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The Astrom-Wittenmark Self-Tuning
Regulator Revisited and ELS-Based
Adaptive Trackers

Lei Guo, Member, IEEE, and Han-Fu Chen

Abstract— Although there has been made a considerable
progress in stochastic adaptive control, the problem concerning
the convergence of the original self-tuning regulator proposed
by Astrom and Wittenmark in 1973 is still open until now. Since
it is attractive in theory and important in applications, we retarn
to this problem and give a rigorous proof for its stability and
optimality. Related problems such as convergence of the
extended-least-squares (ELS)-based adaptive tracker are also
considered in this paper.

I. A LoNG STANDING OPEN PROBLEM
ET us consider the following ARMAX model:

»

A(z2)y, = B(2)u,_, + C(2)w,, n=0, (1.1)
A(z) =1+ Az+ -+ +A,z2°, p=1,
B(z) =B, +Byz+ - +B,;z77", g=1,
C(z)=14+Ciz+ - +C, 2", rz0

where y,, u,, and w, are the m-dimensional system output,
input, and random disturbance, respectively, y, = 0, u,, = 0,
w, =0 for n <0, A(2), B(z), and C(z) are polynomials
in backward-shift operator z with unknown matrix coeffi-
cients A4;, B;, and C, and with known upper bounds p, g,
and r for orders.

Let us denote

0=[—A1"'—Ap B1"'Bq Cl...cr]’_

The most commonly used method for estimating 6 is the
following extended least-squares (ELS) algorithm:

busr = 0y + 8, Pren(Ynir = 670,) =0, (12)
Py =P~ a,P0,0 Py ay = (1+¢7Pe,) ", (1.3)
On = [y; T Vnoper Mp Ut Up_ gy

W ]’ (1)

w,=0,n<0 (1.5)

with arbitrary initial values 6, and P, > 0.

wn =yn _0;‘Pn71’ nZO;
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The assumptions made on system (1.1) are as follows:
Al: {w,, 7} is a Martingale difference sequence satisfy-
ing the following conditions:

sup E[||w, 1 [If| % ] < », as., forsome 8>2 (1.6)
nz0

and
1 n
lim —Y ww =R>0, as. (1.7)
n—o N =
A2: CTl{e™M+C(e™ ~-1>0, VvAe[0,27].

A3: det B(z) #0, vz: |z} = 1.

We recall that A2 is known as the strictly positive-real
condition which is automatically satisfied if C(z) = I, and
A3 is known as the minimum phase condition.

Let us formulate the basic problem discussed in the paper.

Basic problem: Let { y*} be a given almost surely (a.s.)
bounded reference signal and let y),, be Z -measurable.
Under conditions A1-A3 it is required to design an adaptive
control u, purely based on the ELS algorithm (1.2)-(1.5) in
order that

1) the closed-loop system is globally stable, i.e.,

1 n

limsup; Z] (el + 1 7:l1?) < o,  as. (1.8)
n—oe M iz

2) the tracking error is minimized

1 ,
lim -3 (v, - ¥)(», - »}) =R,

n—o N j=

a.s. (1.9)

3) the estimate 0, given by (1.2)-(1.5) is strongly consis-
tent.

An early reference on the basic problem is the self-tuning
regulator proposed by Astrom and Wittenmark [1] in 1973.
The goal of the adaptive control in [1] is to minimize the
output variance or the tracking error with y* =0 for a
single-input and single-output system with C(z) = 1, and
with B; known and different from zero.

Since its appearance, the self-tuning regulator has got a
great success in applications and naturally has drawn much
attention from control theorists in an attempt to establish its
convergence. The first significant progress in this direction
was made by Goodwin, Ramadge, and Caines [2]. They have
shown (1.8) and (1.9) for an adaptive tracker that is not
based on ELS but on the stochastic approximation (SA)
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algorithm, a modification of (1.2)-(1.5). Later, Becker, Ku-
mar, and Wei [3] have shown that in general the SA estimate
0, is not strongly consistent in the adaptive scheme of [2]
unless the reference signal { y*} is sufficiently rich in some
sense (see [4, p. 569] and [5]). To get strong consistency of
6, when { 3} is arbitrary but bounded signal, in [6] and [7]
by invoking a ‘‘continuously disturbed controller,”’ the strong
consistency of parameter estimate and the global stability of
the closed-loop system have been achieved simultaneously
under Conditions A1-A3 and an identifiability condition.
However, in these papers the estimate is carried out not by
the ELS algorithm and the tracking is no longer optimal but
suboptimal. In order that the external excitation does not
worsen the tracking accuracy, a diminishing excitation tech-
nique is applied in [4], where requirements 1)-3) of our
basic problem are met, however, again they are established
for the SA algorithm.

As pointed out by Sin and Goodwin [8], ““it seems that in
practically all applications of stochastic adaptive control, a
least squares iteration is used,”’ since *‘it generally has much
superior rates of convergence compared with stochastic ap-
proximation.”” Consequently, research on the ELS-based
adaptive tracker is continuing. With modifications of
Astrbm—Wittenmark (A—W) self-tuning regulator, Lai and
Wei [9] have a sharp convergence rate for the tracking error.
They assume that the open-loop system is stable, the random
noise is uniformly bounded, and that a certain identifiability
condition is satisfied. Under similar assumptions (but without
requiring boundedness of the noise), the present authors get
the convergence rates for both tracking and parameter estima-
tion in [10]. Again, the algorithm used there is a modified
version of the A-W self-tuning regulator. The main restric-
tion of [9] and [10] is that there the stability and optimality
are established only for open-loop stable systems. Certainly,
if the parallel algorithm introduced in [11] is used, then the
assumption of open-loop stability can easily be removed [12].
The idea is that besides the ELS algorithm, a parallel SA
algorithm aiming at slowing down the growth rate of the
system input and output, is used for a finite period of
operation. A similar idea is used also in [13]. However, such
parallel algorithms are complicated, the heavy computation
burden may prevent such algorithms from being applied in
any applications. Moreover, in [9], [10], [12], and [13],
stability of the closed-loop system is established via consis-
tency of parameter estimates, for which identifiability condi-
tions are required. Such conditions are not necessary for
achieving stability and optimality of adaptive tracking sys-
tems (see, e.g., [2]).

Recently, assuming independence and Gaussianity of {w,}
with C(z) = I, and having noticed the connection between
the least-squares estimate and the conditional expectation for
an unknown parameter, Kumar [14] has shown that the
least-squares based adaptive tracker converges outside an
exceptional set of Lebesgue measure zeros in the parameter
space of §. In this approach, it is necessary to preclude 6
corresponding to the system under consideration from being
in the exceptional set, in which, convergence is not guaran-
teed for almost all sampling points. Moreover, the excep-
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tional set may vary with various selections of initial values
for the estimation algorithm. So, in his conclusions, Kumar
[14] points out, ‘‘it would be of considerable interest to
remove at least the Gaussianity restriction on the disturbance
W,. The whiteness restriction cannot be removed so
easily . .. . It would also be of considerable interest to show
that the exceptional set of Theorem 1 is really an empty set.”’

Thus, in summary, as noted by Kumar [14], even ‘‘the
convergence of the original self-tuning regulator of Astrom
and Wittenmark which uses a reclusive least-squares parame-
ter estimator followed by a minimum variance certainty
equivalent control law, has been an open question for more
than fifteen years.”” In this paper, we will rigorously prove
the convergence of the original ,i—W self-tuning regulator,
and at the same time give a solution to the basic problem
stated previously. Some preliminary results on this topic are
presented in [15].

1I. CONVERGENCE OF A-W SELF-TUNING TRACKER

The A-W self-tuning tracker discussed in this section is an
extension of the self-tuning regulator introduced by
Astriim—Wittenmark [1] based on the least-squares estimation
for single-input and single-output systems with B, known,
The extension consists of the reference signal { ¥¥} which is
an arbitrary bounded sequence not necessarily equal to zero,
and the system may be multidimensional.

Definition: Let B, be known and nondegenerate, { y*} be
an a.s. bounded sequence of m-dimensional vectors with
Yy being Z-measurable, and let u, be defined from

u,= Bl—l(y:+1 - 0;¢n) (2'1)
where 0, is the ELS estimate for

0=[-4,--A4, B,---B, C - c] (2.2
calculated according to the following ELS recursion:

0n+1 = on + a,,P,,SD,,(y,H_] - Blun - 0;¢n) s

nz0 (2.3)
T -1
Povy =Py = a,P0,0,P,, a, = (1+ ¢}Pp,) ", (2.4)
Pn = [y; “'y;—p+l u:—l Tt u;—q+l
W w7, (2.5)

wn=yn—Blu —0,7%,‘1, n=0;

W, =0,n<0 (2.6)

with arbitrary initial values 6o and P, > 0.

The adaptive control system (1.1), (2.1)-(2.6) is called the
A-w self-tuning tracker.

We note that the proposed recursion (2.3)-(2.6) is the
same as that used in Astrém-Wittenmark [1] in the white
noise case. However, in the general colored-noise case the
widely used a posteriori errors, which are slightly different
from the a priori errors appearing in Astrém-Wittenmark
[1], are applied here. The following theorem shows the
stability and optimality of the A-w self-tuning tracker
2.1)-(2.6).

n—1



Theorem 1: If Conditions A1-A3 are satisfied, then the
R-w self-tuning tracker (1.1), (2.1)-(2.6) is stable and
optimal in the sense that (1.8) and (1.9) hold. Furthermore,
let {d,} be a nondecreasing positive sequence satisfying

d
sup — < oo, |w,|?> = O(d,), as. (2.7)
nz0 n
Then the following convergence rate holds:
n
ly; — ¥ — w;i|* = O(nd,), a.s., Ve>0.
1

i

(2.8)

The proof is given in Section IV.
Remark: We note at once that the sequence {d,} defined
in Theorem 1, in fact, can be taken as
2
d,,=n5,6e(—,1). (2.9)
B8
where B is given by (1.6). To see this, by (1.6) and the
Markov inequality we have

ZIP("wn+1"2 zn’|7,)
s

= Elwmal®1%] _

s a.s.
n(SB/Z

- n=1
and by the conditional Borel-Cantelli lemma (e.g., [16,
p. 55]) we know that

2
19yt = O(n)  aus. vie (E’ 1)_ (2.10)

Hence (2.9) is true. Moreover, if there are further assump-
tions on the noise sequence {w,}, the convergence rate in
(2.8) can be improved. For example, if {w,} is a Gaussian
white noise sequence, then again by Borel-Cantelli lemma
and the Gaussian density function it is easily shown that d,
can be taken as d, = log n (see also [17]); if {w,} is a
bounded sequence, then d, = 1.

III. CoNVERGENCE OF ELS-BASED ADAPTIVE TRACKER
(WITH B, UNKNOWN)

In the last section, we have claimed the stability and
optimality of an adaptive tracker when the leading matrix
coefficient in B(z) is known. Here, we shall no longer
impose the availability of B, and will use (1.2)-(1.5) to
estimate the whole # including B,.

We first give a solution to our basic problem but with the
consistency of parameter estimate ignored.

Let us write the estimate 9, given by (1.2)-(1.5) in the
block form

0n=[_Aln'“_Apn Bln“.Bqn Cln“'crn]f
(3.1)
and define
n
r,=e+ > |ell?>, n=0. (3.2)
i=0

[
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The certainty equivalence principle suggests us to define
adaptive control from

n=z1

(3.3)

0;5071 = y:-i»l ’
or

un = B?I—n]{y:+l + (Blnun - 0;¢n)}’ ifde"[Bln] # 0

(3.4)

The first problem arising here is that u#, may not be
well-defined because the set {det[B,,] = 0} may have a
positive probability unless some sort of continuity assumption
is imposed on the distribution of w, (see [4] and [18] for
related discussions). However, we do not intend to make
such a restriction on distributions of w,, instead, we will
slightly modify B,, when we define u,, so that it is kept
from being zero or being too small.

As a matter of fact, we are replacing ‘‘By,, ”’ in (3.4) by
any Z-measurable Bj,' that satisfies the following condi-
tions (3.5) and (3.6):

(3.5)

“ﬁm_Bm" = nzl

(3.6)

(log r,_,)""*"

when defining the adaptive control, where r, is given by
3.2).

We note at once that 1) I§|,, is asymptotically equivalent to
B,, since as will be shown later r, = o as n — oo; 2) for
parameter estimation the ELS algorithm is not modified.

For single-input and single-output systems (m = 1), it is
immediately verified that B,, given by the following simple
modification from B,, satisfies (3.5) and (3.6)

1
B, if|B,|= ;
. (Og rn 1)1/
B, = B 1 (B,.) (3.7
nt Sgn{Dy,),
' (IOg rn~l)l/2 l
otherwise
where
1 x=0;
= ’ ’ 3.8
sgn (¥) 1—1, x<0. (3.8)

For the multidimensional case, one way of defining IA?I,,,
which is an analog of (3.7), is as follows. Let the singular
value decomposition of B,, be (see, e.g., {19, p. 318])

5
0
where U, and V, are orthogonal matrices and X, is a
positive definite diagonal matrix. The following choice corre-

0
0

B,=V, (3.9)

n

Jo



GUO AND CHEN: ASTROM-WITTENMARK SELF-TUNING REGULATOR AND ELS-BASED TRACKERS 805

sponds to (3.7) and satisfies (3.5) and (3.6)

1
B,,, if B],B,, = log 7,
B,, = 1 3.10
' By, + VUi ——5., (3.10)
(log r,_,)
otherwise.
In accordance with (3.4) we define u,, by

- Bln]{yn+l + (Bln n - 0;“’")} (311)

Definition: The adaptive control system (1.1)-(1.5) and
(3.11) with (3.5) and (3.6) satisfied for an a.s. bounded {yH
with y¥,, being Z-measurable is called the ELS-based
adaptive tracker.

Theorem 2: Under conditions A1-A3 the ELS-based
adaptive tracker is stable and optimal in the sense that (1.8)
and (1.9) hold. Moreover

17,07 + )% = o(ned,),

where d,, is defined in Theorem 1.

The proof is given in Section IV.

Theorems 1 and 2 have established the convergence of
ELS-based adaptive trackers without paying attention to the
consistence issue of the estimates. We now give a solution to
the basic problem by using the diminishing excitation tech-
nique developed in [4] and [20].

We first define the excitation source. Let {¢;} be the
sequence of m-dimensional i.i.d. random vectors indepen-
dent of {w;, y}} with E¢; = 0

Eepep =1,

a.s.¥e >0 (3.12)

el <o

where ¢ is a constant. .
Replacing (3.11), we define a vector u? as

up 2 BLU ko + (B, - 870,))  (3.13)
and the diminishingly excited input u,, as
U, =ug+v, (3.14)
where
€, _ 0 1
= —5,€€|0, ———
n il € 2(r+1)
t=max(p,q,r)+mp—1. (3.15)

Theorem 3: Assume that conditions A1-A3 hold, A(z),
B(z), and C(z) have no common left factor and [A4,B,C,]
is of full-row rank. Then the adaptive tracker consnstmg of
(1.1)-(1.5), (3.10), (3.13), and (3.14) solves the basic prob-
lem. To be precise, (1.8) and (1. 9) are fulfilled and

log n
Yo, - 017 = of-ers) as (a9
and
S 0y=5t =Wl =0(n ) +0(d,), as.
(3.17)

where ¢ is given by (3.15) and d,, is defined in Theorem 1.

Remark: Theorems 1-3 remain valid if the boundedness
of { y}} is replaced by

1
lim sup — Z I7F1* < oo and || y7]| = O(n*),

n—om
s.,vb>0.
IV. PROOF OF THE THEOREMS
We start with lemmas.
Lemma 1: For {0,} generated by either the algonthm

(1.2)-(1.5) or the algorithm (2.3)-(2.6) , if conditions Al
and A2 hold, and u, is Z -measurable, then

1) ||0,,+l—0||2=0(£%), a.s. (4.1)
2) ’il | #; — w;}j> = O(log r,,),  a.s. (4.2)
3) g" 167 =O(logr,), as. (4.3)

1+ /P

[l § l
where §, = 6 — 6, and A, (n) is the minimum eigenvalue
of

1
Pn+1_

n
Zl 0] + P L. (4.9)

Except (4.3), whose proof is given in the Appendix, this
lemma is not new. We note that Lai and Wei [21] are the first
to use the condition log r, /N ;.(n) > 0 in guaranteeing
strong consistency of the LS estimates.

Remark: It should not be confused that we use the same
notations for algorithms (1.2)-(1.5) and (2.3)-(2.6). For
example, r, is defined by (3.2) with ¢; given by (1.4) for the
algorithm (1.2)-(1.5), but when the algorithm (2.3)-(2.6) is
under consideration, ¢; in (3.2) should be understood as that
given by (2.5).

The following Lemma 2 is crucial in establishing our
results. The proof of it benefits from some ideas in [22].

Lemma 2: Under Conditions A1-A3, for the ELS-based
adaptive tracker (1.1)-(1.5) and (3.11) with B1 « satisfying
(3.5) and (3.6), and for the A-W self- tumng tracker (1.1),
(2.1)-(2.6) the sequence {¢,} has the following estimation:

leell> = O(rid,), as.Ve>0 4.5)
where d, is defined in Theorem 1.

Before proceeding to prove Lemma 2, we first show that
given (4.5) it is a rather easy task to conclude Theorems 1
and 2.

Proof of Theorems 1 and 2: By (1.1), (1.7), and
(3.2), it is easy to show that (see, for example, [17, Eq. (35),
p. 1097])

r’l
liminf — >0  a.s. (4.6)
n—oo N
So, by (2.9)
2
d,=0(r}), as.vée (E,l). (4.7)

o




From Lemma 1-3) and (4.5) it follows that

N A
b=y —
i; Il #76; go 1+¢?P,-w,-(

+ ¢]P0;)
eibil®

n
= (0]
O(log r,) + g T

= O(log r,) + O(rid,logr,), Ve>0
hence by the arbitrariness of ¢

n

> Nlefbl* = o(rid,),

i=0

a.s.ve> 0.

(4.8)

Consequently, by the arbitrariness of § and ¢ in (4.7) and
4.8

n 2
i§=:|so,9||2 o(rd), a.s.vae(E,l). (4.9)

Set

0
(p,,-—[y,f usus 1 uy,

T
yn—p+l n—g+1

w’

L T
W n—r+l]

n

(4.10)

where s = n — 1 for Theorem 1 and s = n for Theorem 2.
In the case of Theorem 2, by (3.11) we have

Vie1 =070 + 07(0) — @) + Wiyy
= ‘;;V’If - Aﬁlkuk + Yin
+ OT(WE - ‘Pk) + Wepss
AB,, =B, - B, (4.11)

whjle in the case of Theorem 1, (4.11) holds with the term
A B, u; removed. Here, we should keep in mind that the
definitions of 6, 0,,, ¢, in Theorem 1 are different from those
in Theorem 2. Noticing (4.2) and (4.9) from (4.11) we see

n n
3 13kl = 0(r8) + o X il
+ O(log r,) + O(n)
=o(r,) + O(n).
From this and condition A3, it is evident that

(4.12)

n+1

Z"? lluell® = 0( 2 Ily,-llz) + O(Hi Hwillz)
k=0 i=0 i=0

= o(r,) + O(n). (4.13)
By using Lemma 1-2) and (1.7), we have
n n
; ;112 < 22 [ = will2 + T will?]
=O(logr,) + O(n), as. (4.14)

Consequently, by the definition of r,, we see from

| — o
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(4.12)-(4.14) that r, = o(r,) + O(n) as..
follows that

From this, it

r, = 0(n), (4.15)

Hence it is easy to see that (1.8) holds, while (3.12) follows
from Lemma 2 and (4.15).
By (3 6), (4.2), (4.9), and (4.15), it is seen that

‘Pk) "2

for the case of Theorem 2 or with the term Afi, x U, removed

in the case of Theorem 1. From this, (4.11), and (1.7), it is

easy to see that (1.9) is true. This completes the proof of

Theorem 2, while for Theorem 1 it remains to prove (2.8).
By (4.2) and (4.8), it is clear that

lim — Z 650c — AB, 1, + 67 (02 0 as.

n—o N p

O(n4d,), ve>0
which in conjunction with (4.11) (with AEI x4, removed)
implies (2.8). The proof is completed.

Proof of Lemma 2: We here prove the lemma for
(1.1), (2.1)-(2.6) (i.e., for the case of Theorem 1) and put
the proof for (1.1)-(1.5) and (3.11) (i.e., for the case of
Theorem 2) in the Appendix.

We first show that there are constants ¢ > 0 and Ae (0, 1)
such that

n
Ei 1670, + 07(‘P2 - S"k)"z =

I Pnsall® < cad, L, + £, (4.16)
where
160,12
= ——— 48 =tr(P, - P 4.17
n 1+ ‘pnPn‘Pn n I‘( n n+1) ( )
L,= ZN’ il (4.18)

i=0
and {£,} is a nondecreasing positive sequence satisfying
£,=0(d,logr, +log?r,). (4.19)

Let qo,? be defined by (4.10) with s = n — 1. Then in view
of (2.2), it follows from (1.1) that
Yus1=07¢q + Bl + W,y (4.20)
So taking account of (2.1), we have
Yns1 =By, + 07, +

+l+9( _‘pn)

= y:+1 - 0;¢n + ofson + wn+1 + 01(902 - ¢n)

= é';‘pn +Vngrt Wopy + 07 ( —e.). (421)

By (2.7), (4.2), and the boundedness of { y}} from (4.21),
it follows that

I 7ns111 < 2[1850,112 + O(log r,) + O(d,,)
=20,[1 + ¢} P,y 10, + 05(P, = Pryy) 0]
+0(d, +1logr,)
< 20,2 +5,]e,l2] + O(d, + logr,) (4.22)
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where for the last inequality we have used the fact that
nPpyrpn = 1.

From condition A3, it follows that there exists a constant
Ae (0, 1) such that

lip | = O(L,) + 0(§w"u wi||2)

= o(L,) + 0(d,).
Combining (4.23) with (4.2) yields

(4.23)

lenl®

p-1 q-1 r—1
ZON)’,,—,'"Z“' Zl "un—i“2+ 'Zl "wn-illz
i= i= i=

o(L,) + 0(d,)

n
R P (e e T

=0(L,) +O(d, +1logr,). (4.24)

Substituting (4.24) into (4.22) and noticing «,5, ="

O(«a,) = O(log r,) (a consequence of (4.3)) we immediately
derive (4.16).
From (4.18) and (4.16) it follows that

n+1
Ln+l = ZOXI+1—1" -yi“2 = " -yn+1“2 + )‘Ln
i=
< (N+ca,s,)L, + £, (4.25)
and hence
n n n
Ly IL(N+cad)Lo+ 3 3 (N+cajd),
j=0 i=0 j=i+1

n n .
=N+ I (1 + N lea8;) Lo+ Yo N
i=0

j=0

1 (1+Ney8))¢;

j=i+1

(4.26)

where as usual T17,,(*) £ 1.
We now proceed to analyze the product in (4.26).
We note that 5; — 0 because

adl

o

Zoaj = Zo(ter —trP,,,) StrPy< . (4.27)
Jj= j=

Consequently, for any ¢ > 0 by (4.3) there exists iy such
that

n
NieY a8, <elogr,,
&jO) n

vnzizi, (4.28)
Jj=i

Using this and the inequality 1 +x <e*, x=0 one
readily obtains

n n
,1;[.'(1 + N 'a,8;) < exp {)C‘cjz:iajéj}

<exp{elogr,} =rs, vVnz=izi, (4.29)

Putting this into (4.26) and taking account of (4.19) yields

L,,,=O(ri(d,logr, +10g’r,)) as.Ve>0

which implies by the arbitrariness of e
Ln+l = O(l’;dn) and " yn+1"2 = O(r;dn)

a.s.Ve>0. (4.30)

Thus by noting (4.23) and (4.30), we know that (4.5) holds
in the case of Theorem 1.

Lemma 3: Assume that conditions A1 and A2 hold, A(z),
B(z), and C(z) have no common left factor and
[A,, B,,C,] is of full-row rank, and that the output of
system (1.1) under control (3.14) and (3.15) has growth rate

1 n

=2 lwl*=0(1) as. (4.31)
ni=0

where u9 is any Z'-measurable vector (not necessarily
defined by (3.13)) with

n
! S lut)?=0(1) as. (4.32)
n =0
where {#} is a family of nondecreasing o-algebras such
that ' is a sub o-algebra of Z, and e, independent of 7.
Then 6, given by (1.2)-(1.5) has the convergence rate
indicated in (3.16) and

Pl = ¢ n'~H*Df (4.33)

for some constant ¢, > 0, where € is defined in (3.15).
The proof is given in the Appendix.
Proof of Theorem 3: Without loss of generality as-
sume that

Z, = o{w, ¥ €, i< n}
and
F' = a{w, yi e, i< n}.
Set
1

Sk _ y* D
Yne1 = V1 ¥ 75 B, ,e,.
rn—l

Combining this with (3.13) and (3.14) we have
U, = Bl_n]{y:+l + (Blnun - 9;(,0")} (434)

Clearly, y¥,, is Z-measurable. Next, by (3.10) and
Lemma 1-1), we know that | B,,| = O({log r,_}'®),
hence { 7*} in a.s. bounded. Thus { ¥}} may serve as a new
reference signal that satisfies requirements in Theorem 2, and
so (1.1)-(1.5), (3.10), and (4.34) form an ELS-based adap-
tive tracker. Consequently, by Theorem 2, (1.8) and (1.9)
hold. Hence, (4.31) and (4.32) are satisfied because {||v,|}
is bounded. Moreover, u2 defined by (3.13) is #,-measura-
ble and % is independent of ¢, by definition. Then Lemma
3 is applicable and (3.16) follows from Lemma 1-1) and
(4.33). It remains to show (3.17).

By Lemma 2 and (4.33), it follows that

¢iP,p, = O(r;%d,), as.vée(0,1-&(t+1)).

(4.35)

Set §;= X ,a;, S, =0. Then by Lemma 1-3), §; =
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O(log r;) = O(log i), so by (4.35) we have

n

> a0 Pig;

i=1

> O‘i"iadi)

o

o(;é [s, - Si_,]i"‘)

= ( z; it (i+ 1) ]+Sn"})

|
( {ni:llog(1+t)[1 “—(i+1)“‘]})
=0(d,), voée(0,1—-¢&(r+1)).

Consequently by Lemma 1-3) again, we get

n
ZIM.IIZ Z {1+ ¢ Pe;)
Fr

= O(log n) + 0(d,),
Note that by (3.16), B,

(4.36)
. — B), and B, is nondegenerate,
n—o

we see from (3.10) that AE, » = 0 for all sufficiently large n.
Hence, by (3.16), (4.11) (with y7,, replaced by ¥r,,),
(4.2) and (3.6) we see that

n
kg—:x | Yierr = Yeer = Wi l?

n

= > 16

ior + 07(0f — @) + AByuy

1
+ =5 P2 Blkékllz
™

0(d,) + O(log n) + O(n'~%)
= 0(d,) + O(n'"9),

where & is defined in (3.15). Hence, the desired result (3.17)
holds.

a.s.,

V. CONCLUDING REMARKS

In this paper, we have proved the stability and optimality
of the A-W self- -tuning regulator and an ELS-based adaptive
tracker. However, several problems are still left open. We do
not know if the ELS-based adaptive tracker (1.1)-(1.5) and
(3.4) is still stable and optimal if no modification is made on
B,, when det B,, # 0, a.s.. In (3.7) or (3.10), weé have
modified B,,. However, we conjecture that in Theorem 2 not
only the modification may happen at most for a finite number
of steps, but also B{,B,, is asymptotically bounded from
below. -

APPENDIX

In this section, we give the proofs for Lemmas 1 and 3 and
complete the proof for Lemma 2 in the Theorem 2 case.

Proof of Lemma 1: We need only to consider the ELS

algorithm (1.2)-(1.5), since the algorithm (2.2)-(2.6) can be
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analyzed in completely the same way. Note that conclusions
1) and 2) are known results, see, for example, (9), (29), and
(31) in reference {20] (note that r, ., of [20] equals (r, —
e + 1) of the present paper). Similar results may also be
found in [9]. Hence, we need only to prove conclusion 3) for
the algorithm (1.2)-(1.5).

Set

¢k)- (A-l)

It is easy to see that ¥, ,, = 07¢, + W, ,. Substituting this
into (1.2) we have

Wesr = Wiy +07(07 -

§k+\ = (1 - akPk'Pk‘Pch)‘;k = @ Py Wiy (A2)

From (1.3), it is clear that
Pep P! =1- ay Peoyois Pty P =1+ ¢,00 Py

From this and (A.2) it follows that

tr[5;+1P;+115k+1]
=t [07(1 - axox @i Pi) = @;Wes 10} Pi]
'[Pl:lék = Pl?«yllakpk‘PkW;H]

=t 0P 0, — allepfell> — 2a,050,W, .,

+ @0 Py | Wi 2 (A.3)

We now proceed to estimate the last two terms on the
right-hand side of (A.3). For this we need the following fact
(see, e.g., [20, Eq. (21)]: for any Martingale difference
sequence {w,, %} satisfying (1.6) and any adapted matrix

sequence {M,,, %}
n n %+5
ZMIWJ+1=O({ZHMi“2} ), a.s.vé6 > 0.
i=1 i=1

(A.4)
By this, A.1, conclusion 2) and the inequality

2xy < 6x + 67 'y? x=0,y=20,6>0

it is not difficult to see that
n T~
2; @, 0i9, Wi iy
= 2 Z ak‘pkokwk+l +2 Z ak‘Pkako (2 - k)

n

n 1/2+8
~o\{ S adafir] |03 alebl?
457 S 0o - )l 0<o<i
n ~
<283 a, |0l |> + O(log r,), 0<b<i.
k=1

(A.5)
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For the last term of (A.3), we need the following result (see
[20, Eq. (29)):

n
kZl @G 0i Pror|| WiestI? = O(log T a.s.
From this, (A.1) and conclusion 2), we get

n
El @ Or Pro | Wy |12
n
= 2;1 ak¢;Pk¢k[|| Wi 12 + 107 (ep — ¢k)||2]

< O(logr,) + 21;1 107(0g — o))

=O(logr,), as. (A.6)

Finally, summing up both sides of (A.3) from 1 to n, and
using (A.5) and (A.6) we see that

(1-28) 3 a,lloib)|* < tr [67P19,] + O(log r,)
k=1

which yields conclusion 3) because 1 — 26 > 0. This com-
pletes the proof of Lemma 1.

Proof of Lemma 2 in the Theorem 2 case: Similar to
(4.16), we first show that there exist constants ¢ > 0 and
A€ (0, 1) such that

” -yn+1"2 = cfnLn + ‘En (A7)

where L, is defined as in (4.18), f, is defined as
= (ay8,logr, )" + a,5, + A8
fn (CK,, n 108 n l) «,0, log rn—l ( )

with a,, 8, defined as in (4.17), and where {{,} is a
nondecreasing positive sequence satisfying

Ex = O(d;log* r, +log® ;). (A.9)
By (3.11) we have
Ve = ABu, + 0, (A.10)

and from this
Biu, =070, — yi, +yi + (Byuy - 07¢x)
= 0o — ABu + yE,, + (Biuy = 07¢,). (A.11)

Noting that condition A3 implies the nondegeneracy of B,,
so from (3.6) and (4.6) || B 'AB,,| < 3, for all suitably
large k, we then see from (A.11) that )

[l | 52"31_1"(”5/:*’1:" + 1 yEell + | Byuy - 87¢cll)
and consequently
Nl < 41 B 1231167012 + 3 vE, 112
+3|| Byu, - 079, [|%). (A.12)
By (2.7), (4.2), and the fact that O Py 10k < 1, we see

T | .

from (4.11) that
I yiesll? < 3"5;‘/’/:“2 + 3"Aélk”2”uk”2

+ O(log r,) + O(d,)

= 3°‘k{1 + i Pryyor + 0i (P — Pk+1)¢k}
+ 30188, 17w, |12 + O(log r,) + O(d,)

<3q,(2 + Silleell?) + 3"4\31/(”2”“/:”2
+ O(d, + log r,.)

=3a,d [l ecll® + 3"AE11¢"2" u|?
+ 0(dy + log r,) (A.13)

where for the last equality we have used the estimate oy =
O(log r},), a consequence of (4.3).

We now proceed to estimate | %, J|2. By condition A3, we
know from (1.1) that there exists e (0, 1) such that

k+1 k+1
luel® = 0( _ZOX"”II y.-llz) +0 ZO N w1l|2)~
i= i=

(A.14)

Note that (B,u, — 07¢,) is free of u,, it is easy to see
from (A.14) that

,
1By — 070,12 = O(L,) + O(ZOII Wi - wk_i||2)

k
+ O 3 N w,||?
izo

O(Ly) + O(log ;) + O(d,)

where for the last relationship Lemma 1-2) is invoked and L %
is defined by (4.18). Substituting this into (A.12), we have

luell® = 120 BY 1?1670, 1% + O(L,)

+0(d, +1logr,). (A.15)

Consequently, similar to the treatment used above, by (A.14)
and (A.15) we derive

el ® = Nouell® + [lewll® = N, )2
= 12) BT 1% 67 ei ] + O(Ly)
+ O(d, +logr,). (A.16)
Now, substituting (A.14) and (A.16) into (A.13), we
obtain
I 7e41ll? = 361 B 70,8, || 670 1

+ O(HA‘élk"z" J’k+|”2)

k
+ O(ode + |48, |)?) Z;)X""II yil?
i=

+ O([d +log r,] log r,).
Then by the fact that || AB,,| — 0, it follows that for some
n—co
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constant ¢ and all suitably large &
Iyeall? < cadel| il
+ O(axdy + | AB, |17 L
+ O(d, log ry + log? r;)
=< cagd (1 + @i Py o + 5| eill?)
+ O(ay 8 + |AB|1?) L
+ O(d, log ry + log? ;)
= c(a8i)’loell?
+ O(a,dy + [|AB,, )L
+ O(d,log r; + log? ry). (A.17)

To complete the proof of (A.7) we need to derive an upper
bound for || ¢, ||> in terms of L,.

By (3.5) and Lemma 1-1), it is easy to see from(3.11) that

p—1

q-1
el < 0(1082 rk—l[ Zo lye_ill*+ Z] el
i= i=

k
+ 2 N )
i=0

+O(logr,_,) (A.18)

hence, by (A.14) again
el = [leel® = luel2] + Jue)?
= 0(1082 L iio)‘k_i[" yi"2 + 1 wi”2 + | Wi||2]
+ O(log r,._,)
= O(log’ r,_,) L, + O(log? r, + d, log? re)-
Substituting this into (A.17) and noting (3.6), we finally get

) R
| YiewrlI? = c[(akak log ri_y)" + o8, + ”ABlkHZ]Lk
+ O(log® ry + d, log* r,)

2
< c|(agdlog ry )" + a8, + g 7
k-1

+ O(log’ r, + d, log* 1)

where ¢ is some constant. Hence (A.7) is verified.
Correspond_ing to (4.25) and (4.26), we have from (A.7)

=(\+¢f,)L,+&,

n+1
and

L, =x* [fl 1+ )\“cfj)]L

+Zx"

We now estimate the product IT7 G-ie1 + X7 ef)).
For any ¢ >0, by Lemma 1-3), there exists a small,

II 1+ x-’cfj)]g,.. (A.19)

_[l+

—
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possibly random & > O such that
) « ;=
j=0

and by (4.27) there exists a (random) integer i, such that

4 [ c\1/2 >
3(5) Zase

=i

e(logr,), as.vn (A.20)

s, Vizi,. (A21)

Thus, by the inequalities 1 + xy < (1 + x)(1 + ), x =
0,y=0and1l +x*<e®, x=0,wegetforalln=i=i,

H 1+ N 'e(e;6; log rj,l)Z]
J=i+1
A 14 (2e)
=< 14+ |-a;
j=i+1 (2%)

n
11
Jj=i

2 2
1+)\‘lc(gﬁjlog rj_l) ]
4 (c\1/2 n
a;rexpi—|— 6;log r;
J} P{a()\) le;-l s 1}
12 n

)

(A.22)

x =0, we have for

o5
< 0(rs), (A.23)

Since r, = o and A < 1, we know that i, can be taken
large enough such that Sup;» 4, {1+ (cA"logr)} <2 -2\
and hence for all n > i = i,

fi (H“

confs 3

J=i+1
4
<exp{elogr,}exp {(log ’n)[g (—

<rqexp{(logr,)e} = rk

and by the inequality 1 + x < e*,
nzizi,

a.s.

,1:_'[:'(1 + X lca;d;) < exp

£

=

a.s.

-1

j=i+1 log r;

) =2-N"" (A24)

Finally, from the definition of f; and (A.22)-(A.24) it
follows that for any e > 0

I (1+cn's)

J=i+1
< 1 (1+ x5, 108 7,_,))
T =it 7% 708 Tj—
n n o\t
1+ cn a8, 1+
j=I;[4'1( e J)j=111+1< log rj)
SO(r[2-N"""), as.  vn>izi,

Substituting this into (A.19) and noting that 2\ — ¥ < 1, we
get

n .
Ly = O(r2[2x - R]") + O(rS‘Z @ - xz)""e,-)
i=0

= O(r,f‘[!og5 r,+d,log*r,]), as. ve>O0.
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By the arbitrariness of e, this implies L, ,, = O(r;d,),
Ve > 0, which in turn implies the desired result (4.5) since
by (A.14)

7l + el + | e ))?
s L+ O(Lyyy) +0(dy)
+ 20 — w2 + 2] we?
= O(ridy) + O(d,) + O(log r,,) = O(rid,).

Proof of Lemma 3: Comparing conditions in this theo-
rem with those in [20, Theorem 3 (8 > 2, 6 = 0)], we find
that n%/2 is replaced by rZ/? in the denominator of v, and
the full-rank requirement for A, is weakened to that of
{A,.B,,C,].

From the proof of [20, Theorem 3], we see that only the
following two properties of {v,} are used: 1) {v,, #} is a
Martingale difference sequence (for [20, (50)-(52)] and 2)

1 n
e Z v,-v,-’ = Cll,
n i=1

>0, as. (A.25)
for sufficiently large n.

The property (A.25) is a consequence of (41) in [20], and
is used in deriving (56) and (59) of [20]. Since without loss
of generality we may assume that ¢, is % -measurable and is
independent of Z _,, {v,, Z} is obviously a Martingale
difference sequence because r,_, is %,_,-measurable.

Further, by (4.31) and (4.32) and the boundedness of {v,}
we have

r, = O(n) + o(i'; I w,.||2).

i=1

(A.26)

Hence by Lemma 1-2), (1.7), and (A.26), it is easy to see
that for some ¢ > 0 r, < cn, a.s. vn = 0. Thus, by [20,
Eq. (41)] we have for sufficiently large n

1 n

1 n
—.ZvinEWz

€;€; 1
1-¢ e =
- e

n i=1 i=1 1

-1
2¢¢

which verifies (A.25).

We now justify the relaxation of replacing the rank condi-
tion on A, by that of [ A, B,, C,]. Under the assumptions
converse to [20, Eq. (46)], following the proof there, we find
a unit vector

alP- l)re(v)f .o

- -1 T
[a(a)v . 3(:1 1)17(0)r N .Y(r )1]

such that

ga(nrzi[aﬂj (2)]B(z) = - g:; D7z det A(2))1

p—1

> a®zi[adj (2)] C(2)

r—1
= > y"7zi[det A(2)] 1.
i=0

From this and using the fact that A(z), B(z), and C(2)
have no common left factor we find that there are m-dimen-

1T— — -
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sional vectors p, i = 1,+--, \, for some M\, such that

p-1 A q-1 A
S 2= 3 uiA(), T 677 = 3 i07eib(z)
i=0 i=0 i=0 i=0

and
-1 A o
Z ,Y(l)rzl - Z u(')TZ’C(Z)
i=o i=0
which imply
D=0, i=0,-,A\ (A.27)

since [ A4 ,, B,, C,] is of full-row rank.

Clearly, (A.27) leads to a contradictory result a'” = 0,
ﬁ(j)=0’ ‘Y(k)=07 i= 1,»,p—1, j=0,--,g-1,
k =0,---,r — 1. Thus [20, Theorem 3 remain valid. Hence
(3.16) follows, while (4.33) can be seen from {20, Eq. (46))
is true, and all results of [20, Eq. (44)]. The proof is
completed.
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