L,-stable. Moreover,

supE( Y Ty(n)| < Bs(m), i=1,2,---,N Q7
"NWesm

where x,(,)(n) = maXyerry i, ]X,(,)(t), 1(7) € J(i) and B3(m)
is a constant depending on m which is given in part 3 of the
Introduction.

Example 1: Consider a manufacturing system composed of N =
2 machines and L = 2 part-types from the outside of the system. The
processing routes are as follows: My ; =1, M2 = 2; My; = 2,
M, 2 = 1; ny = nz = 2. Then (2.5) is expressed as

T1(0)P1(0) T2(1)P2(1)
T1(1)P1(1 "2 2)P2(2 ’

{r1 1)P1(1) ( ) 2(D) 2.8)
T1(2)P1(2) 72(1)1’2(1)

Obviously, system (2.8) is satisfied if ri¢;ypiy > 2riG-1)Pi(G—1)»
1 =1,2; j = 1, 2. Further, if machines are reliable p;;y = 1,
1=1,2;5=0,1,2 and if r;(0) = r2¢0) = 1, then condition (2.8)
coincides with condition (14) in [8].

Theorem 2: Under the conditions of Theorem 1, the following
estimates hold for the average work load of machine ¢ (Vi €
[17 ZyvN])

hmsupE ANTE) <

<I>‘ ) (2.9)

(2.10)

n>0

supE A*(T) < max{A (0) }

where A*(0) is the initial work load, and

= 17F @11
1 = ming)e 10 P105)

vi= max 2P { 1 } @.12)
1NEIE 1= pigy Ti(5)Pi(j)

III. PROOF OF THEOREMS

To prove theorems we need to explicitly express the buffer level
X(jy(T,)- For this we explain various quantities to appear.
Define

w;c(j) =1- Wé(1+1),

Vi<j<n; 1<I<LL. 3.1)
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Let 0% 11 (In(jn)) denote the number of parts of type In(jn) € J (i)
processed by machine ¢ during the period 7%, T,LH] Notice that
starting from the time T, + 6,"_1(“_1),,”(]n) the o541 (In(jn))th
processing of part-type I» (j ) at machine ¢ first empties buffer b, ;,, .
Mathematically, 0%,y (In(jn)) can be defined as follows:

k
i . : i In(in
ohi1(la(in)) = mf{k: k= XtaGa) (T2) = 2wt 0 e
s=1

N!n(in)(k)
' 1n(dn)
- Z_; Wf'(!n(:n))ﬂ 200 G2)

where fi(I(j)) (forany 1 < j < ny, 1 <1 < L) denotes the number
of {W,i(j), k > 1} (batches if j = 1, or random variables if j > 1)
that have arrived at b,,; before time T:, gi (1(j)) denotes the number
of parts of type !(j)(€ J(¢)) that have been processed by machine
i before time T}, N, ( D(k) forany 1 < j < my, 1 <1< L)
denotes the number of {W,i(’), k > 1} entering &; ; from time T} to
T + 6}, (G i)inin) + (B/T1,(,)) during which machine i has
processed k parts of type In(jn)-

After the setup at time T, + 6,n 1Gn1)in(in)» Machine i
has finished processing k parts of type In(jn) at time T, +
6}1[_10“_1).,,“(]«“) + (k/71,(;,))- Among these k processed parts,
Sk wintin in (3.2) means the number of parts of

95 (n(in))+s I im)
N ol () :
unsatisfactory quality, while Y ,° Wf, Untiny+e 18 the

number of parts of type In(jn) entenng bi,, i, during the time
period [T%, T + 6," LGno1inGe) F (B/71,(5))]- The last three
terms at the left-hand side of (3.2) represent the total number of parts
of type In(jn) that should be processed by machine i to clear the
buffer bi,,,;, at time T}, + 5:"_1(111_1)’1"0“) =+ (k/'rgn(]'n)).

It is not difficult to understand that

FUG)) = Fiea(0G)) + N/ (07 (a1 (in-1)))

foralll <IK<L,1<j<m, (3.3)

90 (1(3)) = gamr (0G)) + on a1 (n -1ty G )=10)]
foralll(j) € J(i) (3.4)

and
Tht1(tn(Gn)) = NI (0011 (10 (5n)))

where I, is the indicator function of set 4, f3(I(j)) =0 (V1< j <
m, 1 <1< L), g5(1(5)) = 0 (VI(j) € J(i))-

For simplicity, we assume that the setup time is independent of
both machine and type, ie., 8y vy = 6 VI(), U'(j") € J(i),
1<i< N

Applying the CFWL policy, we know that

a:‘,ﬂunu‘n))’

(3.5)

Ty =Ti+6+ (3.6)
i Tla(in)
N D (ah | UaGn))
i i 1(5)
Xiy(Toa) = | Xy (Tn) + > Wil ee
=1
TGy, foralll(j) € J(). G.7)
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The following lemma states that {WI(,-"(){(].)) 4> 8 > 1} for fixed
n, i and I(j) is an i.i.d. sequence, and for fixed 7 and 7 but with 1(5)
varying in J are mutually independent, where n >20,1<i< N,

1(j) € J and

N L
I =UrGUUG + ). 38)
=1 =1

The proof is essentially based on the following facts: i) an i.id.
sequence with index starting from a stopping time remains i.i.d.
and ii) events of unsatisfactory processing independently occur at
all machines. For its detailed proof, refer to [12].

Lemma 1: Under the conditions of Theorem 1, the following
assertions are true. )

i) For any fixed ¢, n, and 1(j) € J, the random variable
N}’(,{)_l(ﬂ:;(ln_l(jn—l))) is finite a.s., where Nf’(,f)(k) has been
defined for j < ny, while for j = n + 1, N () =
Bl Gy=in, - ,

ii) For fixed 7, n, and 1(j) € J, {W’ﬂ’(’l(m 4er 82 1} is an iid.
sequence with the same distribution as W) where f: (I(n1+1))
denotes the number of parts of type I(n;) that have been processed
by machine M; ., before T,i;

iii) For fixed ¢ and n the sequences {I/V;(i’()l(j)) 40 8 > 1} as
{(j) varying in J are mutually independent"and independent of
information contained in {W,', 1 < s < £i(i(j)), Vi(j) € J}.

Fix v € (3, 1) and for I(j) € J(4) set

Z{(3)) = piih(1 = pugy) (39

() = (N[ (011 (1 (o)) ™
NP (e 1 (tnln))

2

s=1

(Wlf‘;j()l(mﬂ —Pi-1) (3.10)

Gonln(n)) = (041 (In ()™
Thp1Un(Ga))

>

s=1

ln(jn)

G nGa s ~ UnGa))- B1D)

Lemma 2: For any v > 0 the following estimate holds

0it1(la(jn)) < Zj%d»xlng,,)(rf;) +5
+a"(1+$) (G n ()| + [Gon (G} (B12)
where

1 1
R =(1 {67y j— 1},
A= +7):f§’)%’52(l(;)){ Ti-1)Pi-1) + 1}

n:

1 1 \? R
= max ———max{1, (6 el
N 1?})%’52(1(]'))’““{ ( +,,(]_)) (rig-n) }

Proof: From (3.2) by (2.6) we have
Tns1(In(in)) < ai(n) + Ai(n) (.13)

where

1 i
ai(n) 2 m{l + 671 (= 1) P (in—1) F X, i) (Tn)}
" (3.14)

A 1 i N .
Ai(n) = m{(0n+1(1n(1n))) IGZn(lTL.(]ﬂ))'
WV (001 (1 () 1Gi (G Ga))]}. (B.15)
From (3.13), (3.15) it follows that

Ai(m) < afas(m) + Ai(m)° |
UG Un(Gn )+ |G2n (1 (Gn )} (3.16)
If Ai(n) < vai(n) for some v > 0, then
ons1(a(Gn)) < (14 7)ai(n). (3.17)

Otherwise, A;(n) > ya;(n), then from (3.16) we have
1 v ; . i .
Adn) < a(;m(n) 4 m(n)) (G (a4 Con (G )}
and hence
N . ; . n
Ailn) < a"(l + ;) (IGin (U G )+ G (G} (18)

Combining (3.13), (3.17), (3.18) leads to

ra ) < (i) 4" (14 1)
AIGin i)+ G i) "

which incorporating with (3.14) gives (3.12).
Let

o (3.19)

= min 5.
e’

By condition (2.5) we can take v > 0 and € > 0 small enough so that

gar_ (1+7)(11+ v;)(p =0 S,
—Fo

(3.20)

Set
21— e
where € is given in (2.3). It is clear that &' € (0, 1).

Lemma 3: 1f CFWL policy is used and condition (2.5) is satisfied,
then

A (Tnin) S P AUTD) + o1 + |G (1 ()"
+a Y (GLAG)IT (3:22)

WHET()

(3.21)

where a@ > 0, ¢; > 0 are constants.
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Proof: By (3.6) and (3.7) it is known that

AT ) = X5y (Th+1)
i) =
IDEID IR () | KDPID)
< A(TR) = Aoy (To) + (0" = prain) )8
i Onp1(In(fn
(0 = ) L nlin)
T1n(in)
1 1
+ Y Q)
UGHETENIG)#n (5n) | TP

1n(17))- (3.23)

By the Young’s inequality ab < pa%—qbé,‘v’a >0,b>0,p+g=1;
we have

(NI (@1 (a7 IGT LG

n+1(ln(jn))
Tln(in) ,

+ (1= )X+ bre,(5,3) " (€pigi—1) " TIGTR TGN

Hence we continue (3.23) as follows

AN(TE ) < ANTE) — AL (T

< eUrG-nPIGG-1)

Tnt1(In(in))

Tlalin)

+ 1+ ve)(p' = proga))

+8(0" = proGw)

+< > GG 324
1(G)ET(i),1(3)#ln (in)
where
4 o
=({1=v){1-6maxry; max epici—y) T
C ( )( (5)eJ {(J)) (5er TGPG) ( PG l))

Substituting (3.12) into (3.24), by (2.1) we derive

A(Toi1)
i i ; 1+ )1+ ev)(p* = 2Gin
nln

N (14 ev)(p* —pz,.(jn)){ﬂ+an (1+ %)"”

Tin(in)

(G n Gl + |G;n<ln<jn)>|>"}

+¢ > 1Gin LGN + 86" = pu(in)-
(HNEI() A(H)F#n (4n)
From this by conditions (2.3) and (2.5) we find that there are
constants o > 0 and ¢; > 0 such that (3.22) holds.
Proof of Theorem 1: By Theorem 10.3.4 in [1] and Lemma 1,
from (3.10) we see .
E|Gia ()™

mn
_Ezkmvv Z( ft(z(m+s ~ Pigg-)) I[foi’(ai+,(rn(jn)))=k1
.
W)
<Esupk — Z( Wllnes ~PG-D)| <0 (325

for all 1(j) € J(3), if we choose v € (%, 1) and 2 < 5 = (1/1-v) <

3. Since [|Gi. (1))l £ {EIGi,(1())I*}} is nondecreasing in

k>0, B|GL,.(1()|* < oo holds also for & < mn, VI(j) € J(3).
From (3.25) we have )

E|Gia{la(Ga)I™ < Y ElGia
(ET(3)

AGNHI™ < . (3.26)

685

Similarly
E|G3(ln(§n))|™" < 0o

Therefore, from (3.22) we know that there is a constant c(m) > 0
independent of n such that

A (T )l < A (T2l + c(m). (3.28)

From (3.21) and (3.28) we conclpde (2.4) with s = m immediately.
Noticing that Z1,,(;,.)(n) < 0741(In(jn)), we have

> i) =T (n) + > X165y (Tatr)

1()€I(@) (7)€@, 1(1)HEln (4n)
< ont1(tn(Gn)) + X (Tnpr)-
From (2.1), (3.9) and (3.12) it follows that

oi i (la(in)) < < A+ D"Ga)
n 1 pln(]n

+a"(1+%) (G ()| + 1Gon G Ga) V. B30)

By (3.26), (3.27) from this we find

(3.27)

3.29)

Azn Jn)(T Y+ 6

sggnoz'.ﬂ(ln(jn))llm < ci(m) (331

where c1(m) is a constant for fixed m. Finally (2.7) follows from
(3.29) and (3.31).
Proof of Theorem 2: From (3.13) by (2.1) we have
0’;.+1(ln(jn))
Tln(]n)
1

T 1= PG
1

T10 (i) Pln(in)

1 H . v i .
—‘—_(O'n+1(ln(1n))) Gan(ln (Un))
Tln(jn)Pln(Ju .

(N,’"(“)(ai.+1(ln(jn))))"Gin(ln(J'n))}'
(332)

{Afn(an) (T2)

(1 4+ 671, (5 ~1)Pln(Gn—1))

m(an)Ph(]n)

Noticing that by Lemma 1 and the conditional expectation version
of the Wald’s equation, which can be proved in a way sumlar to
Theorem 5.3. 1 in [1], we find

ER(In(jn)) (@41 (10 (5n)))" Gan (I (in))

:Ez

1(HEJI(H)

Bl (G )t (in)=10))

751 (n G g Gy =t(0))

' E{ Z (’LUf L (1())+s QI(j)) X;(])(T;)v

s=1
vi(j) € J(i)} = (3.33)
for any bounded measurable function k(-). Similarly, we have
Eh(la () (N9 (0] 41 (10 (5)))) Gin (1n(3n)) = 0, (3.34)
E Y RIG)ND (0h41(1a())) Gin () = 0. (339)

I(5)eJ(2)

Taking expectation for both sides of (3.23) and putting
(3.32)-(3.35) into (3.23) with policy (2.3) applied, we derive
E A Ti;) < (1 — e®H)E AYTE) + v. Hence we obtain
(2.9) and (2.10).
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IV. CONCLUDING REMARKS

The manufacturing system considered in this paper consists of
unreliable machines and random inputs. We have given conditions
guaranteeing stability of the system, which means the boundedness
of moments of buffer levels at stopping times at which machines
change their processing from one part-type to another. The results are
essentially based on the fact that for fixed n, i, and [ (j) the random
sequence {W;(,v’()l(j)) 440 § 2 1}, representing the random part-flow,
with random index is i.id. This important property is proved for
the system with properties 1)-7) listed in Introduction, among which
the key assumption is that events of unsatisfactory processing at all
machines are mutually independent. It is of interest to consider the
boundedness of buffer levels at any deterministic time.
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The Discrete-Time Riccati Equation
Related to the Hy, Control Problem

Anton A. Stoorvogel and Arie J. T. M. Weeren

Abstract—The Hoo control problem has been solved recently with
the use of discrete-time algebraic Riccati equations. In this paper, we
investigate this Riccati equation. We derive recursive methods to find the
stabilizing solution of this Riccati equation. Moreover, we derive several
properties of the class of positive semi-definite solutions of this equation.

L. INTRODUCTION

The disp‘tgte-time algebraic Riccati equation has been investigated
extensively 'in the literature (see e.g., [4], [7], [9], [10], [16]). Most
of this work, however, was based on the algebraic Riccati equation
appearing in linear quadratic control. Recently, the H., control
problem for discrete time systems was solved (see eg., (1], [2],
[6], [81, [11]). This gave rise to a different kind of algebraic Riccati
equation. This paper is concerned with this Riccati equation. It should
be noted that this Riccati equation also arises in differential games
(see e.g., [2]).

We show that we can always use a recursive method to find the
stabilizing solution of this equation (as is done in [4] for the linear
quadratic control algebraic Riccati equation). Moreover, we derive
several properties of the solutions to this equation. It should be
noted that this Riccati equation has less elegant properties, mainly
because of an indefinite nonlinear term and because we cannot a
priori guarantee existence of solutions.

Our research is partially based on [15]. After submission of this
paper, another paper [5] was written which gives a nonrecursive
method to determine stabilizing solutions of this Riccati equation via
a connection to continuous time Riccati equations using a Mobius
transformation.

The. notation will be fairly standard. By . w,¢ and 2., we
denote the state = and the output z of a system after applying inputs
u and w and with initial condition 2(0) = £. Moreover /> denotes the
class of square-summable functions and || - ||2 denotes the standard
la-norm. We will use in some of the proofs the subspaces V and V,
as defined in the appendix.

II. PROBLEM FORMULATION

In this paper we investigate positive semi-definite matrices P such -
that

V(P):= BTPB+ DI D, >0,
R(P):=1I-D]D, - ETPE+ (ETPB + DID,)

-V(P)'(BTPE+DID;) >0 (2.1)
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