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Abstract. The stability of Boolean networks and the stabilization of Boolean control networks are

investigated. Using semi-tensor product of matrices and the matrix expression of logic, the dynamics

of a Boolean (control) network can be converted to a discrete time linear (bilinear) dynamics, called

the algebraic form of the Boolean (control) network. Then the stability can be revealed by analyzing

the transition matrix of the corresponding discrete time system. Main results consist of two parts: (i)

Using logic coordinate transformation, the known sufficient condition based on incidence matrix has been

improved. It can also be used in stabilizer design. (ii) Based on algebraic form, necessary and sufficient

conditions for stability and stabilization respectively are obtained.
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1 Introduction

Accompanying the rising of systems biology, the study of Boolean network has attracted a great attention

from biologists, physicists, and systems scientists, because it is a proper model to describe cellular net-

works and genomic regulatory networks [10, 7]. The control of Boolean network is a challenging problem.

So far, there are only few results because we are short of systematic tool to deal with logical dynamic

systems [1, 8].

Recently, a new matrix product, namely, the semi-tensor product (STP) of matrices, was proposed,

which generalizes the conventional matrix product, AB, A ∈ Mp×q and B ∈ Mm×n for the case q ∕= m,

where Mm×n stands for the set of m × n matrices. Using STP, a logical equation can be expressed as

an algebraic equation and the dynamics of a Boolean (control) network can be converted into a linear

(bilinear) discrete-time (control) system [2]. Then investigating the corresponding discrete time (control)

systems, some interesting progresses have been achieved, which are briefly described as follows: (1)

Formulas for calculating fixed points and cycles have been obtained [3]; (ii) Steering gears’ structure

of attractors in Boolean network has been revealed [4], which explains why tiny attractors decide the

vast order, as described in [11]; (iii) The controllability and observability of Boolean control networks
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are investigated [5]; (iv) Coordinate transformation of Boolean networks and the realization of Boolean

control networks are presented [6].

Stability of Boolean networks is another interesting topic [9, 12]. In fact, the stability of a Boolean

network is essentially equivalent to the convergence of a discrete iteration [14]. As for the stabilization

of a Boolean control network, to the best of authors’ knowledge, it is a new topic.

This paper considers the stability of Boolean networks and the stabilization of Boolean control net-

works. The key tool used in this paper is the semi-tensor product of matrices and the matrix expression

of logic, which have been used in the sequence of works [3, 4, 5, 6].

The paper is organized as follows. Section 2 provides necessary preliminaries, including (i) matrix

expression of logic; (ii) Boolean (control) network; (iii) Logical coordinate transformation; (iv) incidence

matrix. Section 3 discusses the concepts and basic properties of Boolean matrices. The vector distance

of Boolean matrices is also introduced. The global stability of Boolean networks is investigated in

Section 4. Based on the incidence matrix and the vector distance of Boolean matrices, a convenient

sufficient condition is obtained. Moreover, the necessary and sufficient condition is also presented. Section

5 considers the stabilization of Boolean control networks. Some examples are included to depict the

technique. Section 6 is the conclusion.

2 Preliminaries

2.1 Matrix Expression of Logic

We first recall the definition of STP of matrices.

Definition 2.1 [2] 1. Let X be a row vector of dimension np, and Y be a column vector with dimension

p. Then we split X into p equal-size blocks as X1, ⋅ ⋅ ⋅ , Xp, which are 1×n rows. Define the STP, denoted

by ⋉, as ⎧⎨⎩
X ⋉ Y =

p∑
i=1

Xiyi ∈ ℝn,

Y T ⋉XT =
p∑
i=1

yi(X
i)T ∈ ℝn.

(1)

2. Let A ∈ Mm×n and B ∈ Mp×q. If either n is a factor of p, say nt = p and denote it as A ≺t B,

or p is a factor of n, say n = pt and denote it as A ≻t B, then we define the STP of A and B , denoted

by C = A⋉B, as the following: C consists of m× q blocks as C = (Cij) and each block is

Cij = Ai ⋉Bj , i = 1, ⋅ ⋅ ⋅ ,m, j = 1, ⋅ ⋅ ⋅ , q,

where Ai is the i-th row of A and Bj is the j-th column of B.

STP of matrices is a generalization of conventional matrix product. So we can omit the symbol ⋉.

All fundamental properties of conventional matrix product remain true [2]. Throughout this paper the

matrix products are assumed to be semi-tensor product. As n = p they becomes conventional matrix

product automatically.

We briefly define some concepts and/or notations first.
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∙ Let �in be the i-th column of the identity matrix In, and Δn := {�1n, �2n, ⋅ ⋅ ⋅ , �nn}. When n = 2 we

simply use Δ := Δ2.

∙ The set of logical values: True (T ∼ 1) and False (F ∼ 0), is denoted by D = {0, 1}. We identify

each with a vector as T ∼ �12 and F ∼ �22 . So in vector form the set of logical values becomes Δ. In

this sense we have the equivalence as D ∼ Δ.

∙ Assume a matrix M = [�i1n �i2n ⋅ ⋅ ⋅ �isn ] ∈ Mn×s, i.e., its columns, Col(M) ⊂ Δn. We call M a

logical matrix, and simply denote it as

M = �n[i1 i2 ⋅ ⋅ ⋅ is].

∙ The set of n× s logical matrices is denoted by ℒn×s.

∙ A matrix B ∈Mn×s is called a Boolean matrix, if its entries bij ∈ D, ∀ i, j.

∙ The set of n× s Boolean matrices is denoted by ℬn×s.

In vector form, we have

Proposition 2.2 [2] Let x1, ⋅ ⋅ ⋅ , xn ∈ D be n logical variables, and f(x1, ⋅ ⋅ ⋅ , xn) a logical function.

Then there exists a unique matrix Mf ∈ ℒ2×2n , called the structure matrix of f , such that in vector form

we have

f(x1, ⋅ ⋅ ⋅ , xn) = Mf ⋉ni=1 xi, xi ∈ Δ.

Logical operators are fundamental logical functions. Their structure matrices are particularly useful.

In the following table we list the structure matrices for some basic logical operators (Negation: ¬;

Conjunction: ∧; Disjunction: ∨; Conditional: →; Biconditional: ↔; Exclusive Or: ∨̄ [13]), which are

used in the sequel.

Table 1: Structure Matrices of Some Logical Operators

Operator Structure Matrix Operator Structure Matrix

¬ Mn = �2[2 1] ∨ Md = �2[1 1 1 2]

→ Mi = �2[1 2 1 1] ↔ Me = �2[1 2 2 1]

∧ Mc = �2[1 2 2 2] ∨̄ Mp = �2[2 1 1 2]

2.2 Boolean (Control) Network

A Boolean network, N , of n elements may be described by its network graph, G(N). G(N) consists of n

nodes, denoted by N = {x1, ⋅ ⋅ ⋅ , xn}, and a set of directed edges ℰ ⊂ N × N . xj , xi ∈ ℰ (i.e., there is

an edge from xj to xi) means xi is affected by xj . We refer to Fig. 1 for a network graph (within the

rectangular box).

A network graph is not enough to describe a Boolean network completely. A logical dynamical

equation is necessary to determine a Boolean network. The dynamics of a Boolean network is expressed
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as ⎧⎨⎩

x1(t+ 1) = f1(x1, ⋅ ⋅ ⋅ , xn)

x2(t+ 1) = f2(x1, ⋅ ⋅ ⋅ , xn)
...

xn(t+ 1) = fn(x1, ⋅ ⋅ ⋅ , xn), xi ∈ D,

(2)

where fi, i = 1, ⋅ ⋅ ⋅ , n are logical functions. Let X = (x1, ⋅ ⋅ ⋅ , xn)T and F = (f1, ⋅ ⋅ ⋅ , fn)T . Then (2) can

briefly denoted as

X(t+ 1) = F (X(t)). (3)

Using the vector form and setting x(t) := ⋉ni=1xi(t) ∈ Δn, and denoting by Mi the structure matrix

of fi, we can express each equation in (2) in a vector form as

xi(t+ 1) = Mix(t), xi ∈ Δ, i = 1, ⋅ ⋅ ⋅ , n. (4)

Finally, we can obtain an algebraic form of (2) (equivalently, (3)) as [3]

x(t+ 1) = Lx(t), x ∈ Δn, (5)

where L ∈ ℒ2n×2n is the transition matrix.

The dynamics of a Boolean control network is expressed as⎧⎨⎩

x1(t+ 1) = f1(x1, ⋅ ⋅ ⋅ , xn, u1, ⋅ ⋅ ⋅ , um)

x2(t+ 1) = f2(x1, ⋅ ⋅ ⋅ , xn, u1, ⋅ ⋅ ⋅ , um)
...

xn(t+ 1) = fn(x1, ⋅ ⋅ ⋅ , xn, u1, ⋅ ⋅ ⋅ , um),

(6)

where fi, i = 1, ⋅ ⋅ ⋅ , n are logical functions. Similarly, we denote it briefly as

X(t+ 1) = F (X(t), U(t)), X(t) ∈ Dn, U(t) ∈ Dm. (7)

Let x(t) := ⋉ni=1xi(t) and u(t) := ⋉mi=1ui(t). We can equivalently express (6) (equivalently, (7)) in an

algebraic form as [4, 5]

x(t+ 1) = Lu(t)x(t), x ∈ Δn, u ∈ Δm, (8)

where L ∈ ℒ2n×2n+m is also called the transition matrix.

We give an example to illustrate them.

Example 2.3 1. In Fig. 1 within the rectangular box we have a Boolean network of four nodes. As-

sume its dynamics is described by the following equation:⎧⎨⎩
A(t+ 1) = B(t) ∨ C(t)

B(t+ 1) = A(t)↔ C(t)

C(t+ 1) = A(t) ∧D(t)

D(t+ 1) = (A(t)→ B(t))∨̄C(t).

(9)
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Define x(t) = A(t)B(t)C(t)D(t), it is easy to check that its algebraic form is x(t+ 1) = Lx(t) with

L = �16[2 4 5 7 1 3 14 16 8 8 3 3 8 8 11 11].

(Please refer to the Acknowledgment for a Toolbox, which provides a simple function to calculate

this.)

2. Consider the overall Boolean control network in Fig. 1. Say, its dynamics is⎧⎨⎩
A(t+ 1) = (B(t) ∨ C(t)) ∧ u1
B(t+ 1) = A(t)↔ C(t)

C(t+ 1) = (A(t) ∧D(t)) ∨ u2
D(t+ 1) = (A(t)→ B(t))∨̄C(t).

(10)

Then its algebraic form is x(t+ 1) = Lu(t)x(t), where L can be calculated as

L = �16[2 2 5 5 1 1 14 14 6 6 1 1 6 6 9 9

2 4 5 7 1 3 14 16 8 8 3 3 8 8 11 11

10 10 13 13 9 9 14 14 14 14 9 9 14 14 9 9

10 12 13 15 9 11 14 16 16 16 11 11 16 16 11 11].

Figure 1: A Boolean (Control) Network

2.3 Logical Coordinate Transformation

Definition 2.4 Let x1, x2, ⋅ ⋅ ⋅ , xn ∈ D be a set of independent logical variables. A mapping ' : Dn → Dn,

denoted by Y = '(X) and defined by

' :

⎧⎨⎩
y1 = g1(x1, ⋅ ⋅ ⋅ , xn)
...

yn = gn(x1, ⋅ ⋅ ⋅ , xn)

(11)

is called a coordinate transformation, if (11) is a one-to-one and onto mapping.

In vector form we have xi, yi ∈ Δ, ∀i. Setting x = ⋉ni=1xi ∈ Δn and y = ⋉ni=1yi ∈ Δn, then the

algebraic form of (11) is expressed as

y = Tx, (12)
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where T ∈ ℒ2n×2n .

Proposition 2.5 [6] (11) is a coordinate transformation, iff the transformation matrix T in (12) is

nonsingular.

Note that since T ∈ ℒ2n×2n , when T is nonsingular it becomes an orthogonal matrix [6].

Proposition 2.6 [5]

1. Consider system (2). Let z = Tx be a coordinate transformation. Then the algebraic form (5) of

(2) becomes

z(t+ 1) = TLTT z(t). (13)

2. Consider system (5). Let z = Tx be a coordinate transformation. The algebraic form (8) of (5)

becomes

z(t+ 1) = TL(I2m ⊗ TT )u(t)z(t). (14)

2.4 Incidence Matrix

Assume a Boolean network, N is given, with its nodes N = {x1, ⋅ ⋅ ⋅ , xn} and edge set ℰ .

Definition 2.7 An n× n matrix ℐ(N) = (bij) is called the incidence matrix of N , if

bij =

⎧⎨⎩1, xj , xi ∈ ℰ ,

0, otherwise.

Example 2.8 Consider the network (9), refer to the graph within the rectangular box of Fig. 1. Its

incidence matrix is

ℐ∣(9) =

⎡⎢⎢⎢⎣
0 1 1 0

1 0 1 0

1 0 0 1

1 1 1 0

⎤⎥⎥⎥⎦ .
Remark 2.9 1. If a Boolean network N has n nodes, its incidence matrix ℐ(N) ∈ ℬn×n.

2. The incidence matrix of a Boolean network can also be constructed from its dynamical equations.

But you have to be very careful that in dynamic equations there may have some fabricated variables,

which should be removed. [5] provided a mechanical procedure to remove all fabricated variables

from a logic expression.

3 Logical Operations on Boolean Matrices

The main purpose is to define a distance on ℬm×n. We first define the logical operators on ℬm×n.
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Definition 3.1 1. Let X = (xij) ∈ ℬm×n and � an unary logical operator. Then � : ℬm×n → ℬm×n
is defined by �X = (�xij). For instance,

¬X := (¬xij). (15)

2. Let X = (xij), Y = (yij) ∈ ℬm×n and � a binary logical operator. Then � : ℬm×n×ℬm×n → ℬm×n
is defined by X�Y := (xij�yij). For instance,

X ∨ Y := (xij ∨ yij), etc. (16)

3. Let � ∈ D and X = (xij) ∈ ℬm×n. � is a binary logical operator. Then � : D × ℬm×n → ℬm×n is

defined by ��X := (��xij). Similarly, � : ℬm×n ×D → ℬm×n is defined by X�� := (xij��). For

instance

� ∧X = (� ∧ xij); X ∧ � = (xij ∧ �). (17)

Next, we consider the scalar product and the (semi-tensor) product on the set of Boolean matrices.

Definition 3.2 1. Let � ∈ D. The scalar product of � with X ∈ ℬm×n is

� ⋅X := � ∧X; X ⋅ � := X ∧ �. (18)

Note that since it coincides with the conventional real number product, we use the same product

symbol. For compactness, we may also even omit the symbol in the sequel.

2. Let X = (xij) ∈ ℬm×n and Y ∈ ℬp×q be two Boolean matrices. Then the Kronecker product of

X,Y is defined as

X ⊗ Y = (xij ⋅ Y ∣ i = 1, ⋅ ⋅ ⋅ ,m; j = 1, ⋅ ⋅ ⋅ , n) ∈ ℬmp×nq. (19)

3. Let �, �, �i ∈ D, i = 1, 2, ⋅ ⋅ ⋅ , n. The Boolean plus is defined as follows.⎧⎨⎩
�+B � := � ∨ �,
B

n∑
i=1

�i := �1 ∨ �2 ∨ ⋅ ⋅ ⋅ ∨ �n.
(20)

4. Let X = (xij) ∈ ℬm×n and Y = (yij) ∈ ℬn×p. Then the Boolean product of Boolean matrices

X ⋉B Y := Z ∈ ℬm×p, (21)

where

zij = B
n∑
k=1

xik ⋅ ykj , i = 1, ⋅ ⋅ ⋅ ,m; j = 1, ⋅ ⋅ ⋅ , p.

5. Let A ≺t B (A ≻t B). Then the Boolean product of A, B is defined as

A⋉B B := (A⊗ It) ⋉B B. (A⋉B B := A⋉B (B ⊗ It).) (22)
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6. Assume A⋉B A is well defined. Then the Boolean power

A(k) := A⋉B A⋉B ⋅ ⋅ ⋅⋉B A︸ ︷︷ ︸
k

.

Note that ⋉B may be omitted when there is no possible confusion.

We give some simple examples.

Example 3.3 Let

A =

⎡⎢⎣1 1

0 1

0 0

⎤⎥⎦ ; B =

⎡⎢⎣0 1

1 0

0 1

⎤⎥⎦ ; C =

⎡⎢⎢⎢⎣
0 1

1 0

1 0

0 1

⎤⎥⎥⎥⎦ .
Then

¬A =

⎡⎢⎣0 0

1 0

1 1

⎤⎥⎦ ; A ∧B =

⎡⎢⎣0 1

0 0

0 0

⎤⎥⎦ ;

A+B B = A ∨B =

⎡⎢⎣1 1

1 1

0 1

⎤⎥⎦ ; A→ B =

⎡⎢⎣0 1

1 0

1 1

⎤⎥⎦ ;

A↔ B =

⎡⎢⎣0 1

0 0

1 0

⎤⎥⎦ ; A∨̄B =

⎡⎢⎣1 0

1 1

0 1

⎤⎥⎦ ;

A⋉B C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1

1 1

1 0

0 1

0 0

0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
; B ⋉B C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0

0 1

1 0

0 1

1 0

0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Next, we define a partial order on ℬm×n, and a “distance”, called the vector distance on ℬm×n.

Definition 3.4 Let X = (xij), Y = (yij) ∈ ℬm×n. We said X ≤ Y if xij ≤ yij, ∀i, j.

Definition 3.5 Let X = (xij), Y = (yij) ∈ ℬm×n. The vector distance of X and Y , denoted by d(X,Y ),

is defined as

d(A,B) = A∨̄B. (23)

Since both Boolean product and Boolean plus are order-preserving, it is easy to verify the following

properties, which are the generalization of the corresponding results (for vector cases) in [14].

Proposition 3.6 Assume A ≥ B and C ≥ D, then (as long as the product is well defined)

A⋉B C ≥ B ⋉B D. (24)
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Proposition 3.7 Let X,Y, Z ∈ ℬm×n. The vector distance satisfies⎧⎨⎩
d(X,Y ) = 0⇔ X = Y,

d(X,Y ) = d(Y,X),

d(X,Z) ≤ d(X,Y ) +B d(Y, Z).

(25)

4 Global Stability

This section considers global stability of a Boolean network. That is, when will there exists a fixed point

as the unique attractor. Equivalently, when a Boolean dynamics will globally converges to a state. A key

tool in this investigation is the vector distance.

Denote X = Dn as the state space of the Boolean network (2) (or Boolean control network (6)). (In

vector form we have X = Δn.) X ∈ X is expressed as X = (x1, ⋅ ⋅ ⋅ , xn). we consider a logical mapping

F : X → X , which is described as ⎧⎨⎩
z1 = f1(x1, ⋅ ⋅ ⋅ , xn),
...

zn = fn(x1, ⋅ ⋅ ⋅ , xn).

(26)

It is briefly denoted as

Z = F (X), where X,Z ∈ X . (27)

This mapping may come from the Boolean network (2).

Theorem 4.1 [14] Let X,Y ∈ X . Then

d(F (X), F (Y )) ≤ ℐ(F ) ⋉B d(X,Y ), (28)

where ℐ(F ) is the incidence matrix of F .

Theorem 4.2 [14] For mapping (27) if there exists a matrix M ∈ ℬn×n such that

d(F (X), F (Y )) ≤M ⋉B d(X,Y ), ∀X,Y ∈ X , (29)

then

ℐ(F ) ≤M.

Theorem 4.3 [14] Let E,F : X → X be two logical mappings. Then

ℐ(E ∘ F ) ≤ ℐ(E) ⋉B ℐ(F ). (30)

An immediate application of the above theorem is

Corollary 4.4 Let � be a fixed point of (2). Then

d(X(k), �) ≤ [ℐ(F )](k) ⋉B d(X(0), �). (31)

Particularly, if the j1, ⋅ ⋅ ⋅ , js columns of [B(F )](k) are zero, and x�(0) = ��, ∀� ∕∈ {j1, ⋅ ⋅ ⋅ , js}, then

x(t) = �, t ≥ k.
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It is obvious that if 0 is a fixed point of F and there exists an integer k > 0 such that [B(F )](k) = 0.

Then the system globally converges to 0.

Definition 4.5 System (2) is said to be globally stable if it globally converges to a fixed point. In other

words, it has a fixed point as the only attractor.

Example 4.6 Consider the follow system⎧⎨⎩
x1(t+ 1) = f1(x2(t), x3(t)),

x2(t+ 1) = f2(x4(t),

x3(t+ 1) = c0,

x4(t+ 1) = f4(x3),

(32)

where f1, f2, and f3 can be any logical functions, and c0 is a logical constant. Briefly, we denote (32) as

X(t+ 1) = F (X(t)), X ∈ D4.

The incidence matrix of F is

ℐ(F ) =

⎡⎢⎢⎢⎣
0 1 1 0

0 0 0 1

0 0 0 0

0 0 1 0

⎤⎥⎥⎥⎦ .
It is easy to check that [ℐ(F )](4) = 0, assume 0 is a fixed point of the system (32), then it globally

converges to 0.

Summarizing the above arguments, we have

Proposition 4.7 Consider system (2) (equivalently, (3)). Assume 0 ∈ Dn is a fixed point of F and

there exists an integer k > 0 such that

[ℐ(F )](k) = 0, (33)

then 0 is the unique global attractor.

Note that if xe = (e1, e2, ⋅ ⋅ ⋅ , en) is a fixed point of the system (2), the above method is still useful

for testing whether xe is a global attractor. Make a coordinate transformation

zi =

⎧⎨⎩xi, ei = 0,

¬xi, ei = 1
(34)

Now it is easy to convert the system (2) into a system of z as

z(t+ 1) = F̃ (z(t)). (35)

If there exists a k > 0 such that [ℐ(F̃ )](k) = 0, then xe is a global attractor of the system (2).

It is easy to prove that [14] for a Boolean matrix H ∈ ℬn×n the followings are equivalent:
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∙ there exists a k > 0 such that H(k) = 0;

∙ there exists a permutation matrix P such that PT ⋉B H ⋉B P is a strictly lower triangular (or

upper triangular) matrix.

In fact, when H = ℐ(F ) is an incidence matrix, P means a re-ordering of variables.

Unfortunately, this method is sufficient but not necessary. Consider the following example

Example 4.8 Consider the following system⎧⎨⎩x1(t+ 1) = x1(t) ∧ x2(t)

x2(t+ 1) = x1(t) ∧ (¬x2(t)).
(36)

It is easy to check that 0 is its unique attractor. But its incidence matrix is

ℐ(F ) =

[
1 1

1 1

]
,

and

[ℐ(F )](k) = ℐ(F ) ∕= 0, k ≥ 1.

Now what is the necessary and sufficient condition for a Boolean network to be globally convergent.

In fact, we have the following conclusion.

Theorem 4.9 The Boolean network (2) is globally convergent, iff there exists a k > 0 such that

ℐ(F k) = 0. (37)

Proof. (Necessity) If the system is globally convergent, then after Tr steps (where Tr is the transient

period [3]) all the states converge to the global attractor �. So when k ≥ Tr (37) is true.

(Sufficiency) Now assume (37) is true. Then for any x we have F k(x) that is constant, say,

F k(x) = �.

Then for any number t ≥ k,

F t(x) = F k(F t−k(x)) = �.

So, the system converges to � globally. □

Remark 4.10 1. The Proposition 4.7 and the method right following it are practically useful because

the size of the incidence matrix is n× n, which is of the order of O(n).

2. In Theorem 4.9 F k is not directly computable. It can only be calculated by the algebraic form of F ,

say LF , which is of size 2n × 2n. So it is difficult to use it if n is not small.

3. From Theorem 4.3 it is clear that

ℐ(F k) ≤ [ℐ(F )](k), k ≥ 1. (38)

But in general they are not equal.
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Recall Proposition 4.7. In fact, the condition “0 is a fixed point” is not necessary for stability. Because

from (38) one sees that condition (33) assures that F s is constant for s ≥ k. Say, F s(x) = �, ∀x and

s ≥ k. Then the system globally converges to �. We write it as a corollary.

Corollary 4.11 Consider the system (2). It is globally stable if the condition (33) holds.

Proposition 4.7 is one of the main tools for the stability analysis and stabilizer design. So some further

discussions are necessary.

First, we would like to point out that for a Boolean network its incidence matrix ℐ(F ) is coordinate-

depending. The following example shows this.

Example 4.12 Consider the following system⎧⎨⎩
x1(t+ 1) = [x1(t) ∧ (x2(t)∨̄x3(x))] ∨ (¬x1(t) ∧ x3(t)),

x2(t+ 1) = [x1(t) ∧ (¬x2(t))] ∨ (¬x1 ∧ x2),

x3(t+ 1) = [x1(t) ∧ (¬(x2(t) ∧ x3(t)))] ∨ [¬x1(t) ∨ (x2(t) ∨ x3(t))].

(39)

Briefly denote it as

x(t+ 1) = F (x(t)).

It is easy to check that 0 is a fixed point of (39). For this system its incidence matrix is

ℐ(F ) =

⎡⎢⎣1 1 1

1 1 0

1 1 1

⎤⎥⎦ .
There is no way to convert it into a strictly lower triangular form with reordering the variables. In

algebraic form it is easy to calculate that system (39) can be expressed as

x(t+ 1) = Lx(t), (40)

where x(t) = x1(t)x2(t)x3(t),

L = �8[8 3 1 5 1 5 3 8].

Now we consider a coordinate transformation as⎧⎨⎩
z1 = [x1 ∧ ¬(x3)] ∨ [(¬x1) ∧ (x2∨̄x3)]

z2 = [x1 ∧ (x2∨̄x3)] ∨ [(¬x1) ∧ x3]

z3 = x2.

(41)

In the vector form, we can easily calculated that

z = z1z2z3 = Tx,

where

T = �8[7 1 6 4 5 3 2 8].

Then in z coordinate frame we have

z(t+ 1) = TLTT z(t) := L̃z(t), (42)
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where L̃ is

L̃ = �8[6 6 5 5 7 7 8 8].

A sequence of 2× 2n matrices, called the retrievers, have been defined in [5] as

Snk = �2[1 ⋅ ⋅ ⋅ 1︸ ︷︷ ︸
2n−k

2 ⋅ ⋅ ⋅ 2︸ ︷︷ ︸
2n−k

⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ 1︸ ︷︷ ︸
2n−k

2 ⋅ ⋅ ⋅ 2︸ ︷︷ ︸
2n−k

], k = 1, ⋅ ⋅ ⋅ , n. (43)

Using them, a mechanical procedure has been proposed in [5] to recover a system from the transition

matrix of its algebraic form (42). Next, we recover the system from L̃.

Using retriever S3
i , i = 1, 2, 3, we have⎧⎨⎩

z1(t+ 1) = M1z(t)

z2(t+ 1) = M2z(t)

z3(t+ 1) = M3z(t),

(44)

where
M1 = S3

1 L̃ = �2[2 2 2 2 2 2 2 2];

M2 = S3
2 L̃ = �2[1 1 1 1 2 2 2 2];

M3 = S3
3 L̃ = �2[2 2 1 1 1 1 2 2].

It is easy to convert the matrix form (44) back to logic form, denoted by z(t+ 1) = F̃ (z(t)), as⎧⎨⎩
z1(t+ 1) = 0

z2(t+ 1) = z1(t)

z3(t+ 1) = z1(t)∨̄z2(t).

(45)

Now consider system (45) (i.e., system (39) under the coordinates Z), its incidence matrix is

ℐ(F̃ ) =

⎡⎢⎣0 0 0

1 0 0

1 1 0

⎤⎥⎦ ,
which is strictly lower triangular. We conclude that system (39) globally converges to zero.

Example 4.12 shows that in some cases a coordinate change can help to find a nice incidence matrix

to assure the global convergence.

Now a natural question is: If a network is globally stable, can we always find a coordinate transfor-

mation such that under new coordinate frame the system has a strict triangular form? Unfortunately,

the answer is “No.” Let us go back to the Example 4.8. Since n = 2 there are (22)! = 24 coordinate

transformations. We list them in the increasing order as

T1 = I2; T2 = �4[1 2 4 3]; T3 = �4[1 3 2 4]; ⋅ ⋅ ⋅T24 = �4[4 3 2 1].
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It follows that

T2 :

⎧⎨⎩z1 = x1

z2 = x1 ↔ x2
⇒

⎧⎨⎩z1(t+ 1) = z1(t) ∧ z2(t)

z2(t+ 1) = ¬z1(t).

T3 :

⎧⎨⎩z1 = x2

z2 = x1 ↔ x2
⇒

⎧⎨⎩z1(t+ 1) = z1(t) ∧ z2(t)

z2(t+ 1) = (¬z1(t)) ∧ z2(t).

...

T24 :

⎧⎨⎩z1 = ¬x1
z2 = x2

⇒

⎧⎨⎩z1(t+ 1) = z1(t) ∧ z2(t)

z2(t+ 1) = z2(t)→ z1(t).

We have plenty of various forms. But unfortunately, no one has incidence matrix in strictly triangular

form.

Hence, when the condition of Proposition 4.7 fails even under possible coordinate transformations, we

have to invoke Theorem 4.9.

5 Stabilization of Boolean Control Networks

Consider the Boolean control network (6).

Definition 5.1 The global stabilization problem of system (6) is to find, if possible, {u(t)} such that the

system becomes globally convergent. If u(t) = Wx(t), t = 1, 2, ⋅ ⋅ ⋅ , which is a set of logical functions, then

the control is called the state feedback control.

Consider the following example.

Example 5.2 Consider the following system⎧⎨⎩
x1(t+ 1) = x3(t) ∨ u

x2(t+ 1) = ¬x1(t)

x3(t+ 1) = x1(t)↔ x2(t),

(46)

It is obvious that as long as we can delete x3(t) by using control u, the system is globally stable because

the incidence matrix becomes strictly low triangular.

This is easy to be done. We may choose an open-loop control as u(t) = 1, or closed-loop control

u(t) = ¬x3(t).

To get a general design method, we first consider the expression of logical state variables. Let

x1, ⋅ ⋅ ⋅ , xn be n logical state variables. There are two ways to express xi:

(i) Scalar Form: xi ∈ D, i = 1, ⋅ ⋅ ⋅ , n. Putting them together, we denote

X = (x1, ⋅ ⋅ ⋅ , xn)T ∈ Dn.

(ii) Vector Form: xi ∈ Δ, i = 1, ⋅ ⋅ ⋅ , n. Multiplying them together, we denote

x = ⋉ni=1xi ∈ Δ2n .
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Define a set of vectors as

snk = [1 ⋅ ⋅ ⋅ 1︸ ︷︷ ︸
2n−k

0 ⋅ ⋅ ⋅ 0︸ ︷︷ ︸
2n−k

⋅ ⋅ ⋅ 1 ⋅ ⋅ ⋅ 1︸ ︷︷ ︸
2n−k

0 ⋅ ⋅ ⋅ 0︸ ︷︷ ︸
2n−k

], k = 1, ⋅ ⋅ ⋅ , n. (47)

Remark 5.3 1. snk ∈ ℬ1×2n , k = 1, ⋅ ⋅ ⋅ , n. So the logical operators are applicable to them.

2. Comparing (47) with (43) one sees that snk can be obtained from the first row of Snk by replacing 2

by 0.

Then we define a matrix as

Sn =

⎡⎢⎢⎢⎢⎣
sn1
sn2
...

snn

⎤⎥⎥⎥⎥⎦ ∈ ℬn×2n .
In fact, they are the first row of the corresponding retriever matrices [5].

The following proposition is easily verifiable.

Proposition 5.4 1. From scalar form to vector form, we have

x = [(x1 ↔ sn1 ) ∧ (x2 ↔ sn2 ) ∧ ⋅ ⋅ ⋅ ∧ (xn ↔ snn)]
T
, ∀xi ∈ D. (48)

2. From vector form to scalar form, we have

X = Snx. (49)

Example 5.5 Let xs = (1, 0, 1, 0). Then in vector form we have

x = [1↔ (1111111100000000)T ] ∧ [0↔ (1111000011110000)T ]

∧[1↔ (1100110011001100)T ] ∧ [0↔ (1010101010101010)T ]

= (1111111100000000)T ∧ (0000111100001111)T

∧(1100110011001100)T ∧ (0101010101010101)T

= (0000010000000000)T .

Let X = �916. Then

xs = S4xv = (0, 1, 1, 1).

Next, we give a systematic analysis on the stabilizer design of Boolean control networks.

First, we define a mapping � : ℬ2n×2n → ℬn×n as

�(L) = [[(SnL)∨̄(SnLMn)] ⋉B 12n , [(SnL)∨̄(SnL)(I2 ⊗Mn)] ⋉B 12n ,

⋅ ⋅ ⋅ , [(SnL)∨̄(SnL)(I2n−1 ⊗Mn)] ⋉B 12n ⋉B 12n ] , L ∈ ℬ2n×2n .
(50)

Where Mn is the structure matrix of negation (refer to Table 1).

Then we have the following result about how to build the incidence matrix from L.

Theorem 5.6 Consider the Boolean network (2) (equivalently, (3)) with its algebraic form (5). The

incidence matrix of F can be obtained from L by the following formula:

ℐ(F ) = �(L). (51)
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Proof. From the construction of Sn it is easy to see that Ls := SnL is the structure matrix of the system

with resulting in scalar form. While LsMn is the structure matrix with x1 being replaced by ¬x1. If at

the i-th row they are the same, it means fi is independent of x1. Then the i-th row of [(SnL)∨̄(SnLMn)]

will be identically zero. Hence the i-th element of [(SnL)∨̄(SnLMn)] ⋉B 12n ⋉B 12n is zero. Otherwise,

at least one element in this row is 1, and hence the i-th element of [(SnL)∨̄(SnLMn)] ⋉B 12n ⋉B 12n is

one.

Same argument is applicable to other variables. The only difference is, the negation structure matrix

needs to be moved from the front of xi to the front of all variables. Then (51) follows. □

We give an example to depict it.

Example 5.7 Assume system (2) has its network transition matrix L as

L = �16[1 9 9 13 4 12 12 16 2 1 10 14 1 9 9 13]. (52)

A simple routine can calculate that

ℐ(F ) = �(L) =

⎡⎢⎢⎢⎣
0 0 1 1

0 0 1 1

1 1 0 0

1 1 0 0

⎤⎥⎥⎥⎦
In fact, using the mechanical procedure provided in [5], we can uniquely recover the system from L as⎧⎨⎩

x1(t+ 1) = x3(t) ∧ x4(t)

x2(t+ 1) = x3(t) ∨ x4(t)

x3(t+ 1) = x1(t)→ x2(t)

x4(t+ 1) = x1(t)↔ x2(t).

(53)

This verifies the obtained ℐ(F ).

Next, we consider the stabilization problem. Consider system (6) with its algebraic form (8).

Using Theorem 5.6 and Corollary 4.11, a sufficient condition for stabilization with open-loop control

is

Lemma 5.8 System (6) is stabilizable by an open-loop control u, if �(Lu) has a strictly lower (or upper)

triangular form.

Note that since the incidence matrix is coordinate depended, coordinate transformations have to be

taken into consideration.

Using formula (14), we have the following

Theorem 5.9 System (6) (or its algebraic form (8)) is stabilizable by an open-loop control u, if there is

a coordinate transformation z = Tx such that �(TL(I2m ⊗ TT )u) has a strictly lower triangular form.

Note that both possible values of u and coordinate transformations are finite (precisely, 2m and (2n)!

respectively), so theoretically both Lemma 5.8 and Theorem 5.9 are verifiable.
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Example 5.10 Consider the following system⎧⎨⎩
x1(t+ 1) = ¬x2(t)

x2(t+ 1) = ¬x4(t)↔ ((x4(t) ∧ (x2(t)∨̄x3(t))) ∨ u(t))

x3(t+ 1) = ¬((x4(t) ∧ (x2(t)∨̄x3(t))) ∨ u(t))

x4(t+ 1) = (x4(t) ∨ (x2(t)∨̄x3(t))) ∧ u(t).

(54)

After an “try and error” for simplifying the system, we use the following coordinate transformation:⎧⎨⎩
z1 = x4

z2 = x2∨̄x3
z3 = ¬x3
z4 = ¬x1.

(55)

Its inverse can be easily calculated as ⎧⎨⎩
x1 = ¬z4
x2 = z2 ↔ z3

x3 = ¬z3
x4 = z1.

(56)

Then the system becomes ⎧⎨⎩
z1(t+ 1) = (z1(t) ∨ z2(t)) ∧ u(t)

z2(t+ 1) = ¬z1(t)

z3(t+ 1) = (z1(t) ∧ z2(t)) ∨ u(t)

z4(t+ 1) = z2(t)↔ z3(t).

(57)

Now it is clear that if we choose

u(t) = 0, (58)

the system becomes ⎧⎨⎩
z1(t+ 1) = 0

z2(t+ 1) = ¬z1(t)

z3(t+ 1) = (z1(t) ∧ z2(t))

z4(t+ 1) = z2(t)↔ z3(t).

(59)

It is obvious that the incidence matrix of system (59) is

ℐ(F ) =

⎡⎢⎢⎢⎣
0 0 0 0

1 0 0 0

1 1 0 0

0 1 1 0

⎤⎥⎥⎥⎦ ,
which is of the strictly lower triangular form. We conclude that the constant control u(t) = 0 stabilizes

system (54).
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Next, we consider the closed-loop control. Let u(t) be a set of logical functions of x(t). Then we can

always express it as

u(t) = Gx(t), (60)

where G ∈ ℒ2m×2n . Plugging it into (8) yields

x(t+ 1) = LGx2(t) = LGΦnx(t), (61)

where Φn is defined in [3] as

Φn =

n∏
i=1

I2n−1 ⊗
[(
I2 ⊗W[2,2n−i]

)
Mr

]
, (62)

with Mr = �4[1 4].

Now the following result is obvious.

Theorem 5.11 System (4) is stabilizable by a closed-loop control u = Gx, if �(LGΦn) has a strictly

lower (or upper) triangular form. Moreover, if there exists a coordinate transformation z = Tx, such that

�(TLGΦnT
T ) has a strictly lower (or upper) triangular form, then the control also stabilize the system.

Example 5.12 Consider the system⎧⎨⎩
x1(t+ 1) = ¬x2(t)

x2(t+ 1) = ¬x4(t)↔ ((x4(t) ∧ (x2(t)∨̄x3(t))) ∨ u(t))

x3(t+ 1) = ¬((x4(t) ∧ (x2(t)∨̄x3(t))) ∨ u(t))

x4(t+ 1) = (x4(t) ∨ (x2(t)∨̄x3(t))) ∨ u(t).

(63)

In fact, it is obtained from (53) by changing the ways of inputs. Using the same coordinate transformation

as in Example 5.10, we have ⎧⎨⎩
z1(t+ 1) = (z1(t) ∨ z2(t)) ∨ u(t)

z2(t+ 1) = ¬z1(t)

z3(t+ 1) = (z1(t) ∧ z2(t)) ∧ u(t)

z4(t+ 1) = z2(t)↔ z3(t).

(64)

One can check that constant (open-loop) controls can not stabilize the system. If we use a closed-loop

control

u(t) = ¬z1(t) ∧ ¬z2(t),

the system becomes ⎧⎨⎩
z1(t+ 1) = 1

z2(t+ 1) = ¬z1(t)

z3(t+ 1) = 0

z4(t+ 1) = z2(t)↔ z3(t).

(65)
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Obviously, it is globally stable. Converting the control back to the original coordinate frame, we conclude

that

u(t) = ¬x4(t) ∧ ¬(x2(t)∨̄x3(t))

stabilizes system (63).

The advantage of using metric-based analysis is that the size of the involved matrix is small. The

disadvantage is the condition is only a sufficient one. Next, we search for necessary and sufficient condition.

As discussed in Section 2, the global stability of a free boolean network is equivalent to that there

exists a k > 0 such that F k = constant. In vector form it is equivalent to Lk has equal columns, which is

the global attractor. An s× s logic matrix, M , is said to be a matrix of constant mapping if there exists

a �js, such that

Col(M) = {�js}.

Now consider the stabilization by a constant control u. Then the control dependent transition matrix

is Lu.

Using the properties of semi-tensor product, it is easy to calculate that

(Lu)k = L[(I2m ⊗ L)Φm]m−1u. (66)

Since k should be less than or equal to the transient time, i.e. k ≤ Tr ≤ 2n, we can get an easily verifiable

necessary and sufficient condition as follows: Note that L[(I2m ⊗ L)Φm]m−1 is a 2n × 2n+m matrix. We

split it into 2m square blocks as:

L[(I2m ⊗ L)Φm]m−1 := [Lk1 L
k
2 ⋅ ⋅ ⋅ Lk2m ]. (67)

Using this notation and according to the above argument, we have the following necessary and sufficient

condition.

Theorem 5.13 System (4) is stabilizable by a constant control u, iff there exists a matrix of constant

mapping

Lkj , 1 ≤ k ≤ 2n, 1 ≤ j ≤ 2m.

Moreover, corresponding to each matrix of constant mapping Lkj the stabilizing control is u = �j2m .

The following example illustrates this result.

Example 5.14 Consider the following system

x1(t+ 1) = (x1(t) ∨ x2(t)) ∧ u
x2(t+ 1) = (x2(t) ∧ u)→ x1.

(68)

It is easy to calculate that

L = �4[1 1 2 3 3 3 3 3].

Since Φ1 = Mr, according to Theorem 5.13 we have to calculate

L[(I2 ⊗ L)Mr]
k, k ≥ 1
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to see if we can find a constant mapping block. In fact when k = 2 we have

L[(I2 ⊗ L)Mr]
2 = �4[1 1 1 1 3 3 3 3].

We conclude that if we use control u = 1 the system is stabilized at x = �14 (i.e., x1 = 1 and x2 = 1),

when u = 0 the system is stabilized at x = �34 (i.e., x1 = 0, x2 = 1).

Consider the state feedback control as in (60). Using the expression (61) and the above argument,

the following result is obvious.

Theorem 5.15 System (4) is stabilizable by a closed-loop control u = Gx, iff there exists a 2m × 2n

logical matrix G and an integer 1 ≤ k ≤ 2n such that (LGΦn)
k

is a matrix of constant mapping.

We give an example.

Example 5.16 Consider the following system⎧⎨⎩

x1(t+ 1) = [x2(t) ∨ (¬x2(t) ∧ (x3(t) ∨ x4(t)))] ∧ u

x2(t+ 1) = (x2(t) ∧ (x3(t) ∨ x4(t))) ∨ [x1(t) ∧ (¬x2(t)

∧ ¬(x3(t) ∨ x4(t)))]

x3(t+ 1) = (x1(t) ∧ (x3(t)↔ x4(t))) ∨ [¬x1(t) ∧ ((x2(t)

∧ (x3(t)↔ x4(t))) ∧ (¬x2(t) ∧ (x3(t) ∧ x4(t))))]

x4(t+ 1) = x1(t) ∧ ¬x4(t) ∨ [¬x1(t) ∧ ((x2(t) ∧ ¬x4(t))

∨ (¬x2(t) ∧ ¬(x3(t)→ x4(t))))].

(69)

It is easy to verify that if we choose

G =

[
1 1 0 0

0 0 1 1

]3
then

(LGΦ4)14 = �16[16 ⋅ ⋅ ⋅ 16︸ ︷︷ ︸
16

].

Note that

u(t) = Gx(t) = x1(t),

which globally stabilizes system (69) to x1 = 0, x2 = 0, x3 = 0, x4 = 0.

Next, we briefly discuss the case when the system is required to converge to a particular state x0.

In this case the problem is a little bit simpler. In addition to above stability requirements, we need to

assure x0 is a fixed point of the control system. We may write it down as a corollary.

Corollary 5.17 1. System (4) is globally stabilized to x0 by a constant control u, iff u satisfies

Lux0 = x0, (70)

and there exists an integer k > 0, such that (Lu)k is a constant mapping.
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2. System (4) is globally stabilized to x0 by a constant control u = Gx, iff G satisfies

LGΦnx0 = x0, (71)

and there exists an integer k > 0, such that (LGΦn)k is a constant mapping.

Finally, we consider the stabilization by an open-loop control, u(t) = ⋉mi=1ui(t), t = 1, 2, ⋅ ⋅ ⋅ . Assume

we want to stabilize it to x0.

First of all, it is obvious that a necessary condition is, there is a control ue ∈ Δ2m such that

Luex0 = x0. (72)

Secondly, note that

x(t0 + k + 1) = Lu(t0 + k)Lu(t0 + k − 1) ⋅ ⋅ ⋅Lu(t0 + 1)x(t0).

To make all trajectories converge to x0, there must be a k > 0 such that

Lu(k)Lu(k − 1) ⋅ ⋅ ⋅Lu(1)x ≡ x0, ∀x ∈ Δ2n .

This is equivalent to

Col(Lu(k)Lu(k − 1) ⋅ ⋅ ⋅Lu(1)) = {x0}. (73)

Observe that

Lu(k)Lu(k − 1) ⋅ ⋅ ⋅Lu(1)

= L(I2m ⊗ L)(I22m ⊗ L) ⋅ ⋅ ⋅ (I2(k−1)m ⊗ L) ⋉1
i=k u(i)

:= [Lk1 , L
k
2 , ⋅ ⋅ ⋅ , Lk2km ] ⋉1

i=k u(i).

(74)

Now it is clear that if there is a 1 ≤ j ≤ 2km such that Lkj corresponds to the constant mapping  (x) ≡ x0,

we can choose the control

⋉1
i=ku(i) = �j2mn ,

such that (73) holds.

Summarizing the above arguments, we have

Theorem 5.18 System (6) is globally stabilized to x0 by an open-loop control u(t), t = 1, 2, ⋅ ⋅ ⋅ , iff

(i) there are an integer k > 0 and a Lkj , 1 ≤ j ≤ 2km, such that

Col(Lkj ) = {x0};

(ii) there is a ue ∈ Δ2m such that (72) holds.

We give an example for this.
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Example 5.19 Consider the following system⎧⎨⎩
x1(t+ 1) = x1(t) ∨ u1(t)

x2(t+ 1) = (x2(t) ∨ x3(t))↔ u1(t)

x3(t+ 1) = (u1(t)→ x2(t)) ∨ x3(t)

x4(t+ 1) = (x3(t) ∧ u2(t))→ x4(t).

(75)

Set x(t) = ⋉4
i=1xi(t) and u(t) = ⋉2

i=1ui(t). Using vector form, (75) can be expressed as

x(t+ 1) = Lu(t)x(t), (76)

where
L = �16[1 2 1 1 1 2 7 7 1 2 1 1 1 2 7 7

1 1 1 1 1 1 7 7 1 1 1 1 1 1 7 7

5 6 5 5 5 6 1 1 13 14 13 13 13 14 9 9

5 5 5 5 5 5 1 1 13 13 13 13 13 13 9 9].

According to (74), we calculate

L(I22 ⊗ L)(I22×2 ⊗ L) ⋅ ⋅ ⋅ (I22(k−1) ⊗ L)

to see whether we can find a constant mapping block. In fact when k = 2 we have

M = L(I22 ⊗ L)

:= [M1,M2, ⋅ ⋅ ⋅ ,M16],

where

M = �16[1 2 1 1 1 2 7 7 1 2 1 1 1 2 7 7

1 1 1 1 1 1 7 7 1 1 1 1 1 1 7 7

1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 7 7 1 1 1 1 1 1 7 7

1 1 1 1 1 1 7 7 1 1 1 1 1 1 7 7

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

5 6 5 5 5 6 1 1 5 6 5 5 5 6 1 1

5 5 5 5 5 5 1 1 5 5 5 5 5 5 1 1

5 6 5 5 5 6 5 5 13 14 13 13 13 14 13 13

5 5 5 5 5 5 5 5 13 13 13 13 13 13 13 13

5 5 5 5 5 5 1 1 5 5 5 5 5 5 1 1

5 5 5 5 5 5 1 1 5 5 5 5 5 5 1 1

5 5 5 5 5 5 5 5 13 13 13 13 13 13 13 13

5 5 5 5 5 5 5 5 13 13 13 13 13 13 13 13],

(77)

and Mi ∈ ℒ16×16, i = 1, ⋅ ⋅ ⋅ , 16. From (77), we know that

M4 = M7 = M8 = �16[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1].
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Equivalently,

Col(M4) = Col(M7) = Col(M8) = {�116}.

In the other hand, choosing ue = �14 (or ue = �24), we have

Lue�
1
16 = �116.

From Theorem 5.18, system (75) is globally stabilized to x0 = �116 ∼ (1111) by an open-loop control u(t)

(or ū(t) and ũ(t)), where

u(t) =

⎧⎨⎩
�44 ∼ (00), t = 1

�14 ∼ (11), t = 2

ue, t ≥ 3,

and ū(t) =

⎧⎨⎩
�34 ∼ (01), t = 1

�24 ∼ (10), t = 2

ue, t ≥ 3,

and ũ(t) =

⎧⎨⎩
�44 ∼ (00), t = 1

�24 ∼ (10), t = 2

ue, t ≥ 3.

Before ending this section we should like to discuss a little bit more about the conditions in Theorem

5.18. The condition (i) says that all the trajectories can reach the preassigned fixed point x0. One may

doubt whether the condition (ii) is necessary. In fact, condition (ii) means x0 is an equilibrium state

under certain control. The following example shows that condition (ii) is also necessary.

Example 5.20 Consider the following system⎧⎨⎩x1(t+ 1) = ¬(x1(t) ∧ u(t))

x2(t+ 1) = (u(t) ∧ (x2(t)→ x1(t))) ∨ (¬u(t) ∧ (x1(t)↔ x2(t))).
(78)

Set x(t) = ⋉2
i=1xi(t). Using the vector form, (75) can be expressed as

x(t+ 1) = Lu(t)x(t)

= �4[3 3 2 1 1 2 2 1]u(t)x(t).
(79)

For any initial state � ∈ Δ4, if we choose u(1) = �22, then

x(2) = Lu(1)�

= �4[1 2 2 1]�.

Next, choose u(2) = �12, then

x(3) = Lu(2)x(2)

= (�4[3 3 2 1])(�4[1 2 2 1])�

= �4[3 3 3 3]�

= �34 , ∀� ∈ Δ4.

From (76), it is obvious that there does not exist ue, such that

Lue�
3
4 = �34 .

In step 3, no matter what is the value of u(3), (u(3) = �12 or u(3) = �22), the dynamic of the Boolean

network will leave the state x0 = �34. So, system (75) can not be globally stabilized to x0 by an open-loop

control u(t), t = 1, 2, ⋅ ⋅ ⋅ .
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6 Conclusion

The stability of Boolean networks and the stabilization of Boolean control networks were investigated in

this paper. The semi-tensor product of matrices and the matrix expression of logic provided a powerful

tool for this work. The main results consist of two parts. (i) The known results of convergence provided

in [14] have been improved by using logical coordinate transformations. Then it has been used to the

design of stabilizers for Boolean control networks. (ii) Based on the algebraic form of Boolean (control)

networks, necessary and sufficient conditions for stability of Boolean networks were obtained. Then

the stabilization of Boolean control networks by constant controls, open-loop controls, and closed-loop

controls were investigated and the respective necessary and sufficient conditions were obtained. The

stabilizer design techniques were also provided.

Though the results in part (i) are only sufficient, their main advantage is the related computations

are less complicated because the incidence matrices used there are of much smaller dimensions (n × n).

The weakness of part (ii) is the computation complexity because they use transition matrices, which are

of much larger dimensions (2n × 2n).

Acknowledgment An STP toolbox is provided in http://lsc.amss.ac.cn/˜dcheng for the related

computations.
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