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Identification and Adaptive Control for Systems
with Unknown Orders, Delay, and
Coefficients

HAN-FU CHEN anp JI-FENG ZHANG

Abstract— This paper gives recursive estimates for the time-delay, sys-
tem orders, and coefficients of single-input single-output linear discrete-
time deterministic systems and stochastic systems with uncorrelated noise
under the assumption that a lower bound for the time delay and up-
per bounds for system orders are known. The optimal adaptive control
is designed for both tracking and linear quadratic regulation when the
system parameters, including time-delay, orders, and coefficients, are
unknown. The rates of convergence, both of the coefficient estimates to
their true values and of the loss functions to their minima, are derived.

I. INTRODUCTION

IJ:ZT the @ priori information about the plant be merely that it is
ingle-input, single-output, linear, deterministic or stochastic,
and that bounds for its time-delay and orders are available. The
question is how to design a control to minimize a tracking error
or a quadratic loss function and simultaneously to get consistent
estimates for time-delay, orders, and coefficients of the system.

In time series analysis, there is extensive literature devoted
to estimating orders and coefficients of a stationary ARMA pro-
cess from a nonrecursive point of view; see [1]-[5]. Recently,
however, Rissanen [6] established results concerning recursive
order estimation. But in the above works, some sort of stationar-
ity and ergodicity of the stochastic processes involved are usually
assumed. Therefore, the previously mentioned results cannot di-
rectly be applied to an ARMAX process when the exogenous
input is a feedback control so that the process is neither ergodic
nor stationary.

To estimate the orders of a stochastic feedback control system,
the first step was made by Chen and Guo [7], [8] who introduced
a new information criterion CIC for both uncorrelated noise 7N
and correlated noise cases [8]. Further effort in this direction
was made by Hemerly and Davis [9] for multidimensional ARX
systems with uncorrelated noise; by combining the PLS (predic-
tive least squares) criterion for order estimation with an adaptive
control strategy minimizing a quadratic cost, they showed that
one could estimate, recursively and in a strongly consistent way,
both the order and the coefficients of the controlied system, while
achieving asymptotically optimal cost. However, all these papers
not only need some strong assumptions because of the technical
problem, but also need a great deal of computation since they
require a set of parallel algorithms (one for each of the possi-
ble orders of the system) for estimating system coefficients and
system states appearing in the construction of an optimal linear
quadratic adaptive control.

This paper is devoted to reducing the computational load and
the assumptions required in [7]-[9]. The parameters we want to
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estimate are not only the system orders, but also the system time-
delay which is not estimated in previous works. The knowledge
about the time-delay is unnecessary in some cases where adaptive
tracking [10] or adaptive control with quadratic cost [11] are used
without paying attention to parameter estimation, but it is crucial
for some other control problems. For example, minimum vari-
ance control is sensitive to time-delay [12]. The recursion is also
given for the information criteria depending on time as in [9],
but the number of system coefficients we need to estimate here
is much less than that estimated in [7]-[9], since we have mod-
ified the criterion CIC used in [8] and use only one algorithm
for estimating system coefficients and system states appearing in
the LQ adaptive control problem. In addition, conditions used in
this paper have essentially been weakened in comparison to those
in [7]1-[9]. The main results of the paper can be briefly summa-
rized as follows: for both stochastic and deterministic systems
with unknown orders, time-delay, and coefficients, optimal adap-
tive controls are derived for tracking and quadratic regulation,
respectively; rates of convergence, both of the performance in-
dex to its minimum and of the parameter estimates to their true
values, are also established.

For clarity of the description, this paper deals with single-input
single-output systems only. The corresponding results for multidi-
mensional systems can be obtained similarly. The organization of
this paper is as follows. Section II presents methods and criteria
for estimating system orders, time-delay, and coefficients. Sec-
tion III discusses sufficient conditions guaranteeing consistency
of the estimates. Section IV designs an optimal adaptive tracking
control which makes the estimated parameters strongly consis-
tent, while Section V gives an optimal linear quadratic adaptive
control which guarantees the strong consistency of the estimated
parameters and the asymptotic minimality of the loss function.
The convergence rates both of the coefficient estimates to their
true values and of the loss functions to their minima are also de-
rived in Sections IV and V. Finally, we conclude this paper in
Section VI.

II. EstiMaTioON METHODS FOR TIME-DELAY, ORDERS, AND
COEFFICIENTS

In this section, we present methods estimating the unknown
time-delay, orders, and coefficients of a deterministic system or a
stochastic system with uncorrelated noise. We start with stochas-
tic systems.

A. Stochastic Systems
Let the single-input single-output system be described by a
linear stochastic equation

A(R)yn = B(Qun +wh, n>0;

n<o, 2.1

where y,, u,, and w, are the output, input, and noise, respec-
tively; A(z) and B(z) are polynomials

Yn =Un =w, =0,

AR)=1+a1z +- +apz™, po >0, (2.2)
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B(2) =ba,2® + - +bgpz®,  qo2do=1 (23)
in the backward shift operator z.
The coefficients a; (i = 1,---,po), b; (j = do,"--,qo), the

time-delay do, and the orders (po, go) are unknown but it is
assumed that a lower bound for dy and upper bounds for po, go
are available, i.e., integers p*, d* and ¢* > d* > 1 are given

such that
(Po, go) €My £ {(p,q): 0<p <p*,d*<qg<gq*}, 24
doeMy & {d: d* <d <q*}. 2.5)

We now write 'methods for estimating dy, (po, go) and a; (i =
1,---,p0), b; (j =do,---,q0).

Corresponding to the largest possible orders and the smallest
possible time-delay, we take the stochastic regressor
(2.6)

¢': =[yp-- *Yn—p+1Upn—qg+*41 " un—q‘+l]1

and denote unknown coefficients by

0(p,d,q)=1[-a1---—apbs---byl", 6*=60(p*,d*, g%

@7

where @; = 0 for i > py and b; = 0 for j < dp or j > qo by
definition.
Given any initial value 67, the estimate

0 =[—Qin -+ —apsnbarn--bgen]” (2.8)

for 6* is given by the least-squares method

n—1 “laoa
oy = (1 +Z¢,-*¢*,-’) > o vin 2.9

i=0 i=0

or recursively given by

Ori1 =07 +DrPrd(Vnr1 — ¢,760%), (2.10)
P =P, —biPrrer" Pr, (2.11)
Py=1I,b;=(1+¢:ProH)7". (2.12)

For any (p, q) € M, and d € M, we set
0n(p,d, q) =[—Qin - —apsban--bga], (2.13)

on(p,d,q) =1[yn - *Yn—priln—d+1 - Un—gi1]” (2.14)

and
n—1

on(p,d, q) = Z(yiﬂ tawmyi+ - +apnYi—pi

i=0
—banlti—gr1 — - — bgntti—g1)?
n—1
=Y it =03, d, Di(p, d, @)F. (2.15)
i=0

Obviously, 8,(p*, d*, g*) = 8; and én(p*, d*, g*) = ¢.
Introduce the criteria

CIC(p)n = oa(p, d*, q*) + psa, (2.16)

CICy(q)n = 0n(P*, d*, q) + gsn 217
and

CICs(d)y = 0,(p*, d, q*) — dsn (2.18)

where s, = (log n)?.
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Then we can estimate pg, go, and dy respectively, as follows:

DPn =arg minCIC(p),, (2.19)
0<p<p~
qn = arg minCIC»(q), (2.20)
0<g<gq”
and
d, = arg min CIC3(d),. (2.21)

d*<d<q,
Notice that o,(p, d, g) can be calculated recursively as fol-
lows:
on+1(D, d, @)= 0n(p, d, @) + Wnr1 — 0,(D, d, Q)u(p, d, @)
+On1(P, d, @) — 6P, d, QY (Nni(p, d, q)
XO0ns1(P, d, @) + No1 (0, d, @¥6a(p, d, )
—2H,.(p, d, @)

where

Nn+l(p$ d, q) =Nn(p1 d) Q) +¢n(p, dy Q)¢;(P, da 4)1
No(p, d, g) =0,

Hpn(p,d, @) =Hu(p,d, @)+ (D, d, Y11,
Ho(p, d, q) =0.
Therefore, we can also compute CIC(p),, CIC,(q),, and
CIC;(d), in a recursive way
CIC (D)1 = CIC (D) + P(Snr1 —5n) + G(D, d*, §")n
(2.22)

CICy@)ns1 = CICH@)n + q(Sns1 —Sn) +G(p*, d*, @)n
(2.23)

and

CICy(d)ns1 = CIC3(d)n — d(Snv1 —sn) + G(P*, d, ™)
(2.24)

where

G, d, @)n = Ynt1 — 03(D, d, Q)én(p. d, @)}
+ (6n11(p, d, @) —04(p, d, @)
X (Nn1(p, d, @)0n41(p, d, q)
+Nna1(p, d, @)0,(p, d, q)

—2Hp(p, d, 9)). (2.25)

B. Deterministic Systems
In this section, we discuss the following deterministic system:

AR)yn = B(2)tn, n > 0; Yn=up, =0, n<0 (2.26)

where y,, u, are the scalar output and input, respectively; A(z)
and B(z) are given by (2.2), (2.3); the unknown time-delay dj
and the orders pg and g are subject to (2.4), (2.5). The purpose
of this section is to present a method similar to that used in the
above section for estimating the unknown time-delay dj, orders
Po and qo, and coefficients @; (i = 1,---,po) and b; (j =
dOy ) 40)-

For any let 6,(p,d, q),

(p,g) €EMy and de My
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on (P, d, q), and 0,(p, d, @) be given by (2.13)-(2.15), where
0.(p, d, q) is defined by

n—1

-1
Ou(p,d, q) = (I + Z¢i(p, d, )¢ (p, d, q))
i=0
n—1

Y ip.d, Qyiv (227a)

i=0

or recursively given as follows:

0ns1(p, d, O=0n(p, d, q) + bn(p, d, Q)Pn(p, d,q)bn(p.,d, @)
X (Y1 —¢p(p, d, @)0n(p, d, q)) .

Pn+1(p7 d’ Q) =Pn(p1 d’ Q) - bn(p, dy (I)Pn(P, d’ q)
X ¢n(p, d, @), (p, d, 9)Pn(p, d, q),

ba(p,d, q) =1 +¢,(p, d, OPu(p, d, (P, d, @)

PO(P»d,Q)=I

The estimates p,, d,, and q, for py, dy, and go are given as
follows:

(Pn> gn) = argmin CIC4(p, q)., (2.27b)

0<p<p”

d"<g<q*
d, = argmin CICs(d), (2.27¢)

d"<d<gq,
where

CIC4(p, n = 0n(P, d*, @) + (P + @)sn, (2.28a)
CICs(d)n = 0n(pn, d, gu) — dsy, (2.28b)

and o0,(p, d, q) is given by (2.15).

Obviously, we can compute CIC4(p, q), recursively in a way
similar to (2.22)-(2.25).

Remark 2.1: It is worth noticing that in the above order or de-
lay estimation procedure, CIC(p),, CIC3(q),, and CIC;(d),
correspond to estimating po, go, and dy, respectively, and can be
carried out separately. Estimating p,, d,, and gn here is searched
only among p* +2(gq* — d*) + 2 points at each time instant n,
rather than (p* + 1)g* points as in [7]-[9]. We also note that
the time-delay dy is important for some adaptive control systems
[10] and is not estimated in [7]-[9].

Remark 2.2: The algorithm for computing CIC in [71, [8]
is nonrecursive, while here computing CIC(p),, CIC3(q).,
CICy(d),, and CIC4(p, q), is carried out recursively as time
goes on. For stochastic systems, the criterion CIC4(p, Q)n can
be applied to replace CIC(p), and CIC5(q), as is shown in [7],
[8]. Similarly, CICs(d), can replace CIC;(d),. However, the
converse is not true, i.e., for deterministic systems, the criteria
CIC4(p, @)n and CICs(d), cannot be replaced by CIC(p)»,
CIC»(q)n, and CIC5(d),. This is because for deterministic sys-
tems, A7, introduced in Theorem 3.1 does not go to infinity
as n — oo and hence the estimatesp,, g,, and d, given by
(2.19)-(2.21) are not consistent.

III. CoNsISTENCY THEOREMS OF THE ESTIMATES

In this section, we give conditions guaranteeing consistency of
Pns dn, q, and 6,(p,, d,, q,), and state convergence results.
The proof is given in Appendix A.

One may ask what the advantage is of estimating system or-
ders and time-delay if the consistence of the parameter estimates
is established since it includes convergence to zero for zero pa-
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rameters. This can be explained by the fact that convergence of
the order and time-delay estimates implies that the estimates (in-
tegers) exactly match the true orders and time-delay after a finite
time, while one can hardly expect the coefficient estimates to be
identical to the true ones even if they are consistent.

We first consider the stochastic case.

We assume that

H,: {w,,F,} is a martingale difference sequence with the
following properties:

supE{wl IF,} <oo, as., 3.1
. 1¢
llrrlrligp ;lz:():wiz < 00, as., 32)
=
lim inf e ’Z:O:w,? >0, as. (3.3)
where {F,} is a family of nondecreasing ¢-algebras, and
e =1/[2(r + 1), t=2p*+q*. 34

Example 3.1: Let {w,,F,} be a martingale difference se-
quence with the following properties:

sup E{w?, IF,} < oo,  as.
n
and
1 n
lim —) w?=R >0,
n—oo N4 o
im

then Assumption H, holds. Clearly, in this case

n—oo n]—f' -

-1
1 n
lim inf E w? =00>0, a.s.
=0

Example 3.2: Let {w,, F, } satisfy the conditions of Example
3.1 and let 4, be F,-measurable and

Cin~ 2 <h,<C,y, foranyn>1

where C; and C, are two constants.

Then (3.1)-(3.3) are true with w,, replaced by e, = h,_w,,
forany n > 2 and e; = wy, ey = wy.

Theorem 3.1: If H, holds, u, isF ,-measurable, and r} £ 1+
Sroller||? satisfies

(log r;)(log log r})*

(log n)? — 0, for some constant ¢ > 1
(o] n—oo
(3.5)
and
(log n)?

SE T (3.6
)\’,‘nin(n) n—0o0
where A} ., (n) denotes the minimum eigenvalue of Z;’;‘olﬁ‘q&f’ ,

then 6, p,, dy, and g, given by (2.9)-(2.21) are strongly con-
sistent

— 0,
n—co

”0:—0*”2 =O<(10g rn)(log IOg rn) ) as.

)";nin(n)
3.7
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a.s. (3.8)

(Pn, dn, ‘In) — (po. do, qo),

For deterministic systems we 51m11arly have the following.
Theorem 3.2: If Amin(n1) 2 min (N2 9 (n), )\(‘ﬁm ) (n)) sat-

min
isfies
(log n)?
N (3.9
A min (1) n—00
where A2D(ny  denotes the minimum eigenvalue  of

Loi(p> d*, Q)67 (D, d*, q), then (Dn,dn,gn) given by
(2. 2—%) 2. 27c), and (2. 28) are consistent

a.s. (3.10)

(pn, dn’ Qn) - (p09 dOv ro),
n—oo
and the estimate 8,(p, V po, dn Ado, g V qo) given by (2.27)
is also consistent in the sense that

Hon(pn Vp(h dn /\dOs dn VqO)
~0(Pa V Po> dn Ndo, @n V @0}l = O min() ™) (3.11)

where a Vb = max(a, b) and a A b = min(a, b).
Remark 3.1: Comparing the above two theorems we can see
_that in the deterministic case, in order to guarantee (3.9)-(3.11),
coprimeness of A(z) and B(z) is implicitly required since other-
wise condition (3.9) fails whatever u, is; but in the stochastic case
coprimeness of A(z) and B(z) is not necessary for consistency
of estimates. This is because the coefficient polynomials A(z),
B(z), and 1 have no common factor whatever A(z) and B(z)
are. Condition H, means that the noise w, should be neither
too strong [see (3.2)] nor too weak [see (3.3)]. Too strong noise
may heavily corrupt the system data, while too weak noise cannot
sufficiently excite the system in order to get consistent parameter
estimates. In the latter case, we then have to require some other
a priori information. For example, in the case where w, =0,
we require that A(z) and B(z) are coprime.

We also note that the convergence |6 — 6*|| — 0 [see (3.7)]
is stronger than |[0x(pn V po, dn Ado, qn V qo) — 8(Pa V Po,
dn Ndo, qn V qo)|l — 0 [see (3.11)] because for the latter case
we know nothing about convergence of a;, i > p, V po and b;,
J <dnndo, j>qnVqo.

Remark 3.2: From the proofs of Theorems 3.1 and 3.2 (see
Appendix A), we know that for Theorem 3.1 s, in criteria
CIC(p)n, CIC2(q)n, and CIC3(d), can be replaced by any
real number sequence {s} } satisfying

log r;)(log log ;)¢
Uog 7, )18 08 7a)" , g ang 52 0 (3.12)
Sy ’I—* mm( )n—-'oo
and that for Theorem 3.2 s, in CIC4(p, q), and CICs(d), can
be replaced by any real number sequence {s;;} satisfying

*

sy — oo and
n-—oo

(3.13)

mm(n)"*m )

In practice, conditions (3.5), (3.6) in Theorem 3.1 and condi-
tion (3.9) in Theorem 3.2 are difficult to verify. In the following,
we ;;move them and use alternative conditions that are easier to
verify.

We know that performances of long-run average type will not
be worsened if the attenuating excitation control [12], [13] is
applied. Inspired by this method, as an excitation source, we
take a sequence of mutually independent variables {v,} that is
independent of {w,} and satisfies

Ev, =0, Ev: <n~¢, v:<a?/n, e (0, 1/{2¢¢ +1)})
(3.14)

where ¢ is given by (3.4) and ¢2 > 0 is a constant which can be
determined by the designer.
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Without loss of generality we assume that
F, =a{w;,v;,i <n}, and Fl, = o{w;, vi—1,i < n}.

Let 4% be F}-adapted desired control. The attenuating excita-
tion method suggests to apply
Uy =S +u, (3.15)
to the system.

We now assume that
H. 27

Z(u?)z =0(n't?),  for 6 ={1 -2t +1)}/(2t +3)

i=0

(3.16)

and

for some b > 0. 3.17)

iy? =0(n"),

It is clear that Assumption H, is not a restrictive one. For
example, (3.16) is satisfied for bounded u

For stochastic systems we then have the following theorem.

Theorem 3.3: If H, and H, hold with u, given by (3.15),
then (2.9)-(2.21) lead to

H0,’{—9*“2:0<%>, for any ¢ > 1
(3.18)
and
(Dn, dn, qn)n:oo(po, do, qo), a.s. (3.19)

For deterministic systems we have the following results.
Theorem 3 .4: 1f A(z) and B(z) are coprime, and system input
u, is given by (3.15) with (3.14) and (3.16) satisfied, then (2.27)
and (2.28) lead to
a.s.

(Pn, dn, Qn)"joc(PO, do, qo), (3.20)

and

16+(Pn V Po, dn Ado, gn NV go) — 0(Pn V Po, dn Ado, Gn V qo)ll

— O(n—(l—(!+l)(e+6)))’ a.s. (3.21)

In these theorems (3.19) and (3.20) mean that p,, q,, and d,
are consistent, while (3.18) and (3.21) indicate the convergence
rates of coefficient estimates to the true values.

Remark 3.3: From Remark 3.2 we know that s, used in
(2.16)-(2.18) and (2.28) can be replaced by any real number
sequence {s}} satisfying

(4 *
(log n)(lo*g log n) 0 and

sy n'- (1+l)(<+6),,_.0o0 (322
for Theorem 3.3 and can be replaced by any real number se-
quence {s}} satisfying

*

s
n -0

sy — ooand —2—
n nl=HDE+0) p o0

n—oc

(3.23)

for Theorem 3.4.
In order to avoid underestimation of orders for small » it is
desirable to take smaller s,, for example, s, = log n in [3], [4],
= log log n in [5] for stationary ARMA processes. Unfor-
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tunately for stochastic adaptive control systems, we have to take
larger s, as is shown in (3.22).

Remark 3.4: Since t =2p* + q* > max(po, go) + Po — 1,
from [11, eq. (40)] it follows that the real number & in (3.16)
can be any one satisfying

5 e [0, M} (3.24)

2t +3

Remark 3.5: From the proof (see Appendix A) we see that one
can easily generalize the results of this paper to multidimensional
systems.

Remark 3.6: We note that the estimates for 8(po, do, go) in
Theorems 3.1-3.4 consist of components of estimates for 6*.
Obviously, if the estimation is carried out off-line, we may re-
estimate 0(pn, dn, q.), say by ELS, after having obtained esti-
mates p, dn, q, in order to improve the efficiency of the coeffi-
cient estimates as is done in [15]. We may also do this for adaptive
control systems, but it would greatly increase the computational
load.

Remark 3.7: We now compare conditions used in Theorem
3.1 of this paper to those used in [9, Theorem 2.1].

In [9], in addition to conditions used in Theorem 3.1 of this
paper, it is assumed that E{w2|F,_,} = 02, a.s. and

n -1
$n(ps 1, @) (Zdn(p, 1L d)f (p, 1, q))

i=0
< on(p, 1, Q)n:mo a.s.

for any (p, g) € My. Those conditions are no longer required in
this paper. The condition sup, E{w%|F,_,} < oo, a.s. for some
o > 2 required in [9] is weakened to & = 2 and the existence
of the limit for 1/n)"7 ;w2 is not required here. Finally, [9]
requires the following conditions:

Nin(D> Q) 7 00 as.
and

Noax(P5 @) = O()\'r'nin(py q)log Niin (P, @),

for any (p, q) € My, where N7, (p, q) and )x’,’m?(p, q) denote
the minimum and maximum eigenvalue of Z"—Q oi(p, 1, @)¢f

as., y >0

=

(p, 1, q), respectively. Clearly, these conditions imply

(rH'/? - (log r})(log log r})° S0
)\min(n)"_"x’ (r,’;)l/z n—0o0

since r; and N7, . (p*, g*) are of the same order. Therefore,
(3.12) is fulfilled with s, = (r)'/? and the conclusions of The-
orem 3.1 follow from Remark 3.2.

Remark 3.8: Comparing Theorem 3.3 of this paper to [9,
Theorem 3.1] one finds a situation similar to that described in
Remark 3.7: weaker conditions are required here and s, can be
taken as n?, for any a € (0, 1).

Remark 3.9: In the case where we pay no attention to control
performance and where only parameter estimation is required, we
may take 4% = 0. Then H, is satisfied for stochastic systems if
A(z) # 0 for [z] < 1. It is worth noting that we allow 4(z) =0 at
2] = 1. For deterministic systems, even this weaker than stability
condition, is not required. Finally, the minimum-phase condition
is unnecessary for either stochastic or deterministic systems.

IV. ApapTive TRACKING

We now design the input for a deterministic or stochastic sys-
tem with unknown orders, time-delay, and coefficients so that
the system output follows a given bounded deterministic refer-
ence signal y;. Specifically, we shall design «% in (3.15) so that
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Condition H, in Theorem 3.3 holds and the output {y, } of the
stochastic system minimizes

. 1 . *\2
nll.n;c sup ;Zo(y. -y

or so that (3.16) in Theorem 3.4 holds and y, — y; — 10000
for the deterministic system (2.26). It is clear that consistence of
parameter estimates does not necessarily imply asymptotic opti-
mality of the adaptive closed-loop.

In this section we assume that v, in (3.15) has independent
components with continuous distributions, and that bg«o in the
initial value 6 {see (2.8)] is a nonzero constant. When the atten-
uating excitation control (3.15) is applied, we have [16]

bd*n 7é 0,

Let F(2) = 1+ fi1z++fa,—12% ! and G(z) = go+812+
<+ + gp,—12P9~! be the solutions of the Diophantine equation

a.s., for any n > 0. “4.1)

1 = F(2)A4(2) +G(2)2®. 4.2)

Then the stochastic system (2.1) can be written as

Vnidy = F()B@)Z™®uy +G(2)yn + F(2)Wnsa, (4.3)

and the deterministic system (2.26) as

Ynidy = F(R)BR)Z™ Uy + GR)yn. 4.4

For the stochastic system, since F(Z)W,.q, and F(2)B(z)
27 %u, +G(z)yn are uncorrelated, and the leading coefficient of
F(2)B(z)z7% is by, which is a nonzero constant, the optimal
tracking control u#, should be defined from

Ynedo =F(2)B()2™ Uy + G(2)yn (4.5)

when the system parameters are all known. Similarly, for de-
terministic systems, the optimal tracking control should also be
given by (4.5). This motivates us to construct adaptive tracking
control #, in the following way.

Let u, be the solution of the following equation:

bantty = Ypia, —(Gn(DYn + (FnBp)2)2 ™% tty — by ntin)

(4.6)
where
Fu@) =1+ finz+ -+ fa,-1a2% "
and
Gn(2) = gon +81nZ + - +8p,—1n2"" "
are the solutions of the Diophantine equation
1 = F(2)An(2) + Gn(2)2" (4.7)
where
An(@)=1+awmz+- - +a,,.z", 4.8)
Bn(2) = ba,n2™ + -+ bg,n2? 4.9)

and (F,B,)(z) denotes the product of polynomials F,(z) and
Bn(z).

Clearly, u, is a good candidate for adaptive control. However,
u, may grow too fast so that H, may not be satisfied and thus,
the parameter estimates may be inconsistent. To overcome this
difficulty we proceed, roughly speaking, as follows: we define the
desired control u9 equal to u/, until a stopping time defined such
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that the growth rate conditions required in H, are satisfied. After
this, we simply set #9 = 0 until a stopping time so that the system
output will be reduced to a certain extent with the helg of the
minimum-phase condition. After this, we again apply u, = u,,.
To be specific, we define the adaptive tracking control u, of
system (2.1) by (3.15) with u?, defined as follows:

ul,
0 _
uy =
O)

where A is an integer set

if n belongs to some [7x, ox) N A,
(4.10)
if n belongs to some [?7x, ox) N A€ or [ok, Tk41)

A=[: @)’ <j'™ (4.11)

and {7« } and {04} are two stopping time sequences defined by

l=m <0< <o, < -+ (4.12a)

Jj—1
o) = Sup {‘r DY RSV ER N N O T]} .

i=7g

(4.12b)

(=1
, Tlogr
LTl = ok

i=7

T log 7
2k

T
Tk41 = inf {r > oy Zy,z <

i=oy

—1
1
w <’ ;g T} (4.12¢)

i=r

where 6 is given by (3.16).

For the deterministic system (2.26) the adaptive tracking con-
trol u, is given by (3.15) with 9 defined by (4.10) but with A,
{7«}, and {04} replaced as follows:

A= {j: () < j2Y, (4.13)
l=m<ai<m<o, < --- (4.14a)
Gk =sup{r > 7t ¥ <= D" 432, V)€ (n, 71}
(4.14b)
Tk+1 =inf {7 > oy Z yi<logr,
i=r—d* —p*+1
Z u'z <log~ (4.14¢)
i=r—d" —q" +1

where o is given by (3.16).
By induction it is easy to see that 9 is F,-measurable.
Remark 4.1: In the definition of the desired control {u%} the
solvability of (4.6) is essential. For this we now show

ba,n #0 (4.15)

We first consider the case where d, is generated by (2.27c).

Suppose the converse were true, i.e., ban =0.1f d, < q,,
then from (2.15) we see 0,(Pp, dn, qn) = 04(Dn, dn + 1, qy),
and hence from (2.28b) CICs(d, + 1), < CICs(d,),, which
contradicts (2.27c). Therefore, bg,» = O(n > 1) implies d, =

a.s., forany n > 1.
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g, and hence

bg,n =0. (4.16)

We now show that (4.16) implies g, = d*. Otherwise, if
gn > d*, then 6,(pn, d*, gn — 1) = 0n(pn, d*, q,) by (2.15)
and CIC4(Pn, @n — Dn < CIC4(Pn, gn)n by (2.28a). The last
inequality contradicts (2.27b). Hence, (4.16) is impossible and
(4.15) holds.

For the case where d, is given by (2.21), (4.15) can be proved
similarly.

For the stochastic system (2.1) we have the following.

Theorem 4.1: If Condition H; holds, A(z) and B(z)z ™% are
stable, u, is given by (3.15) and (4.6)-(4.12), 0, Dn, dn, Gn
are defined by (2.9)-(2.21), then

||e:—o;|2=o(w), as., (417)

il =+
(pny dn) qn)"jw(pav dO» qO)’ a.s. (4-18)
1 n
i - D)< a.s. 4.19a)
nli>nc1>o sup nz(u ) > (

i=0

and
1” L ~2_l" )2 —€/2
ng(y’ ) —n;(F(z)w,) +0(n™*). (4.19b)

For deterministic system (2.26) we have the following.

Theorem 4.2: If A(z) and B(z) are coprime, A(z) and
B(z)z % are stable, u, is given by (3.15), (4.6)-(4.10), and
(4.13), (4.14), then (2.27), (2.28) lead to

Hon(pn va, dn /\do, dn VQO) - G(Pn VPO, dn /\d()! qn \% qO)”

= O(n~1-0+Day, (4.20)
(pns dns (In) - (pOy dO’ q0)9 a.s. (4'21)
n—oo
lim sup |u,| < oo, a.s. (4.22a)
n—oo
and
yn —yil =079,  as. (4.22b)

The proofs of Theorems 4.1 and 4.2 are given in Appendix B.

Remark 4.2: In both Theorems 4.1 and 4.2, we have assumed
that A(z) and B(z)z~% are stable, but the stability requirement
for A(z) can be removed by a treatment similar to that used in
[16]. On the other hand, the stability assumption on B(z)z =%
is unavoidable in a certain sense. To see this, we give a simple
example for system (2.26):

A(z) = 1, B(z) = z - 222, y} = 1. Clearly, B(z)z™' is un-
stable. Then the exact following (¥, = y;) with ug = 0 leads
to

Up =2Up_y + 1= =2"—1

which grows without bound.
Remark 4.3: From [16] we know that for any u, measurable
with respect to F, = o {w;, i < n} we have

. 1¢ 2 . ¢ 2
"l_lfgo sup ;Z(;(J’i -y 2z nli)ﬂ;o sup E;(F(Z)Wi) .

So (4.17)—(4.19) mean that the adaptive control u, defined by
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(3.15) and (4.6)-(4.12) is optimal for stochastic systems, while
for deterministic systems, the optimality of the adaptive control
u, given by (3.15), (4.6)-(4.10), and (4.13), (4.14) follows im-
mediately from (4.20)-(4.22).

Remark 4.4: If the conditions of Theorem 4.1 are satisfied
with

n—oo

n
lim sup %Zw? =0, as.
i=0

then the conclusions of Theorem 4.1 become (4.17), (4.18) and

. 1 . *12
=

Remark 4.5: Theorems 4.1 and 4.2 remain valid if, in lieu
of stability of A(z), we use a weaker condition: all zeros of
A(z) are outside the open unit disk and G(z) is stable, where
G(z) is given by (4.2). To see that the latter condition is really
weaker than stability of A(z), it is enough to take dy = 1 and
A(z) = 1 — z as an example, for which G(z) = 1. A similar
remark can be made also for deterministic systems.

Remark 4.6: For Theorem 4.1 we can show, in a way similar
to that for [16, Lemma 4], that there exists a & (depending on
sample) such that 7, < co and 0y = oo. This means that after
a finite number of steps the desired control «9 is identical to u,
defined from (4.6). For Theorem 4.2 the similar property will be
proved in Appendix B.

V. ADAPTIVE LQ PrOBLEM

In this section we shall consider an adaptive LQ problem for
both the stochastic system (2.1) and the deterministic system
(2.26). The loss function is

J(u) :nirx;o sup J,(u) (5.1

where
n—1

1
TaW) =23 (@ + Q) 0120,0,>0 (52
i=0

for systems (2.1) and (2.26) with orders, time-delay, and coeffi-
cients all unknown.

In this section we assume that

H 3.

n
%Zw} =R +0(n"),
i=0
a.s., for some p >0and R >0. (5.3)

Example 5.1: Suppose that {w,, F,} is a martingale differ-
ence sequence with the following properties:

sup E{|w, 4, |2+u Frn} < oo, a.s.
n
and

E{wiﬂlpn} :R, a.s.

where o >0 and R >0 are deterministic constants, then As-
sumption H3 holds for any p € (0, a/(2 + ).
To see this we note that
14+a/2
m}

iE{ wh —En{lwﬁan—l}
n=1

—-pP
)
< 2l+a/2 SUpE{|W,,+1 l2+a W’l }Zn—(l—p)(H»a/Z)
n

n=1

< 00, a.s.
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and by the martingale convergence theorem [18] we get

< 00, a.s.

iwi -R :iwi —E{W2IFn_1}
n'—° n'=*

n=1 n=1

Then (5.3) follows by using the Kronecker lemma.
We first write (2.1) in the state-space form

Xi1 = AXp + Bug + Cwyyy, xo =0, (54)
Y =C7xy (5.5)
and (2.26) in the form
Xg+1 = Axy + Buy, X0 =0, (5.6
Y =CTxy (5.7
with
(—a, 1 0 - 07
—a, 01 .. 0
A= , (5.8a)
1
.—a, 0 0 -+ 0]
B" =[0 0 by, bilin s (5.8b)
C'=[1 0 0], (5.8¢)
where A = max (py, qo, 1).
From [13] it is known that
ig{/](u) =RC’SC, for system (2.1), (5.9)
u
inf J(u) =0, for system (2.26) (5.10)
uelU
and the optimal control is
u, =Lx, (5.11)
where
U= {u: Zu? =0(n), v =o(n),  as. u, eF,,} ,
i=0
(5.12)
L=—-(B"SB+Q,) 'B'SA (5.13)
S satisfies
S=A"SA - A"SB(B’SB + Q;)"'B"SA +CQ,C’
(5.14)

for which there is a unique positive definite solution S if
(A4, B, D) is controllable and observable for some D fulfilling
D'D=CQ,\C".

Based on the estimates p,, d,, g, and 0n(Pn, dn, gn) given
by (2.27), (2.28) or (2.9)-(2.21), we estimate A, B, C, S, and
X, for a deterministic or a stochastic system by A(n), B(n),
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C(n), S(n), and %, respectively, as follows:

F—ay, 1 0 07
—a, 0 1 - 0
A(n) = : R (5.153)
1
L—aw,» O O --- 0]
B (n) =10 0 by, Bhynlixn, » (5.15b)
c'my=[1 0 01, s, » (5.15¢)
hy = max{(Pn, qn, 1). (5.16)

S(n) = A" (n)S'(n — 1)A(n)
— A"(mS'(n — DB(n)(B"(m)S'(n — DB(n) + Q2)™"
x B"(n)S'(n — DA(n) + C(m)Q,C" (n). 5.17)
Here S(0) = 0, S’(n—1) is a square matrix of dimension #,, x A,
S(n—-1) 0
S'tn-1)= [ 0 0}'
M (m)S(n—-1)M(n),

ifhp_y <ha,

if hn—l Z hny

M (n)y=[1 0y, xa,_,

and finally,
Eny1 = A(Mxy + B(Mun + C(M)(Yni1
—CT(mA(m%, — C"(m)B(n)u,), (5.18)
Xo=yo=0
where %}, is of dimension 4, and is defined by
(x0T, ifhey <hy,
%) = ) (5.19)
M’ (”)xrn if hn—l Z hn-

We now have the estimate L, for the optimal gain L given by
(5.13)

L, = —(B"(m)S(m)B(n) + Q1) "' B"(mS(mA(n). (5.20)

However, we cannot directly take L,x, as the desired control
uY because L,x, may grow too fast so that H, is not satisfied.
Therefore, define

0 L,, ifn €[, o) for some k,
L, = ) (5.21)
0, if n € [ok, 7441) for some k,
ul = L% (522)

where stopping times {7; } and {0y } are defined by
1271 o1 < <oy < -+,

Jj—1
ox = sup {f > T4t Z(L,—fc;f < (-1

i=7y

+ (L %L Y, V)€ (n, T]} , (5.23)
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ok —1 146 T
. > T a2
ey = inf {r > oy E (Lix])* < = E (&])? < 71%872,
i=l

=74
(L% < 1‘+5}. (5.24)

For the stochastic system (2.1) and the deterministic system
(2.26) we have the following two theorems, respectively.

Theorem 5.1: If H, and H; hold, A(z) is stable, (4, B, D)
is controllable and observable for some D satisfying D'D =
CQ,C",0; and p,, d,, g, are defined by (2.9)-(2.21), then u,
defined by (3.15) and (5.15)~(5.24) is optimal in the sense that
a.s.

(pln d,,, (In)"joo(POa dO) qO)a (525)

C
16 —8*|2 =0 (Mﬂ) . as. (5.26)

nl——(1+l)e
and

Jn(u) = RC™SC + O(n™*"), (5.27)

Theorem 5.2: If A(z) is stable, (A, B, D) is controllable and
observable for some D satisfying D’D = CQ,C", p,, dn, q»
and 0,(pn V po, dn Ndo, @n V qo) are defined by (2.27), then
u, defined by (3.15) and (5.15)-(5.24) is optimal in the sense
that

a.s.

a.s. (5.28)

(Dn, dn, Qn)"jm(Po, do, o),

102(Pn V Po, dn Ado, gn NV qo) — 8(Dn V Po, dn Ndo, gn V qo)||
= O(n—(1-(+D9)y (5.29)
and

Jn(u) =0(n™"), (5.30)

Proof of Theorem 5.1: By an argument similar to the proof
of Theorem 4.1 (see Appendix A), we have

a.s.

Z(L?fc{)z =0(n'h). (5.31)
i=0

From this and stability of A(z) we have

n
> =o',
i=0

Then Theorem 3.3 asserts (3.18) and (3.19) by which we
know that (p,, dn, ¢) = (Do, do, o) for n starting from some
ng > 0.

Hence, (5.27) can be shown in a way similar to that used in
[13, Theorem 1].

Noticing that controllability of (4, B) implies coprimeness of
A(z) and B(z), we can prove Theorem 5.2 similarly.

It is worth noting that under the conditions of Theorems 5.1
and 5.2 there is a k (depending on sample) such that 7, < co and
g, = oo. This can be shown by a method similar to that of [13,
Lemma 6].

Remark 5.1: From (3.15) and (5.15)-(5.24), it is easy to see
that here only one computing procedure is needed for construct-
ing the optimal linear quadratic adaptive control, whereas [9]
required (p* + 1)g* computing procedures.

VI. ConcLusioN

This paper gives recursive parameter estimates for systems
(2.1) and (2.26) under the assumption that a lower bound of
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the time-delay and upper bounds of system orders are known.
Optimal adaptive controls are designed for both tracking and LQ
problems when the system coefficients, orders, and time-delay are
all unknown, and the rate of convergence both of the estimates
to their true values and of the loss functions to their minima
are derived. We have simplified the estimation algorithms and
essentially weakened the conditions used in [7]-[9]. The criteria
used in the paper can be used for estimating time-delay, system
orders, and coefficients for stochastic systems with correlated
noise. This will be published elsewhere.

APPENDIX A

This section proves Theorems 3.1-3.4. We first present some
properties of CIC(p),, CIC3(q)n, and CIC;(d),.
Lemma A.1: Under the conditions of Theorem 3.1 we have

CIC(p)n —CIC(po)n

Sn(p — po +o(1)), as., if p > po,
2 (A1)
Nuin(@0 +0(1), ass.,  if p < pg;
CICy(g)n — CIC2(qo)n
sn(g — qo + 0o(1)), as., if g > qo,
2 i (A2)
)‘):mn(d‘0 + 0(1)), a.s., if q < go;
CIC3(d)n — CIC3(do)n
sa(do —d +o(1)), as., ifd <do,
2 (A3)
Ain(do +0(1)), as.,  ifd >dp

where &¢ > 0 is a constant.
Proof: We first prove (A.1). For any 0 < p < px, set

H(p) = (A4)

I, 0, O
0 0 I,
where I, and 1,- are identity matrices of dimension pand g* —

d* + 1, respectively, while 0, is a zero matrix of dimension
px(p*-1.

If p > po, then
Ini1 =07(p, d*, q)bu(p, d*, @)+ Waer  (AS)
and
n—1 .
(P, d*,q*) = (61(p, d*, ¢)oi(p, d*, G°) + wis}
i=0

n—1
é;(pr d*’ q*)Zd’:(P, d*’ q*)

i=0

I

1 (p,d*, ¢*)Yon(p, d*, q*)
n—1\

+265(p, d*, 4" _ ¢i(p, d*, ¢ Wit

i=0
(A.6)

n—1
2
+ E Wi
i=0

where 0,(p, d, q) £ 6(p, d, q) — 0,(p, d, q).
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Noticing (A.4) and (2.9), we have

n—1 1 n
6r 20" -0 =— (Z¢;¢*; +1) <Z¢7Wf+' —o*)
i=0 i=0
(A7)

O0n(p, d*, @*) = H(P)B}, du(p, d*, q*) = H(p)o.,

and

an(p, dr, q*)

n—1 12
= (Z¢7¢*7 +1) ( S Win —0*>
i=0 i=0

n—1 —12
: (Z@*@“ +1> H' (p)H(p)
i=0

T

n—1 n—1 —1/2
: <Z¢;‘¢7’> H'(p)H(p) (Z¢7¢7" +1>
i=0

i=0

n—1 172 rp
(B ) (B o)
i=0 i=0

n—1 =1/2 n—1
_9 (Z‘ﬁ:d’*; +I) ( Orb,-*w,-H — 0*)
i=0 i=

n—l -2 n=1 12
: <Z¢7¢*7 +1) H'(p)H(p) (qu: +1>
i=0

i=0

n—1 =12, n—1
Zd),-*(b*,—’ +1) Zd’i*wiﬂ + Zwlz+]'
i=0 i=0 i=0
(A.8)
Let T(p) be an orthogonal matrix such that
I, 0 0
T(pH (pHPT (p)=| 0 I;0 O £ F(p).
0O 0 O
We have
n—1 —1/2 n—1
(Z¢:¢;’ +1> H'(p)H(p) (Z¢7¢f’> H'(pH(p)
i=0 i=0

n—1i -2
: (Z¢f¢f’ +I>
i=0

n—1 =12
<tr <Z¢,-*¢,-” +1> H’ (p)H (p)
i=0
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n—1 n—1 —1/2
: (qus:f) H () H (p) (Z¢f ,~*f +I)

i=0 i=0

=t (T(P)H (PYHD)T” (P)T ()

n—1 =1
: <Z¢,-* i +1) T" (YT (P)H' (P)H (p)
i=0

n—1
- T(PT(P) <Z¢7¢,»*’)

i=0

T (PT(p)H (pYH(P)T" (p))

n—1
=tr (F(p) <T(p) <Z¢i*¢,-*’)
i=0

-1 n—1
. T*(p)+1) F(p)T(p) <Z¢,-*¢,-“)

i=0

: T’(p)F(p)) =0() (A9
and
n—1 —-1/2
(Zfbi‘@” +1) H' (p)H(p)
i—0
a—l 12|
-(Zrb,»*cb,-*’ +1> =0(1). (A.10)
i=0
By [8, Lemma 2] we also have
n—1 —1/2 54 2
(Zw 7 +1> D diwin
i=0 i=0
= 0((log ry)(log log r;)°). (A.11)

Combining (A.8)-(A.11) yields

n—1}

9n(p, d°, g%) = O((log r;)(log log r;)") + > Wi,
i=0
(A.12)
From this and (3.5) we obtain the first part of (A.1).
On(p) =@}, — @1 @pep —@p-bar —baen -+ bge — bgen]’
(A.13)
where af, = a;, ifi <p,al, =0if p <i < p*.
When p < po, we have
165(P)? > min {a%,, b3, b2 } £ Go >0 (A.14)
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and hence by [8, Lemma 2]
n—1

on(p,d*, q*) =0"7(p) (Z@*@*’) 0

i=0

n—1 n—1{
+26%(P)D B Wi + > Wi,
i=0

i=0

n—1 172 2 n—1
> (Z¢;‘¢f’> i) +Y wi
i=0 i=0

n—1 172
-0 <Z¢7¢i") 02
i=0

- {(log r})(log log r} )< )

> [0 (PPN pin (1)

((log ry)(log log r;)”)'/zr

n—1 1/2
<Z¢? > 6 (p)
i=0

-0

n—1
2
+ E Wi
=0

2 60Ny (1)

. B (log r;)(log log r)° 12
<‘ © << )

n—1
2
+ E Wit
i=0

n—1

= Nin(m)(éo +0(1) + Y wh,

i=0

which together with (A.12) implies the second part of (A.l),
while (A.2) and (A.3) can be obtained similarly.

Proof of Theorem 3.1: Noticing (A.7) we immediately
conclude (3.7) by using [8, Lemma 2].

Since (pa, dn, gn) belongs to a finite set, for (3.8) we need
only show that any limit point of the sequence {(pn, dn, )}
is precisely (po, do, go). To this end, let p’ be the limit of a
subsequence {py,, } of {p,}.

If p’ < po, then (A.1) tells us that for all sufficiently large k.

0 Z Clcl(pnk)nk _Clcl(po)nk
=CIC(p")n, — CIC\(Po)n,

> Noin(mi)(Go + 0(1), = 00
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The obtained contradiction means that p’ > p,. Again, by (A.1)
we know

0> CIC\(p Yn, — CIC\(po)n,
> 5n, (0" — Po +0(1)),

Thus, we must have p’ = p,, otherwise the last inequality
leads to a contradiction as k — oco. Since p’ is any limit point of
Pn, we conclude that p, — pg, a.s. n — oo.

Similarly, by (A.2) and (A.3) it is not difficult to assert
gn — qo, a.s. and d, — dy, a.s. as n — oco.

In order to prove Theorem 3.2, we need the following lemma.

Lemma A.2: Under the conditions of Theorem 3.2 we have

CICl(p)n - CICl(pO)n

for p’ > po.

sn(p — po +o(1), as. if p > po,
> (A.15)
Amin(&o +0(1)), as.  if p < py;
CICy(q)n — CIC2(qo)n
sn(q@ — qo +o(1)), as. if g > qo,
> . (A.16)
Amin(Go +0(1)), as.  if g < qo

where Anin(n) is given by Theorem 3.2 and &, is defined by
(A.14).
The proof of this lemma is similar to that of Lemma A.1.
Proof of Theorem 3.2: Similar to the proof procedure of
Theorem 3.1, we have p, — po and g, — qo, a.s. as n — oo.
Noticing that M, which contains {(p,, g.)} is a finite set, we
know that

(Pns gn) = (Do, qo) (A.17)

for all # starting from a large enough number rg > 0.
By using (A.17) and the method used in the proof of Lemma
A.1, we have

CICs(d), — CICs(do)n
_ [sndo—d +o(1), as., ifd <d,
Amin(do +0(1)), ass., ifd > d,

and hence we can prove d, — do, a.s. as n — oo. Therefore,
(3.10) holds.

Proof of Theorem 3.3: Obviously, from Theorem 3.1 we
need only show that

(A.18)

Jim _inf pTIHEEDEEON () £ 0, as.

(A.19)

By the argument used in [11], for this it suffices to show that
there does not exist a nonzero vector

n=lag ap_y Bo-Bg]
such that
pr—1 q*—1 p*—1
Y Bz =Y frA@) and Y aiz' =0. (A20)
i=0 i=0 i=0

This is true indeed, because the second equation of (A.20) leads
toe; =0( =0,---,p*—1), then by the first equation of (A.20)
Bj :0(j=07)q*_l)~

Proof of Theorem 3.4: Similar to Theorem 3.3, here we
need only show that

lim inf o= 1HEFDED) L n) £ 0, a.s.

n—oo

(A.21)

where A yin(n) is given by Theorem 3.2.
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If (A.21) were not true, then it would be either

. . - € (20, @)

Jim_inf n IHFN\P 20y 20, as. (A22)
or

lim inf = HOAEO\PL Oy L0 a5 (A23)

n—o0
If (A.22) were true, then by the same argument as that used

in [14] we can prove that there would exist a (pg + ¢* — d*)-
dimensional vector

n=[a6---a;,0_1 3:’1*"' z/p—l]Ta ”77,”:1

satisfying
po—1 q" -1

0=> o/ZB@) = B/7A®.
i=0 i=d*

Since A(z) and B(z) are coprime, there are two polynomials
M(z) and N(z) such that

(A.24)

A()M(2) + B(z)N(z) = 1. (A.25)
Then from (A.24) we have
po—! po—1
S a7 = Y al(A@Mz) + BN@)E
i=0 i=0
po—1 -
=A@ | Y o7’ M@ - > B/ZN@) | (A26)
i=0 i=d*
which implies that
Po—1
(A27)

Zai/zi =0.
i=0

Since deg(A(z)) = po and deg (37 'a/z') < po — 1 (A.27)
and (A.24) yield o’ = 0, which contradicts 7’|l = 1. Therefore,
(A.22) is not true.

Similarly, we can conclude that (A.23) is also not true. There-

fore, (A.21) and, hence, Theorem 3.4 holds.

APPENDIX B

In this section we prove Theorems 4.1 and 4.2.

Proof of Theorem 4.1: Theorem 3.3 implies (4.17) and
(4.18) if we can verify H,, for which it suffices to show (3.16)
because of the stability of A(z). This can be done by a method
similar to that used in [13]. Therefore, (4.17) and (4.18) hold.
From (4.18), we know that (p,., dx, g) = (Do, do, qo), starting
from a sufficiently large ny. Hence, (4.19) can be shown in a
way similar to that for [16, Theorem 1].

Proof of Theorem 4.2: From (4.10) and (4.13) it is easy
to see that

u: =0(n*?) (B.1)
which together with the stability of A(z) implies
Ya =0(n"). (B2)

Thus, by Theorem 3.4 we know that (4.21) and (3.21) hold.
Notice that (4.21) implies that (p,, dn, gn) = (Do, do, go)
starting from a large enough no. Hence, without loss of generality
we may assume (P, dn, g,) = (po, do, qo) for all n > 1.
We now show that there exists a ¥ (depending on sample) such
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that
(B.3)

7% < 0o and oy = o0.

Obviously, we need only show the impossibility of the following
two situations:

i) o, < o0 and 7441 = oo, for some positive integer k;

i) 7% < oo and gy < oo, for every positive integer k.

We now first show the impossibility of i). If 1) were true,
then from (3.15), (4.10), and the stability of A(z) we have
Yn — n—oo0 and u, — ,_,50, which contradicts 744; = oo [see
(4.14¢)].

We now prove the impossibility of ii).

Set

ty =sup{n: j€lr, o) NA, Vj€Eln,nl} (B4

where A is given by (4.13).
By (4.14c) and (4.6) we know

u; = O(log %)
which implies that 7, exists for all sufficiently large k.
For any n € [7¢, t], it follows from (4.4), (4.6), and (4.10)
that
Ynrdy = Ynray + (FRB(R)Z™% — (FuBp)z~% )y
+(G(2) — Gn(2NYn + bagntn- (B.5)

Notice that 1 — (¢ +1)(e+8)—8 > 1 > e. Equations (B.5), (B.1),
(B.2), (3.21), and (3.14) lead to

Yn+dy = O0(D), for n € [7«, t]. (B.6)
From (4.14c) and (4.4) it follows that
yn = 0(log 7¢), for n € [1x, 7 +do — 1]. (B.7)
By induction (B.6), (B.7), (4.14c), and (4.6) lead to
u:, = O(log 7¢), for n € [y, ti +1]. (B.8)
Combining this with (B.4), we have
ty =0 — 1. (B.9)

By this and (B.6), (B.7) we have

Yo, =O0(log 1) = O(log o)

which contradicts (4.14b). Thus, (B.3) is proved.
Ijlquation (4.22) follows from (B.3), (4.10), (4.4), and (4.6),
:v;'};l)le (4.20) comes from Theorem 3.4 with § = 0 (see Remark
.T]'1e proof is completed.
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