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State Space Analysis of Boolean Networks
Daizhan Cheng, Fellow, IEEE, Hongsheng Qi

Abstract—This paper provides a comprehensive framework
for the state space approach to Boolean networks. First, it
surveys the authors’ recent work on the topic: Using semi-
tensor product of matrices and the matrix expression of logic, the
logical dynamic equations of Boolean (control) networks can be
converted into standard discrete-time dynamics. To use the state
space approach, the state space and its subspaces of a Boolean
network have been carefully defined. The basis of a subspace
has been constructed. Particularly, the regular subspace, Y-
friendly subspace, and invariant subspace are precisely defined,
and the verifying algorithms are presented. As an application, the
indistinct rolling gear structure of a Boolean network is revealed.

Index Terms—Boolean (control) network, state space, sub-
space, basis, indistinct rolling gear structure.

I. INTRODUCTION

BECAUSE of the development of systems biology, the

study of Boolean networks becomes a new cross-

discipline hot topic. Kauffman is the pioneer on this field [15].

[16] provides a less academic but more intuitive description

for the role of Boolean network in cellular regulation.

Using semi-tensor product and the matrix expression of

logic, we have developed a new systematic approach to the

analysis and control of Boolean (control) networks [4]–[6].

The engine of this new approach is the state space approach

of the logical dynamic systems. Summarizing our previous

results, this paper intends to build a comprehensive framework

for the state space approach to the Boolean networks. Certain

new results have been added to make this engine structurally

complete.

Denote by

D = {0 ∼ F, 1 ∼ T}

the set of logical values. A logical variable is an independent

variable which can take any value from D. A logical function

f with logical variables x1, ⋅ ⋅ ⋅ , xn as its arguments is a

mapping f : Dn → D.

Now assume that x1, ⋅ ⋅ ⋅ , xn are a set of time-varying

logical variables. Their involvement subjects to the following

logical dynamic equations:⎧⎨⎩
x1(t+ 1) = f1(x1(t), ⋅ ⋅ ⋅ , xn(t))
...

xn(t+ 1) = fn(x1(t), ⋅ ⋅ ⋅ , xn(t)),

(1)

where fi, i = 1, ⋅ ⋅ ⋅ , n are logical functions. We call (1) a

discrete-time logical dynamic system.
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For a discrete-time logical dynamic system if there are some

additional inputs, called the controls, and some outputs, it

becomes a discrete-time logical dynamic control system. Its

dynamics can be expressed as⎧⎨⎩

x1(t+ 1) = f1(x1(t), ⋅ ⋅ ⋅ , xn(t), u1, ⋅ ⋅ ⋅ , um)
...

xn(t+ 1) = fn(x1(t), ⋅ ⋅ ⋅ , xn(t), u1, ⋅ ⋅ ⋅ , um),

yj(t) = ℎj(x1(t), ⋅ ⋅ ⋅ , xn(t)), j = 1, ⋅ ⋅ ⋅ , p,

(2)

where fi, i = 1, ⋅ ⋅ ⋅ , n, ℎj , j = 1, ⋅ ⋅ ⋅ , p are logical functions,

ui, i = 1, ⋅ ⋅ ⋅ ,m are controls, yj , j = 1, ⋅ ⋅ ⋅ , p are outputs.

A logical dynamic (control) system is also called a Boolean

(correspondingly, control) network, which is firstly introduced

by Kauffman [14]. Boolean network has attracted a con-

siderable attention from biologists, physicians, and system

scientists, because it has been proved to be a proper tool to

describe cellular networks [11], [15].

Physically, a Boolean network consists of n nodes, denoted

by N = {1, 2, ⋅ ⋅ ⋅ , n}, and a set of edges, denoted by

ℰ ⊂ N × N . (i, j) ∈ ℰ means there is a directed side from

i to j. Physically, it means in the dynamics of node j is

affected by node i directly. Using xi to describe the i-th node,

which can take values from D, (1) is a proper way to describe

its dynamics. The dynamics of a Boolean control network is

described by (2).

We give two simple examples for a Boolean network and a

Boolean control network respectively. (We refer to [12], [17]

or any other standard textbook of mathematical logic for the

logical operators used in the sequel.)

Example I.1. 1. Consider a Boolean network depicted in

Fig. 1. Its dynamics is described as⎧⎨⎩

A(t+ 1) = B(t)∨̄E(t)

B(t+ 1) = C(t)

C(t+ 1) = (A(t)∨̄D(t)) ∧ C(t)

D(t+ 1) = E(t)

E(t+ 1) = D(t).

(3)

B A E

C D

Fig. 1: A Boolean network

2. Consider a Boolean control network depicted in Fig. 2,

which is obtained from Fig. 1 by adding two inputs, u1, u2,
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and one output, y. Its dynamics is described as⎧⎨⎩

A(t+ 1) = B(t)∨̄E(t)

B(t+ 1) = C(t) ∨ (D(t) ∧ u1(t)

C(t+ 1) = (A(t)∨̄D(t)) ∧ C(t)

D(t+ 1) = E(t)

E(t+ 1) = D(t)→ u2(t);

y(t) = D(t)↔ E(t).

(4)

B A E

C D

u1

u2

y

Fig. 2: A Boolean control network

One of the milestones in modern control theory is the

state space description of the control systems, proposed by

Kalman. Observing equations (1) and (2), one sees that they

are formally the same as the state space description of dynamic

(control) systems. Unfortunately, they are essentially different

from the conventional dynamic (control) systems. Let us first

investigate this: Denote X = (x1, ⋅ ⋅ ⋅ , xn). In linear case, X
is in a linear vector space, say, ℝn, and in nonlinear case,

X could be in an n dimensional manifold, which could be

ℝn or locally diffeomorphic to an open set of ℝn. But in

logical case, X = Dn, which does not have vector space

structure such as ℝn. So the state space approach seems

not directly applicable to the Boolean (control) networks.

In our previous series works, we have gradually introduced

the concepts of coordinate transformation, regular subspace,

invariance subspace etc. to the logical systems, which make it

possible to use the state space approach to logical dynamic

systems. The purpose of this paper is to systemize what

we proposed in previous works with certain necessary new

techniques to form a systematic state space approach to logical

dynamic (control) systems.

The main tool for this approach is the new matrix product,

called the semi-tensor product of matrices (denoted by A⋉B).

It is a generalization of conventional matrix product to the case

when the column number of the first factor matrix, A, is not the

same as the row number of the second factor matrix, B. Using

it, a logical equation can be expressed as an algebraic equation.

We refer to [2] or [3] for a systematic introduction to this

new matrix product. Throughout this paper the matrix product

is assumed to be semi-tensor product. When the dimension

matching condition is satisfied for two matrices A and B,

the product A ⋉ B = AB becomes the conventional matrix

product.

II. ALGEBRAIC FORM OF LOGICAL DYNAMICS

To use matrix expression of logic, we need some notations.

∙ �in: the i-th column of the identity matrix In;

∙ Δn = {�in ∣ i = 1, 2, ⋅ ⋅ ⋅ , n};
∙ Col(A): the set of columns of A;

∙ A matrix L ∈Mn×s is called a logical matrix, if

Col(L) ⊂ Δn.

Denote the set of n× s logical matrices by ℒn×s.

∙ If A ∈ ℒn×s, A can be expressed as A = [�i1n , ⋅ ⋅ ⋅ , �isn ].
For the sake of condense, A is denoted as

A = �n[i1, ⋅ ⋅ ⋅ , is].

∙ Vector form of logical values. We identify

1 ∼ �12 ; 0 ∼ �22 .

Then the vector form of the set of logical values is Δ2.

That is, D ∼ Δ2.

The following result is one of the key points in our ap-

proach.

Theorem II.1 ( [2], [3]). Let f be a logical function of n
arguments. Then there exists a unique Mf ∈ ℒ2×2n , called

the structure matrix of f , such that

f(x1, ⋅ ⋅ ⋅ , xn) = Mfx1x2 ⋅ ⋅ ⋅xn, xi ∈ Δ2, ∀ i. (5)

It is worth noting that the products on the right hand side

of the above equality are semi-tensor product of matrices, and

the symbol ⋉ is omitted. In conventional sense, they are not

defined.

Denote x = ⋉n
i=1xi. Then (5) can also be expressed as

f(x1, ⋅ ⋅ ⋅ , xn) = Mfx. (6)

Note that ⋉n
i=1 : (Δ2)n → Δ2n , which maps (x1, ⋅ ⋅ ⋅ , xn) 7→

x is a bijective mapping. The converting formula was given

in [6].

In the following table we list the structure matrices for some

basic logical operators (LO), which are used in the sequel.

TABLE I: Structure Matrix of Logical Operators

LO Structure Matrix LO Structure Matrix

¬ Mn = �2[2 1] ∨ Md = �2[1 1 1 2]
→ Mi = �2[1 2 1 1] ↔ Me = �2[1 2 2 1]
∧ Mc = �2[1 2 2 2] ∨̄ Mp = �2[2 1 1 2]

A logical function can be expressed by some fundamental

logical operators. For instance, since {¬,∧,∨} is an adequate

set [12], any logical function can be expressed by them.

Then the structure matrix Mf of a logical function f can be

calculated by using the structure matrices of some fundamental

logical operators as in Table I and some properties of semi-

tensor product. It was briefly reviewed in [4].

The structure matrix Mf of f can also be calculated directly

as follows: Denote Mf = [c1 c2 ⋅ ⋅ ⋅ c2n ]. Let x = ⋉n
i=1xi =

�k2n . We can uniquely calculate out {x1, ⋅ ⋅ ⋅ , xn} from x. Say,

we have xi = aki ∈ Δ2, i = 1, ⋅ ⋅ ⋅ , n. Then the k-th column

ck of Mf is

ck = f(ak1 , ⋅ ⋅ ⋅ , akn), k = 1, ⋅ ⋅ ⋅ , 2n. (7)



3

Using Theorem II.1 and some properties of semi-tensor

product of matrices, we can convert a logical dynamic (con-

trol) system into its algebraic form.

Theorem II.2 ( [6]). 1. Consider system (1). Define x =
⋉n

i=1xi. Then there exists a unique L ∈ ℒ2n×2n , called the

transition matrix of the system, such that

x(t+ 1) = Lx(t). (8)

(8) is called the algebraic form of (1).

2. Consider system (2). Define x = ⋉n
i=1xi, u = ⋉m

i=1ui,
y = ⋉p

i=1yi. Then there exist unique L ∈ ℒ2n×2n+m , and

unique H ∈ ℒ2p×2n such that{
x(t+ 1) = Lu(t)x(t)

y(t) = Hx(t).
(9)

(9) is called the algebraic form of (2).

To illustrate this, we recall Example I.1.

Example II.3. Consider Example I.1.

1) Let x(t) = A(t)B(t)C(t)D(t)E(t). Then the algebraic

form of system (3) is

x(t+ 1) = Lx(t),

where

L = �32[21 7 18 4 29 15 30 16
5 23 2 20 13 31 14 32

17 3 22 8 29 15 30 16
1 19 6 24 13 31 14 32].

2) Let x(t) = A(t)B(t)C(t)D(t)E(t), and u(t) =
u1(t)u2(t). Then the algebraic form of system (4) is{

x(t+ 1) = Lu(t)x(t)

y(t) = Hx(t),

where

L = �32[21 7 17 3 21 7 29 15
5 23 1 19 5 23 13 31

17 3 21 7 21 7 29 15
1 19 5 23 5 23 13 31

22 8 17 3 22 8 29 15
6 24 1 19 6 24 13 31

18 4 21 7 22 8 29 15
2 20 5 23 6 24 13 31

21 7 17 3 29 15 29 15
5 23 1 19 13 31 13 31

17 3 21 7 29 15 29 15
1 19 5 23 13 31 13 31

22 8 17 3 30 16 29 15
6 24 1 19 14 32 13 31

18 4 21 7 30 16 29 15
2 20 5 23 14 32 13 31],

and

H = �2[1 2 2 1 1 2 2 1
1 2 2 1 1 2 2 1
1 2 2 1 1 2 2 1
1 2 2 1 1 2 2 1].

A logical dynamic (control) system is commonly expressed

in its logical form (1) (respectively, (2)). It can be converted

into its algebraic form (8) (respectively, (9)) and vise versa. In

fact, logical form and algebraic form are equivalent. We refer

to [5] for converting algorithms from one to the other. 1

III. STATE SPACE AND SUBSPACE

Consider a conventional linear system

x(t+ 1) = Ax(t), x ∈ ℝn.

The state space can be expressed as

X = { (x1, ⋅ ⋅ ⋅ , xn) ∣ xi ∈ ℝ, i = 1, ⋅ ⋅ ⋅ , n} . (10)

In fact, the state space is spanned by {x1, ⋅ ⋅ ⋅ , xn}. So we

can write

X = Span{x1, ⋅ ⋅ ⋅ , xn}. (11)

Now, each xi spans a one-dimensional subspace of X , denoted

as

Vi = Span{xi}, i = 1, 2, ⋅ ⋅ ⋅ , n. (12)

In generally, a subset of k elements, {xi1 , ⋅ ⋅ ⋅ , xik} can span

a k-dimensional subspace, denoted by

W = Span{xi1 , ⋅ ⋅ ⋅ , xik}. (13)

Alternatively, we may consider {x1, ⋅ ⋅ ⋅ , xn} as a coordi-

nate frame of the state space X . Each a ∈ X can be expressed

uniquely as

a = �1x1 + �2x2 + ⋅ ⋅ ⋅+ �nxn, �1, ⋅ ⋅ ⋅ , �n ∈ ℝ.

Under this consideration, the state space is the set of linear

functions of {x1, ⋅ ⋅ ⋅ , xn}. Denote the set of linear functions

of {x1, ⋅ ⋅ ⋅ , xn} by Fs{x1, ⋅ ⋅ ⋅ , xn}, then we can express the

state space alternatively as

X = Fs{x1, ⋅ ⋅ ⋅ , xn}. (14)

Similarly, (12) can be expressed alternatively as

Vi = Fs{xi}, i = 1, 2, ⋅ ⋅ ⋅ , n. (15)

(13) can be expressed alternatively as

W = Fs{xi1 , ⋅ ⋅ ⋅ , xik}. (16)

In fact, here we define a subspace in “dual” way. That is,

a set of linear functions determined a subspace, which is the

domain of this set of functions.

Now consider the logical dynamic system (1). Similar to

conventional dynamic systems, we can define the state space

as

X = { (x1, ⋅ ⋅ ⋅ , xn) ∣ xi ∈ D, i = 1, ⋅ ⋅ ⋅ , n} = Dn. (17)

Motivated by (14)-(16), we give the following definition.

Definition III.1. Denote the state space of system (1) by

X := Fℓ{x1, ⋅ ⋅ ⋅ , xn},

1A toolbox for all the related computations is available at http://lsc.amss.

ac.cn/∼dcheng/

http://lsc.amss.ac.cn/~dcheng/
http://lsc.amss.ac.cn/~dcheng/
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which is the set of logical functions of the arguments

x1, ⋅ ⋅ ⋅ , xn.

Throughout this paper Fℓ of a set of logical variables means

the set of logical functions with the logical variables as their

arguments.

Remark III.2. Since a logical function is compounded from

(unary or binary) logical operators, a logical space means

a set of logical variables, which is closed under logical

operators. Since {¬,∧,∨} is a commonly used adequate set,

we can also say that a logical space is a set of logical

variables, which are closed under {¬,∧,∨}.

Definition III.3. Let Z ⊂ X . Z is called a subspace of X , if

is closed under {¬,∧,∨}.

Note that both state space X and subspace Z are sets. There

is no special topological structure, or only the trivial discrete

topology is applicable.

Definition III.4. Let Z ⊂ X be a subspace. Consider a finite

set zi ∈ X , i = 1, ⋅ ⋅ ⋅ , k. {z1, ⋅ ⋅ ⋅ , zk} is called a generator of

Z , if Z = Fℓ{z1, ⋅ ⋅ ⋅ , zk}. A generator with minimum number

is called a basis of the subspace.

Remark III.5. Let {z1, ⋅ ⋅ ⋅ , zk} be a set of k independent

logical variables. Then from Theorem II.1 it is clear that

Fℓ(z1, ⋅ ⋅ ⋅ , zk) contains 22
k

different elements. Independence

means each zi cannot be expressed as a logical function of

zj , j ∕= i.

For any subspace Z ⊂ X , there is at least one generator,

because the set of all its elements, which is a finite set, is

its generator. Now the following two problems are natural:

(i) Given a subspace, how to find its basis? (ii) Is this basis

unique in certain equivalent sense?

Let {z1, ⋅ ⋅ ⋅ , zk} be a generator of Z . That is, Z =
Fℓ{z1, ⋅ ⋅ ⋅ , zk}. Denote z = ⋉k

i=1zi and x = ⋉n
i=1xi. From

previous section we know that we can express z as

z = T0x, (18)

where T0 ∈ ℒ2k×2n . We call (18) the algebraic form of the

subspace Z with respect to the generator {z1, ⋅ ⋅ ⋅ , zk}.
We first seek for a generator with minimum number of

elements. Assume {�1, ⋅ ⋅ ⋅ , �s} is another generator of Z with

s ≤ k. Since �i ∈ Z , we can find a logical matrix P ∈ ℒ2s×2k ,

such that

� := ⋉s
i=1�i = Pz = PT0x. (19)

Since {�1, ⋅ ⋅ ⋅ , �s} is also a generator of Z , we can find

another logical matrix Q ∈ ℒ2k×2s , such that

z = Q� = QPT0x. (20)

Using above notations, we have

Theorem III.6. Let

Z = Fℓ{z1, ⋅ ⋅ ⋅ , zk} ⊂ X

be a subspace with its algebraic form with respect to the

generator {z1, ⋅ ⋅ ⋅ , zk} as in (18). Let s > 0 be an integer,

such that

2s−1 < rank(T0) ≤ 2s. (21)

Then there exists at least one generator of s elements, which

is the generator with minimum number of elements, i.e., it is

a basis.

Proof: Comparing (20) with (18), since the coefficient

matrix is unique, we have

ΦT0 = T0, where Φ := QP ∈ ℒ2k×2k . (22)

Since T0 ∈ ℒ2k×2n , it can be expressed as

T0 = �2k [i1, i2, ⋅ ⋅ ⋅ , i2n ].

It is obvious that r := rank(T0) is the number of different

entries in {i1, ⋅ ⋅ ⋅ , i2n}.
We claim the following:

Fact 1: Let �
ij
2k
∈ Col(T0). Then to meet (22), we must

have that the ij-th column of Φ is �
ij
2k

.

To see this, let cs ∈ Col(T0) be the s-th column of T0 and

cs = �
ij
2k

. It follows from (22) that Φcs = cs, s = 1, ⋅ ⋅ ⋅ , 2n.

So the ij-th column of Φ must be �
ij
2k

.

According to Fact 1, the r columns of Φ have been

determined uniquely. Moreover, these fixed r columns are

enough to assure (22). Hence, the other columns of Φ can

be chosen freely.

Next, we try to find logical matrices P and Q such that

QP = Φ. It is worth noting that

rank(Q) ≥ rank(Φ) ≥ r, (23)

which means if a generator has number s of elements, then

2s ≥ r. Let s be the unique integer satisfying (21). Then if a

generator contains exactly s elements, it is a basis.

First, we assume r = 2s. Choosing r different columns from

T0 to form a matrix Q. That is,

Q =
[
�
ij1
2k
⋅ ⋅ ⋅ �ijr

2k

]
∈ ℒ2k×2s .

Then we set P0 = QT . Note that j1, ⋅ ⋅ ⋅ , jr are r distinguished

numbers. It follows that

Col(P0) ⊂ Δ2s ∪ {02s},

where 02s ∈ ℝ2s is a zero vector. Replacing the zero columns

of P0 by any element in Δ2s yields a matrix P ∈ ℒ2s×2k .

Set Φ = QP . Note that by construction it is clear that the ijt
column of P , denoted by pijt , is

pijt = �t2r , t = 1, ⋅ ⋅ ⋅ , r.

Then the ijt -th column of Φ, denoted by �ijt , is

�ijt = Qpijt = qt = �
ijt
2k
, t = 1, ⋅ ⋅ ⋅ , r, (24)

where qt is the t-th column of Q. (24) shows that Φ satisfies

Factor 1.

Note that the (semi-tensor) product of two logical matrices

is still a logical matrix. So Φ ∈ ℒ2k×2k .

As for r < 2s, in addition to the r different columns from

T0, we can choose additional 2s − r columns ci ∈ Δ2k such

that the 2s columns are linearly independent. Then they form
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the logical matrix Q ∈ ℒ2k×2s . Using the same procedure as

in the above, we can also construct a logical matrix P such

that Φ = QP satisfied Fact 1.

Let � = ⋉s
i=1�i be determined by

� = Pz = PT0x.

By construction, we have

z = T0x = ΦT0x = QPT0x = Q�,

which means � is a generator of Z . Recall (23) and the

argument after it, � is a basis of Z .

In fact the above constructive proof provides an algorithm

for constructing a basis. We summarizing it as follows.

Proposition III.7. Let a subspace Z ⊂ X be given with gen-

erator {z1, ⋅ ⋅ ⋅ , zk}. The following Algorithm III.8 provides a

basis of Z .

Algorithm III.8. Step 1: Get the algebraic form of Z with

respect to the generator {z1, ⋅ ⋅ ⋅ , zk} as

z := ⋉k
i=1zi = T0x, (25)

where T0 ∈ ℒ2k×2n , with rank(T0) = r. Find s satisfying

(21).

Step 2: Choose r distinct columns of T0, say,{
�
ij1
2k
, ⋅ ⋅ ⋅ , �ijr

2k

}
and add 2s − r linearly independent

�
ijr+1

2k
, ⋅ ⋅ ⋅ , �ij2s

2k
to form a matrix

Q =
[
�
ij1
2k
, ⋅ ⋅ ⋅ , �i2s

2k

]
∈ ℒ2k×2s .

Step 3: Set P0 = QT and replace the zero columns of P0

by any �t2s ∈ Δ2s to get a matrix P ∈ ℒ2s×2k .

Step 4: Set � = PT0x. Then � is a basis of Z .

We use the following examples to show how to find a basis.

Example III.9. Consider X = Fℓ{x1, x2, x3}.
1) Assume ⎧⎨⎩

z1 = x3 ∨ (¬x1 ∧ ¬x2)

z2 = (x3 ∧ x1) ∨ (x3 ∧ x2)

z3 = x3.

We want to find a basis for Z = Fℓ{z1, z2, z3}. Setting

z = ⋉3
i=1zi, and x = ⋉3

i=1xi. Then it is easy to

calculate that

z = T0x, where T0 = �8[1, 8, 1, 8, 1, 8, 3, 4].

Choosing different columns, we can form Q as

Q = �8[1, 8, 3, 4].

Then we have

P0 = QT = �4[1, 0, 3, 4, 0, 0, 0, 2],

where �0k := 0k ∈ ℝk. Replacing �04 by �k4 , for any

1 ≤ k ≤ 4, say, setting k = 1 we have

P = �4[1, 1, 3, 4, 1, 1, 1, 2].

Setting

Φ = QP = �8[1, 1, 3, 4, 1, 1, 1, 8],

it is easy to check that ΦT0 = T0. Hence

� = PT0x, with PT0 = �4[1, 2, 1, 2, 1, 2, 3, 4]

is a basis of Z . Back to logical form, setting � = �1⋉�2,

where

�i = Mix, i = 1, 2,

then it is easy to calculate that{
M1 = �2[1, 1, 1, 1, 1, 1, 2, 2]

M2 = �2[1, 2, 1, 2, 1, 2, 1, 2].

It follows that {
�1 = x1 ∨ x2
�2 = x3.

2) Assume⎧⎨⎩
z1 = (x1 ∧ x2) ∨ (¬x1 ∧ x3)

z2 = [x1 ∧ (¬x2 ∧ x3)] ∨ [¬x1 ∧ (x2 ∧ ¬x3)]

z3 = ¬(x2 ∨ x3).

We want to find a basis for Z = Fℓ{z1, z2, z3}. It is

easy to calculate that

z = T0x, where T0 = �8[4, 4, 6, 7, 4, 6, 4, 7].

Choosing 3 different columns and add one more linearly

independent column, say, �88 , we can form Q as

Q = �8[4, 6, 7, 8].

Then we have

P0 = QT = �4[0, 0, 0, 1, 0, 2, 3, 4]

Replacing �04 by, say, �14 , we have

P = �4[1, 1, 1, 1, 1, 2, 3, 4].

Setting

Φ = QP = �8[4, 4, 4, 4, 4, 6, 7, 8],

it is easy to check that ΦT0 = T0. Hence

� = PT0x, with PT0 = �4[1, 1, 2, 3, 1, 2, 1, 3]

is a basis of Z . Back to logic form, setting � = �1 ⋉ �2,

where

�i = Mix, i = 1, 2,

then it is easy to calculate that{
M1 = �2[1, 1, 1, 2, 1, 1, 1, 2]

M2 = �2[1, 1, 2, 1, 1, 2, 1, 1].

It follows that{
�1 = x2 ∨ x3
�2 = [x1 ∧ (x3 → x2)] ∨ [¬x1 ∧ (x2 → x3)].

In the above, it was shown that a subspace has at least a

basis. In general, it is hard to say whether the basis is unique

(under certain equivalent sense). It will be discussed in next

section for regular case.
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IV. COORDINATE TRANSFORMATION AND REGULAR

SUBSPACE

In the previous section, the subspace and its basis have been

discussed in detail. There is a special subspace, which plays

an important role in analysis (synthesis) of Boolean (control)

networks.

Definition IV.1. Consider system (1). Let

{xi1 , ⋅ ⋅ ⋅ , xik} ⊂ {x1, ⋅ ⋅ ⋅ , xn}

be a subset of the state variables. The set

X0 = Fℓ{xi1 , ⋅ ⋅ ⋅ , xik}

is called a regular subspace of X of dimension dim(X0) = k.

From the logical dynamic equation (1), Definition IV.1 is

very natural. Here “regular” is used to emphasize that it is

not an arbitrary subset of X . It has a subsystem structure in

system dynamics. In [4] it was shown that if a regular subspace

is invariant, the structure of the network is heavily depending

on it. Precisely, it provides a rolling gear structure for the

cycles of the system. But the above definition depends on the

expression of the system. We need a coordinate-free definition.

In modern control theory, the state space approach is

powerful in analysis and control design. Particularly, the in-

variant subspace, the output kernel space, and the controllable

(observable) subspace, etc. are of fundamental importance in

the synthesis of control systems. To define and apply similar

subspaces of discrete time dynamic (control) systems, the

coordinate transformation is also essential. The coordinate

transformation of logical dynamic systems was firstly pro-

posed in [7].

Definition IV.2. Let y1, ⋅ ⋅ ⋅ , yn ∈ X , be defined by⎧⎨⎩
y1 = g1(x1, ⋅ ⋅ ⋅ , xn)
...

yn = gn(x1, ⋅ ⋅ ⋅ , xn).

(26)

The mapping G : Dn → Dn, defined by

G : (x1, ⋅ ⋅ ⋅ , xn) 7→ (y1, ⋅ ⋅ ⋅ , yn)

is called a coordinate transformation (briefly, coordinate

change), if G is one to one and onto.

Denote x = ⋉n
i=1xi and y = ⋉n

i=1yi. Then we can get the

algebraic form of (26) as

y = Tx, (27)

where T ∈ ℒ2n×2n is called the transfer matrix.

Theorem IV.3 ( [7]). Using the above notations, G is a coor-

dinate transformation, iff its transfer matrix T is nonsingular.

In fact, the algorithms for converting a logical dynamic

system into its algebraic form and vise versa can also be used

to construct the coordinate change. We give a simple example

to illustrate this.

Example IV.4. Consider a set of mappings⎧⎨⎩
y1 = ¬x2
y2 = x1 ↔ x3

y3 = x3,

(28)

whose algebraic form is⎧⎨⎩
y1 = Mnx2

y2 = Mex1x3

y3 = x3.

Setting x = ⋉3
i=1xi, y = ⋉3

i=1yi, we have

y = Tx,

where T = �8[5, 8, 1, 4, 7, 6, 3, 2]. Since T is nonsingular, (28)

is a logical coordinate transformation.

It is easy to check that if T ∈ ℒ8×8 is invertible, then

T−1 ∈ ℒ8×8. Hence x = T−1y is the algebraic form of x,

which are the logical functions of y.

Using the standard process given in [7], we can get the

inverse transformation of (28) as⎧⎨⎩
x1 = y2 ↔ y3

x2 = ¬y1
x3 = y3.

Now we can give a coordinate-free definition of a regular

subspace.

Definition IV.5. Let z1, ⋅ ⋅ ⋅ , zk ∈ X . Z0 = Fℓ{z1, ⋅ ⋅ ⋅ , zk}
is called a k-dimensional regular subspace of X , if there

are zk+1, ⋅ ⋅ ⋅ , zn ∈ X , such that G : (x1, ⋅ ⋅ ⋅ , xn) 7→
(z1, ⋅ ⋅ ⋅ , zn) is a coordinate transformation.

Definition IV.5 is very general. It will be powerful in the

synthesis of logical dynamic control systems, provided we are

able to verify it and to construct a new coordinate system,

which has the basis of Z as part of the coordinates. We will

briefly describe how to verify it.

Since z1, ⋅ ⋅ ⋅ , zk ∈ X , they can be expressed as⎧⎨⎩
z1 = g1(x1, ⋅ ⋅ ⋅ , xn)
...

zk = gk(x1, ⋅ ⋅ ⋅ , xn).

(29)

Define z1 = ⋉k
i=1zi, and x = ⋉n

i=1xi. Then we can easily

get the algebraic form of (29) as

z1 = T0x, (30)

where T0 ∈ ℒ2k×2n , which can be expressed as

T0 =

⎡⎢⎣ t11 t12 ⋅ ⋅ ⋅ t1,2n
...

t2k,1 t2k,2 ⋅ ⋅ ⋅ t2k,2n

⎤⎥⎦ .
Using the above notations, we have the following theorem,

which is of fundamental importance.

Theorem IV.6 ( [7]). Assume that a set of logical variables

z1, ⋅ ⋅ ⋅ , zk (k ≤ n) satisfies (27). Then Z0 = Fℓ{z1, ⋅ ⋅ ⋅ , zk}
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is a k-dimensional regular subspace, iff the corresponding

coefficient matrix T0 satisfies

2n∑
i=1

tr,i = 2n−k, r = 1, 2, ⋅ ⋅ ⋅ , 2k. (31)

If condition (31) is satisfied, [7] provides a mechanical way

to construct a new coordinate frame, which has Z as part of

its coordinates.

We give some examples to illustrate the regular subspace.

Example IV.7. Assume that a state space is given as X =
Fℓ{x1, x2, x3}. Set x = ⋉3

i=1xi.

1)

Y = Fℓ{x1 ∧ x2}. (32)

Let y = x1 ∧ x2. Then its algebraic form can be

expressed as

y =

[
1 1 0 0 0 0 0 0
0 0 1 1 1 1 1 1

]
x

Since
∑8

i=1 t1i = 2,
∑8

i=1 t2i = 6, Y is not a regular

subspace.

2)

Z = Fℓ{z1, z2}, (33)

where {
z1 = x1 ↔ x3

z2 = ¬x3.

Let z = z1⋉z2. Then its algebraic from can be expressed

as

z =

⎡⎢⎢⎣
0 0 0 0 0 1 0 1
1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 0 0 0 1 0 1 0

⎤⎥⎥⎦x
Since

∑8
i=1 tri = 2, r = 1, 2, 3, 4, Z is a regular

subspace. Set z3 = x2, it is ready to check that

(x1, x2, x3) 7→ (z1, z2, z3) is a coordinate transforma-

tion.

A natural question is: if rank(T0) = 2k, can we claim that

Z is a k-dimensional subspace and using the normal routine

in Linear Algebra to construct a basis of Z? The answer is

“No”. This shows the difference between logical subspace and

the linear subspace. As a counter example, space (32) has

rank(T0) = 2, but it is not a one-dimensional subspace.

The concept of regular subspace is very important

in constructing controllable/uncontrollable (observ-

able/unobservable) subspaces, which provide the controllable

(observable) canonical forms of logical dynamic control

systems [5].

Let X = Fℓ{x1, ⋅ ⋅ ⋅ , xn}. Consider a set of functions

{y1, ⋅ ⋅ ⋅ , yp} ⊂ X , which may come from the outputs of

system (2). Theorem IV.6 tells us how to check whether

Y = Fℓ{y1, ⋅ ⋅ ⋅ , yp} is a regular subspace of X . In case Y
is not a regular subspace, we need to find a regular subspace

Z , such that Y ⊂ Z . Z is called the Y-friendly (regular)

subspace. It is important in decoupling problems [9]. Let

y = ⋉p
i=1yi and x = ⋉n

i=1xi. Assume that the algebraic form

of Y is

y = Hx, (34)

where H ∈ ℒ2p×2n . Set

nj =
∣∣∣{� ∈ Col(H) ∣ � = �j2p

}∣∣∣ , j = 1, ⋅ ⋅ ⋅ , 2p,

where ∣⋅∣ is the cardinality (number of the elements) of the set.

Using above notations and statements, we have the following

result. (For statement ease, a factor of the form 2s is called a

2-type factor.)

Theorem IV.8 ( [9]). Assume that Y has algebraic form y =
Hx.

1) There is a regular subspace, Z , of dimension r, such

that Y ⊂ Z , iff n1, n2, ⋅ ⋅ ⋅ , n2p have a common factor

2n−r.

2) Assume that the largest 2-type common factor of n1,

n2, ⋅ ⋅ ⋅ , n2p is 2s. Then the smallest regular subspace,

containing Y , is of dimension 2n−s.

Given Y , a detailed algorithm for constructing Y-friendly

subspace Z is given in [9].

V. INVARIANT SUBSPACE

Consider system (1) again. If it can be expressed (under a

suitable coordinate frame) as{
z1(t+ 1) = F 1(z1(t)), z1 ∈ Ds

z2(t+ 1) = F 2(z(t)), z2 ∈ Dn−s.
(35)

Then Z1 = Fℓ{z1} = Fℓ{z11 , ⋅ ⋅ ⋅ , z1s} is called an invariant

subspace of (1).

In general sense, a subspace Z is invariant with respect to

system (1) if starting from a point z0 ∈ Z , then the trajectory

of (1) will remain on Z .

An invariant subspace is very important in investigating

the topological structure of a network [4]. Note that in [4]

the invariant subspace was only defined under the original

coordinate frame. But, obviously, the invariant subspaces in

general sense play the same role in determining the topo-

logical structure of the network. Let z1, ⋅ ⋅ ⋅ , zs ∈ X and

Z = Fℓ{z1, ⋅ ⋅ ⋅ , zs}, and set z = ⋉s
i=1zi. Then we have

the following result.

Theorem V.1. Consider system (1) with its algebraic form

(8). Assume that a regular subspace Z = Fℓ{z1, ⋅ ⋅ ⋅ , zs} with

z = ⋉s
i=1zi has the following algebraic form

z = Qx, (36)

where Q ∈ ℒ2s×2n . Then Z = Fℓ{z1, ⋅ ⋅ ⋅ , zs} is an invariant

subspace of system (1), iff

Row(QL) ⊂ Span Row(Q), (37)

where L is in (8), i.e., it is the transition matrix of the algebraic

form of system (1).

Proof: Since Z is a regular subspace, there is a set

{w1, ⋅ ⋅ ⋅ , wn−s} such that {z1, ⋅ ⋅ ⋅ , zs, w1, ⋅ ⋅ ⋅ , wn−s} form

a new coordinate frame.
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(Sufficiency) From (36) we have

z(t+ 1) = Qx(t+ 1) = QLx(t). (38)

Since Row (QL) ⊂ Span Row (Q), there exists � such that

QL = �Q. Hence

z(t+ 1) = �Qx(t) = �z(t). (39)

Converting the algebraic form (38) back to logical form,

say, F 1 is the logical form of �, we have{
z(t+ 1) = F 1(z(t))

w(t+ 1) = F 2(z(t), w(t)).
.

(Necessity) Converting z(t + 1) = F 1(z(t)) into algebraic

form, we have

z(t+ 1) = �z(t) = �Qx(t). (40)

Comparing (40) with (38), we have QL = �Q, which implies

(37).

Note that in (37) the Span is the span over D. Precisely,

(37) means there exists an H such that

QL = HQ. (41)

It is easy to check that the product of logical matrices is still

a logical matrix. Now, QL is a logical matrix, and hence so

is HQ. Note that since Z is a regular subspace, Q has full

row rank, which means Col(Q) = Δ2s . Hence Col(H) =
Col(HQ) ⊂ Δ2s . That is, H ∈ ℒ2s×2s . Hence we have

Corollary V.2. Using the notations in Theorem V.1, Z is an

invariant subspace, iff there exists an H ∈ ℒ2s×2s , such that

(41) holds.

Example V.3. Consider the following Boolean network⎧⎨⎩

x1(t+ 1) = (x1(t) ∧ x2(t) ∧ ¬x4(t)) ∨ (¬x1(t) ∧ x2(t))

x2(t+ 1) = x2(t) ∨ (x3(t)↔ x4(t))

x3(t+ 1) = (x1(t) ∧ ¬x4(t)) ∨ (¬x1(t) ∧ x2(t))

∨ (¬x1(t) ∧ ¬x2(t) ∧ x4(t))

x4(t+ 1) = x1(t) ∧ ¬x2(t) ∧ x4(t).

(42)

Let Z = Fℓ{z1, z2, z3}, where⎧⎨⎩
z1 = x1∨̄x4
z2 = ¬x2
z3 = x3 ↔ ¬x4.

(43)

Set x = ⋉4
i=1xi, z = ⋉3

i=1zi. Then we have

z = Qx,

where

Q = �8[8, 3, 7, 4, 6, 1, 5, 2, 4, 7, 3, 8, 2, 5, 1, 6]

and the algebraic form of (42) is

x(t+ 1) = Lx(t),

where

L = �16[11, 1, 11, 1, 11, 13, 15, 9, 1, 2, 1, 2, 9, 15, 13, 11].

It is easy to calculate that

QL = �8[3, 8, 3, 8, 3, 2, 1, 4, 8, 3, 8, 3, 4, 1, 2, 3],

which satisfies (37). Hence Z is an invariant subspace of (42).

In fact we can choose z4 = x4 such that⎧⎨⎩
z1 = x1∨̄x4
z2 = ¬x2
z3 = x3 ↔ ¬x4
z4 = x4

(44)

is a coordinate transformation. Moreover, under coordinate

frame z, system (42) can be expressed into the cascading form

(35) as ⎧⎨⎩
z1(t+ 1) = z1(t)→ z2(t)

z2(t+ 1) = z2(t) ∧ z3(t)

z3(t+ 1) = ¬z1(t)

z4(t+ 1) = z1(t) ∨ z2(t) ∨ z4(t).

(45)

VI. INDISTINCT ROLLING GEAR STRUCTURE

Consider system (35). Assume its algebraic form (in a

decomposed form) is{
z1(t+ 1) = L1z

1(t)

z2(t+ 1) = L2z
1(t)z2(t).

(46)

Denote Z1 = Fℓ(z
1
1 , ⋅ ⋅ ⋅ , z1s) and Z2 = Fℓ(z

2
1 , ⋅ ⋅ ⋅ , z2n−s).

It was proved in [4] that the cycle of (35) is compounded

by the cycle in Z1 and a “formal cycle” in Z2. Precisely,

let Ck
z = (z0, z1, ⋅ ⋅ ⋅ , zk = z0) be a cycle of length k, with

zi = z1i z
2
i , i = 0, ⋅ ⋅ ⋅ , k. Then for any z ∈ Ck

z , without loss

of generality, say, z0 = z10z
2
0 ∈ Ck

z , there exists an ℓ ≤ k as a

factor of k, such that

Cℓ
z1 =

(
z10 , z

1
1 = (L1)z10 , z

1
2 = (L1)2z10 , ⋅ ⋅ ⋅ , z1ℓ = (L1)ℓz10 = z10

)
is a cycle in the Z1 subspace. Moreover, define

Ψ := L2z
1
ℓ−1L2z

1
ℓ−2 ⋅ ⋅ ⋅L2z

1
1L2z

1
0 .

We can construct an auxiliary system

z2(t+ 1) = Ψz2(t). (47)

Then

Cj
z2 =

(
z20 , z

2
1 = Ψz20 , ⋅ ⋅ ⋅ , z2j = Ψjz20 = z20

)
is a cycle of (47), where j = k/ℓ. Finally, the cycle Ck

z is

decomposed as

z0 = z10z
2
0 → z1 = z11L2z

1
0z

2
0 → z2 = z12L2z

1
1L2z

1
0z

2
0 → ⋅ ⋅ ⋅ →

zℓ = z10z
2
1 → zℓ+1 = z11L2z

1
0z

2
1 → zℓ+2 = z12L2z

1
1L2z

1
0z

2
1 → ⋅ ⋅ ⋅ →

...

z(j−1)ℓ = z10z
2
(j−1) → z(j−1)ℓ+1 = z11L2z

1
0z

2
(j−1) →

z(j−1)ℓ+2 = z12L2z
1
1L2z

1
0z

2
(j−1) → zjℓ = z10z

2
j = z10z

2
0 = z0.

(48)

We call this Ck
z the compounded cycle of Cℓ

z1 and Cj
z2 ,

denoted by Ck
z = Cℓ

z1 ∘ Cj
z2 .
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Remark VI.1. 1) As long as the dynamics of a Boolean

network has a cascading structure as (35), its cycles

have such a “compounded structure”, which is called

the rolling gear structure, described in [4].

2) Cℓ
z1 is a real cycle, which involves only part of nodes

(precisely, s nodes). Cj
z2 is not a real cycle. It is a cycle

of the auxiliary system (47).

3) To the best of our knowledge, in current lectures (for

instance, [1], [6], [11], [13], [18] and the references

therein) only overall node cycles and fixed points are

considered. Cycles and fixed points involving part of

nodes, such as Cℓ
z1 , are ignored. They can be found

only in the cascading form.

If a system is not originally in a cascading form but under

a suitable coordinate frame it has cascading form. The the

system still has the cycles and/or fixed points involving part of

state variables. Moreover, the rolling gear structure still exists,

which will be called the indistinct rolling gear structure. We

investigate it through the following example.

Example VI.2. Consider the following Boolean network⎧⎨⎩

x1(t+ 1) = [x5(t) ∧ (x3(t)∨̄x4(t))]↔ (x5(t)∨̄x3(t))

x2(t+ 1) = x5(t)∨̄x3(t)

x3(t+ 1) = (x3(t)∨̄x4(t)) ∨̄x2(t)

x4(t+ 1) = [¬ (x1(t)↔ x2(t))] ∨̄ [(x3(t)∨̄x4(t)) ∨̄x2(t)]

x5(t+ 1) = x5(t) ∨ (x3(t)∨̄x4(t))

x6(t+ 1) = [(x1(t)↔ x2(t))↔ (x2(t)∨̄x6(t))]

∨̄ (x5(t)∨̄x3(t)) .

(49)

Setting x = ⋉6
i=1xi, the algebraic form of the system (49)

is

x(t+ 1) = Lx(t), (50)

where

L = �64[18 17 35 36 62 61 45 46
13 14 30 29 33 34 20 19
26 25 43 44 54 53 37 38
5 6 22 21 41 42 28 27

21 22 40 39 57 58 42 41
10 9 25 26 38 37 23 24
29 30 48 47 49 50 34 33
2 1 17 18 46 45 31 32].

Using the method proposed in [6], it is easy to calculate

that the attractive set of (49) consists of 4 cycles of length 8.

They are:

C1 : (111111)→ (101110)→ (100111)→ (111011)→
(000010)→ (010011)→ (011010)→ (000110)→
(111111),

C2 : (111110)→ (101111)→ (100110)→ (111010)→
(000011)→ (010010)→ (011011)→ (000111)→
(111110),

C3 : (110111)→ (110011)→ (011111)→ (101011)→
(001010)→ (001110)→ (100010)→ (010110)→
(110111),

C4 : (110110)→ (110010)→ (011110)→ (101010)→
(001011)→ (001111)→ (100011)→ (010111)→
(110110).

Under this coordinate frame, we are not able to find cycles,

which contained in smaller invariant subspaces. And therefore,

we are not able to reveal the rolling gear structure for the

network.

To find tiny cycles and the rolling gear structure of the

network, we try to convert (49), if possible, into a cascading

form to investigate its indistinct rolling gear structure. Note

that Theorem V.1 says that Span{Col(Q)T } is a standard LT

invariant subspace. So the standard tools from linear algebra

can be used to find the invariant subspaces. We skip the tedious

and straightforward computation and consider the following

two nested spaces:

Z1 = Fℓ{z1 = x1 ↔ x2; z2 = x5; z3 = x3∨̄x4}
Z2 = Fℓ{z1 = x1 ↔ x2; z2 = x5; z3 = x3∨̄x4; z4 = x2∨̄x6}

Set z1 = z1 ⋉ z2 ⋉ z3. It is easy to calculate that

z1 = Q1x,

where
Q1 = �8[2 2 4 4 1 1 3 3

1 1 3 3 2 2 4 4
6 6 8 8 5 5 7 7
5 5 7 7 6 6 8 8
6 6 8 8 5 5 7 7
5 5 7 7 6 6 8 8
2 2 4 4 1 1 3 3
1 1 3 3 2 2 4 4].

Similarly, set z2 = z1 ⋉ z2 ⋉ z3 ⋉ z4. We have

z2 = Q2x,

where

Q2 = �16[ 4 3 8 7 2 1 6 5
2 1 6 5 4 3 8 7

11 12 15 16 9 10 13 14
9 10 13 14 11 12 15 16

12 11 16 15 10 9 14 13
10 9 14 13 12 11 16 15
3 4 7 8 1 2 5 6
1 2 5 6 3 4 7 8 ].

Using Theorem IV.6, it is easy to check that Z1 ⊂ Z2 are

two nested regular subspaces.

To see they are invariant subspaces of system (49), it suffices

to find Hi, i = 1, 2, such that (38) holds. That is, QiL =
HiQi. The Hi can be calculated as

H1 = �8[2, 6, 6, 8, 1, 5, 5, 7];

H2 = �16[3, 4, 11, 12, 11, 12, 15, 16, 2, 1, 10, 9, 10, 9, 14, 13].
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It is not difficult to find z5 = x2 and z6 = x3, such that Ψ :
(x1, ⋅ ⋅ ⋅ , x6) 7→ (z1, ⋅ ⋅ ⋅ , z6) is a coordinate transformation:

Ψ :

⎧⎨⎩

z1 = x1 ↔ x2

z2 = x5

z3 = x3∨̄x4
z4 = x2∨̄x6
z5 = x2

z6 = x3.

(We refer to [9] for the mechanical procedure of finding

additional coordinate variables to make a basis of a regular

subspace into a coordinate transformation.)

The algebraic form of Ψ is

z = ⋉6
i=1zi = Tx, (51)

where

T = �64[13 9 29 25 5 1 21 17
6 2 22 18 14 10 30 26

43 47 59 63 35 39 51 55
36 40 52 56 44 48 60 64
45 41 61 57 37 33 53 49
38 34 54 50 46 42 62 58
11 15 27 31 3 7 19 23
4 8 20 24 12 16 28 32].

Now under the coordinate frame z = Tx we have the

algebraic form of system (49) as

z(t+ 1) = Tx(t+ 1) = TLx(t) = TLT−1z(t) := L̃z(t),
(52)

where

L̃ = �64[12 10 11 9 16 14 15 13
43 41 44 42 47 45 48 46
42 44 41 43 46 48 45 47
57 59 58 60 61 63 62 64
8 6 7 5 4 2 3 1

39 37 40 38 35 33 36 34
38 40 37 39 34 36 33 35
53 55 54 56 49 51 50 52].

A mechanical procedure was provided in [6] to convert the

algebraic form of a Boolean network back to logic form. Using

it, we can convert (52) into a logical form as (omitting the

mechanical procedure)⎧⎨⎩

z1(t+ 1) = z2(t) ∧ z3(t)

z2(t+ 1) = z2(t) ∨ z3(t)

z3(t+ 1) = ¬z1(t)

z4(t+ 1) = z1(t)↔ z4(t)

z5(t+ 1) = z2(t)∨̄z6(t)

z6(t+ 1) = z3(t)∨̄z5(t).

(53)

From this cascading form one sees easily that Z1 =
Fℓ{z1, z2, z3} and Z2 = Fℓ{z1, z2, z3, z4} are invariant

subspaces.

The subsystem with respect to Z1 has 1 cycle of length 4,

which is

(111)→ (110)→ (010)→ (011)→ (111),

and the sub-system with respect to Z2 has 2 cycles of length

4, which are

(1111)→ (1101)→ (0101)→ (0110)→ (1111),

(1110)→ (1100)→ (0100)→ (0111)→ (1110).

The corresponding cycles of system (49) become

C̃1 : (110011)→ (010001)→ (011100)→ (111011)→
(110000)→ (010010)→ (011111)→ (111000)→
(110011),

C̃2 : (110111)→ (010101)→ (011000)→ (111111)→
(110100)→ (010110)→ (011011)→ (111100)→
(110111),

C̃3 : (111010)→ (110010)→ (010011)→ (011101)→
(111001)→ (110001)→ (010000)→ (011110)→
(111010),

C̃4 : (111110)→ (110110)→ (010111)→ (011001)→
(111101)→ (110101)→ (010100)→ (011010)→
(111110).

It is easily seen that the cycle of Z1 is implicitly contained in

the cycles of Z2 (marked with underline), and similarly, the

cycles of Z2 are implicitly contained in the cycles of (49). They

form several groups of three assembled gears, which form the

so called indistinct rolling gear structure.

Note that cycles Ci and C̃i, i = 1, 2, 3, 4 are exactly

the same. (We have put them in a point-point corresponding

way. The only difference is caused by the different coordinate

frames.)

VII. CONCLUSION

Recently, the authors have developed a systematic new ap-

proach to the analysis and control of logical dynamic (control)

systems, by using the semi-tensor product of matrices and the

matrix expression of logic, proposed by the authors. A key

point in this new approach is to convert a logical dynamic

(control) system into a discrete-time dynamic system. It makes

the state space technique applicable to logical dynamic (con-

trol) systems.

Since in logical systems the state space is not a vector

space, some additional techniques have to be developed to

deal with “state space” and “subspaces”. Defining a space by

a set of logical functions, we introduced some new concepts

such as “regular subspace”, “Y-friendly subspace”, “invariant

subspace” etc. They have both clear physical meanings and

neat verifying formulas.

Using the well defined different subspaces, the control-

lability and observability [5], stability and stabilization [8],

disturbance decoupling and other decoupling problems [9],

[10], etc. have been investigated.



11

As another interesting application, the tool of invariant

subspace has been used to convert a Boolean network into

a cascading form, if possible. Then the indistinct rolling gear

structure of a Boolean network under arbitrary coordinates is

revealed.
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