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Abstract

Based on the linear expression of the dynamics of Boolean networks, the coordinate transformation of Boolean variables is
defined. It follows that the state space coordinate transformation for the dynamics of Boolean networks is revealed. Using it,
the invariant subspace for a Boolean control network is defined. Then the structure of a Boolean control network is analyzed,
and the controllable and observable normal forms and the Kalman decomposition form are presented. Finally the realization
problem, including minimum realization, of Boolean control networks is investigated.
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1 Introduction

In recent years gene control networks have caused an
emergence of interest in the quantitative description of
gene regulation (Davidson et al., 2002; Albert and Oth-
mer, 2003). The Boolean network, first introduced by
Kauffman (Kauffman, 1969), has been proved to be quite
useful in modeling and quantitative description of cell
regulation (Kauffman, 1969; Huang and Ingber, 2000;
Huang, 2002; Farrow et al., 2004).

Recently, we use a new matrix product, denoted by “⋉”
and called the semi-tensor product (Cheng, 2007), to
convert a logical function into an algebraic function. Fur-
thermore, the logical dynamics of a Boolean network is
converted into a standard discrete-time dynamics. Based
on this, a new technique has been developed for analyz-
ing and synthesizing Boolean (control) networks (Cheng
and Qi, 2009b; Cheng, 2009; Cheng and Qi, 2009a).

The purpose of this paper is to use this new technique
to analyze the input-output relations of Boolean control
networks. First we consider the controllable and observ-
able normal forms. Then the Kalman decomposition is
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obtained. Finally, the realization, particularly, minimum
realization, of Boolean control networks is investigated.

For this purpose, two new important concepts have
been introduced: (a) the coordinate transformation of
Boolean (control) networks; (b) regular subspace of the
state space.

The paper is organized as follows. Section 2 provides
some preliminaries. Section 3 investigates when a map-
ping on two sets of 𝑛 independent logical variables can
be a coordinate transformation, and how to construct
the inverse mapping of a given coordinate transforma-
tion. Section 4 discusses the regular subspace of the state
space. Section 5 considers the state space coordinate
transformation of Boolean networks and Boolean control
networks, which provides a tool for normal forms of a
Boolean control network. Then in Section 6 the control-
lable and observable normal forms are obtained. More-
over, using the normal forms the Kalman decomposition
form is also obtained. Section 7 considers the equivalent
realization and the minimum realization of a Boolean
control network. Section 8 is a brief conclusion.

2 Preliminaries

2.1 Matrix Expression of Logic

A logical variable takes value from𝒟 = {1, 0}, where 1 ∼
𝑇 and 0 ∼ 𝐹 represent “True” and “False” respectively.
To use matrix expression, we use two vectors to represent



these two logical values as

𝑇 ∼ 1 ∼ 𝛿12 , 𝐹 ∼ 0 ∼ 𝛿22 ,

where 𝛿𝑘𝑛 denotes the 𝑘th column of the identity matrix
𝐼𝑛. We set

Δ𝑛 := {𝛿𝑘𝑛 ∣ 1 ≤ 𝑘 ≤ 𝑛}.
For notational ease, Δ2 := Δ. Then Δ ∼ 𝒟.

An 𝑛× 𝑡 matrix 𝑀 is called a logical matrix if

𝑀 = [𝛿𝑖1𝑛 𝛿𝑖2𝑛 ⋅ ⋅ ⋅ 𝛿𝑖𝑡𝑛 ].

The set of 𝑛× 𝑡 logical matrices is denoted by ℒ𝑛×𝑡. For
compactness, we briefly denote above 𝑀 as

𝑀 = 𝛿𝑛[𝑖1, 𝑖2, ⋅ ⋅ ⋅ , 𝑖𝑡].

In vector form we have the following fundamental re-
sult (Cheng, 2007).

Theorem 1. Let 𝑓(𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑠) be a logical function.
Then there exists unique 𝑀𝑓 ∈ ℒ2×2𝑠 , called the struc-
ture matrix of 𝑓 , such that

𝑓(𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑠) = 𝑀𝑓 ⋉𝑠
𝑖=1 𝑥𝑖, 𝑥𝑖 ∈ Δ. (1)

In Table 1 we list the structure matrices for some ba-
sic logical operators (LO) (Negation: ¬; Conjunction: ∧;
Disjunction: ∨; Conditional: →; Biconditional: ↔; Ex-
clusive Or: ∨̄ (Rade and Westergren, 1998)), which are
used in what follows.

Table 1
Structure Matrices of Some Basic Logical Operators

LO Structure Matrix LO Structure Matrix

¬ 𝑀𝑛 = 𝛿2[2 1] ∨ 𝑀𝑑 = 𝛿2[1 1 1 2]

→ 𝑀𝑖 = 𝛿2[1 2 1 1] ↔ 𝑀𝑒 = 𝛿2[1 2 2 1]

∧ 𝑀𝑐 = 𝛿2[1 2 2 2] ∨̄ 𝑀𝑝 = 𝛿2[2 1 1 2]

Finally, we define the swap matrix (Cheng, 2007): An
𝑚𝑛×𝑚𝑛 matrix 𝑊[𝑚,𝑛] is called a swap matrix, if

𝑊[𝑚,𝑛]𝑋𝑌 = 𝑌 𝑋, ∀𝑋 ∈ ℝ𝑚,∀𝑌 ∈ ℝ𝑛.

𝑊[𝑚,𝑛] uniquely exists.

2.2 Boolean Control Networks

A Boolean control network is a Boolean network with
additional inputs and outputs. Its dynamics can be ex-
pressed as follows (Akutsu et al., 2007; Cheng, 2009;

Cheng and Qi, 2009a)⎧⎨⎩

𝑥1(𝑡+ 1) = 𝑓1(𝑥1(𝑡), ⋅ ⋅ ⋅ , 𝑥𝑛(𝑡), 𝑢1(𝑡), ⋅ ⋅ ⋅ , 𝑢𝑚(𝑡))

𝑥2(𝑡+ 1) = 𝑓2(𝑥1(𝑡), ⋅ ⋅ ⋅ , 𝑥𝑛(𝑡), 𝑢1(𝑡), ⋅ ⋅ ⋅ , 𝑢𝑚(𝑡))
...

𝑥𝑛(𝑡+ 1) = 𝑓𝑛(𝑥1(𝑡), ⋅ ⋅ ⋅ , 𝑥𝑛(𝑡), 𝑢1(𝑡), ⋅ ⋅ ⋅ , 𝑢𝑚(𝑡)),

𝑦𝑖(𝑡) = ℎ𝑖(𝑥1(𝑡), ⋅ ⋅ ⋅ , 𝑥𝑛(𝑡)), 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑝,
(2)

where 𝑥𝑖(𝑡) ∈ Δ are logical variables, 𝑓𝑖, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛,
and ℎ𝑖, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑝 are logical functions, 𝑢𝑖(𝑡) ∈ Δ,
𝑖 = 1, ⋅ ⋅ ⋅ ,𝑚 are controls, 𝑦𝑖(𝑡) ∈ Δ, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑝 are
outputs.

We use an example to depict it.

Example 2. Fig. 1 consists of a Boolean network with
four nodes 𝑥1, 𝑥2, 𝑥3, 𝑥4 as its state variables. Moreover,
we have two inputs 𝑢1, 𝑢2 acting on the network and one
output 𝑦 as a logical function of state variables.

x1 x2

x3 x4

u1

u2

y

¬

∨

←

↔

∨̄

∧

Fig. 1. A Boolean control network

Its dynamics is described as⎧⎨⎩

𝑥1(𝑡+ 1) = 𝑥3(𝑡) ∨ 𝑢1(𝑡)

𝑥2(𝑡+ 1) = 𝑥1(𝑡)∨̄(¬𝑥2(𝑡))

𝑥3(𝑡+ 1) = 𝑥4(𝑡) → 𝑢2(𝑡)

𝑥4(𝑡+ 1) = 𝑥2(𝑡) ↔ 𝑥3(𝑡),

𝑦(𝑡) = 𝑥2(𝑡) ∧ 𝑥4(𝑡).

(3)

2.3 A Motivating Example

Consider a control system, it may be reasonable to say
that the most important characteristic of the system
is its input-output mapping. Roughly speaking, if two
systems realize a same input-output mapping, they are
said to be equivalent. Particularly, if there is a state space
coordinate transformation, which converts one system
into the other, then we can simply say that they are the
same.
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Now a natural question is: are there any coordinate
transformations, which express the same system into dif-
ferent forms? More general, is it possible that two differ-
ent Boolean control systems with different sizes realize
a same input-output mapping? The answer is “yes”. We
give a heuristic example.

Example 3. Consider the following two systems

Σ1 :

⎧⎨⎩
𝑥1(𝑡+ 1) = 𝑢 ↔ ¬(𝑥1(𝑡) → 𝑥2(𝑡))

𝑥2(𝑡+ 1) = (𝑢 ∧ (¬𝑥1(𝑡) ∧ 𝑥2(𝑡)))∨
(¬𝑢 ∧ ¬(𝑥1(𝑡) → 𝑥1(𝑡)))

𝑦(𝑡) = 𝑥1(𝑡) ↔ 𝑥2(𝑡),

(4)

and

Σ2 :

⎧⎨⎩
𝑧1(𝑡+ 1) = 𝑧1(𝑡) ∧ 𝑢

𝑧2(𝑡+ 1) = (𝑧1(𝑡) ∨ 𝑧2(𝑡)) ↔ 𝑢

𝑦(𝑡) = 𝑧1(𝑡).

(5)

It is not difficult to verify that as the initial values satisfy

{
𝑧1(0) = 𝑥1(0) ↔ 𝑥2(0)

𝑧2(0) = ¬𝑥1(0),
(6)

the input-output mappings of Σ1 and Σ2 are exactly the
same. So a natural guess is: Σ2 is obtained from Σ1 via
a “coordinate transformation”{

𝑧1 = 𝑥1 ↔ 𝑥2

𝑧2 = ¬𝑥1.
(7)

In fact, this is true, and you can verify this later after
we give a rigorous definition about coordinate change.

Moreover, we can also see that in fact the output of Σ2

depends only on 𝑧1 and 𝑧1 is independent of 𝑧2. So 𝑧2 is
a redundant state variable regarding the realization of
the input-output mapping. We, therefore, can remove it
to obtain the following

Σ3 :

{
𝑧(𝑡+ 1) = 𝑧(𝑡) ∧ 𝑢

𝑦(𝑡) = 𝑧(𝑡).
(8)

Now as long as the initial conditions of Σ1 and Σ3 satisfy
the condition that 𝑧(0) = 𝑥1(0) ↔ 𝑥2(0), they realize
the same input-output mapping.

From this example one sees that similar to conventional
(qualitative) control systems, to consider the realization
of a logical control network the coordinate transforma-
tion is necessary. It is very likely that “minimum realiza-
tion” can be found under a suitable coordinate frame.

3 Coordinate Transformation on 𝒟𝑛

Assume that {𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛} is a set of independent log-
ical variables, and there is another set of logical variables
{𝑦1, 𝑦2, ⋅ ⋅ ⋅ , 𝑦𝑛}. Moreover, 𝑦𝑖 are logical functions of 𝑥𝑖,
𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛, denoted as

Ψ :

⎧⎨⎩
𝑦1 = 𝑞1(𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛),

𝑦2 = 𝑞2(𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛),
...

𝑦𝑛 = 𝑞𝑛(𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛).

(9)

Definition 4. The mapping Ψ : 𝒟𝑛 7→ 𝒟𝑛 is called
a logical coordinate transformation (briefly, coordinate
change), if it is one-to-one and onto.

Using vector form, we denote 𝑦 = ⋉𝑛
𝑖=1𝑦𝑖 ∈ Δ2𝑛 and

𝑥 = ⋉𝑛
𝑖=1𝑥𝑖 ∈ Δ2𝑛 . Then (9) can be expressed in an

algebraic form as

𝑦 = 𝑇Ψ𝑥, (10)

where 𝑇Ψ ∈ ℒ2𝑛×2𝑛 is called the transfer matrix of the
mapping Ψ. The following proposition is obvious.

Proposition 5. Equation (9) forms a logical coordinate
change, iff its transfer matrix 𝑇Ψ is nonsingular. More-
over, since 𝑇Ψ ∈ ℒ2𝑛×2𝑛 , nonsingularity implies that

𝑇−1
Ψ = 𝑇𝑇

Ψ . (11)

For the applications in what follows, we have to construct
the inverse logical functions, denoted by

Ψ−1 : 𝑥𝑖 = 𝑝𝑖(𝑦1, ⋅ ⋅ ⋅ , 𝑦𝑛), 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛, (12)

from its transition matrix 𝑇−1
Ψ = 𝑇𝑇

Ψ . We recall how
to construct the inverse mapping Ψ−1 (Cheng and Qi,
2009a). Define a set of matrices, called the retrievers, as

𝑆𝑛
1 = 𝛿2[1, ⋅ ⋅ ⋅ , 1︸ ︷︷ ︸

2𝑛−1

, 2, ⋅ ⋅ ⋅ , 2︸ ︷︷ ︸
2𝑛−1

];

𝑆𝑛
2 = 𝛿2[1, ⋅ ⋅ ⋅ , 1︸ ︷︷ ︸

2𝑛−2

, 2, ⋅ ⋅ ⋅ , 2︸ ︷︷ ︸
2𝑛−2

, 1, ⋅ ⋅ ⋅ , 1︸ ︷︷ ︸
2𝑛−2

, 2, ⋅ ⋅ ⋅ , 2︸ ︷︷ ︸
2𝑛−2

];

...

𝑆𝑛
𝑛 = 𝛿2[1, 2, 1, 2, ⋅ ⋅ ⋅ , 1, 2].

(13)

Then the structure matrix of 𝑝𝑖, denoted by 𝑃𝑖, can be
obtained as

𝑃𝑖 = 𝑆𝑛
𝑖 𝑇

𝑇
Ψ , 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛. (14)
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To get the logical equation 𝑝𝑖 from 𝑃𝑖, Cheng and Qi
(2009a) provides the following method: split 𝑃𝑖 into two
equal part as

𝑃𝑖 = [𝑃 1
𝑖 𝑃 2

𝑖 ]

Then 𝑝𝑖 can be expressed as

𝑝𝑖(𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑛) = (𝑥1 ∧ 𝑝1𝑖 (𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛))∨
(¬𝑥1 ∧ 𝑝2𝑖 (𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛)),

(15)

where 𝑝1𝑖 and 𝑝2𝑖 have 𝑃 1
𝑖 and 𝑃 2

𝑖 as their structure ma-
trices respectively. Continuing this process, a disjunctive
normal form of 𝑝𝑖 is produced.

We give an example to depict this.

Example 6. Consider a set of mappings⎧⎨⎩
𝑦1 = ¬𝑥2

𝑦2 = 𝑥1 ↔ 𝑥2

𝑦3 = ¬𝑥3.

(16)

Using the algebraic expression, we have⎧⎨⎩
𝑦1 = 𝑀𝑛𝑥2

𝑦2 = 𝑀𝑒𝑥1𝑥2

𝑦3 = 𝑀𝑛𝑥3.

(17)

Set 𝑥 = 𝑥1𝑥2𝑥3, 𝑦 = 𝑦1𝑦2𝑦3. Then

𝑦 = 𝑦1𝑦2𝑦3
= 𝑀𝑛𝑥2𝑀𝑒𝑥1𝑥2𝑀𝑛𝑥3

= 𝑀𝑛(𝐼2 ⊗𝑀𝑒)𝑊[2]𝑥1𝑥
2
2𝑀𝑛𝑥3

= 𝑀𝑛(𝐼2 ⊗𝑀𝑒)𝑊[2](𝐼2 ⊗𝑀𝑟)𝑥1𝑥2𝑀𝑛𝑥3

= 𝑀𝑛(𝐼2 ⊗𝑀𝑒)𝑊[2](𝐼2 ⊗𝑀𝑟)(𝐼4 ⊗𝑀𝑛)𝑥1𝑥2𝑥3

:= 𝑇𝑥.
(18)

Then 𝑇 ∈ ℒ8×8 is

𝑇 = 𝑀𝑛(𝐼2 ⊗𝑀𝑒)𝑊[2](𝐼2 ⊗𝑀𝑟)(𝐼4 ⊗𝑀𝑛)

= 𝛿8[6, 5, 4, 3, 8, 7, 2, 1].
(19)

Since 𝑇 is nonsingular, (16) is a logical coordinate trans-
formation.

To get the inverse transformation, we have

𝑥 = 𝑇−1𝑦 = 𝑇𝑇 𝑦.

Then

𝑥1 = 𝑆3
1𝑇

𝑇 𝑦 := 𝑀1𝑦 = 𝛿2[2 2 1 1 1 1 2 2]𝑦1𝑦2𝑦3;

𝑥2 = 𝑆3
2𝑇

𝑇 𝑦 := 𝑀2𝑦 = 𝛿2[2 2 2 2 1 1 1 1]𝑦1𝑦2𝑦3;

𝑥3 = 𝑆3
3𝑇

𝑇 𝑦 := 𝑀3𝑦 = 𝛿2[2 1 2 1 2 1 2 1]𝑦1𝑦2𝑦3.

Using the standard process to convert them back to log-
ical form, we denote

𝑥1 = [𝑦1 ∧ 𝑔11(𝑦2, 𝑦3)] ∨ [¬𝑦1 ∧ 𝑔21(𝑦2, 𝑦3)],

Then

𝑔11(𝑦2, 𝑦3) = 𝑀1
1 𝑦2𝑦3 = 𝛿2[2 2 1 1]𝑦2𝑦3 = ¬𝑦2;

𝑔21(𝑦2, 𝑦3) = 𝑀2
1 𝑦2𝑦3 = 𝛿2[1 1 2 1]𝑦2𝑦3 = 𝑦2.

Hence we have

𝑥1 = (𝑦1 ∧ ¬𝑦2) ∨ (¬𝑦1 ∧ 𝑦2) = 𝑦1∨̄𝑦2.

Similarly, we can get 𝑥2 and 𝑥3 as

𝑥2 = ¬𝑦1; 𝑥3 = ¬𝑦3.

4 Regular Subspace

Definition 7. Let {𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑘} be a set of logical vari-
ables. The logical space generated by {𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑘}, de-
noted by 𝒮 = 𝐹ℓ{𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑘}, is the set of logical func-
tions of {𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑘}.

Consider system (2). 𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑛 are called the state vari-
ables. The state space of (2) is defined as

𝒰 = 𝐹ℓ{𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑛}. (20)

Definition 8. (1) Let {𝑦1, ⋅ ⋅ ⋅ , 𝑦𝑟} (𝑟 ≤ 𝑛) be a set
of logical variables in 𝒰 . {𝑦1, ⋅ ⋅ ⋅ , 𝑦𝑟} is called a
regular sub-basis of 𝒰 , if we can find 𝑦𝑟+1, ⋅ ⋅ ⋅ , 𝑦𝑛,
such that 𝑦1, ⋅ ⋅ ⋅ , 𝑦𝑛 is a coordinate change of 𝑥.

(2) 𝒮 ⊂ 𝒰 is called a regular subspace of 𝒰 if there
exists a regular sub-basis {𝑦1, ⋅ ⋅ ⋅ , 𝑦𝑟}, such that
𝒮 = 𝐹ℓ{𝑦1, ⋅ ⋅ ⋅ , 𝑦𝑟}.

Given a set of functions 𝑦𝑖 as

𝑦𝑖 = 𝑔𝑖(𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑛), 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑟, (21)

we would like to know when it is a regular sub-basis. Set
𝑦 = ⋉𝑟

𝑖=1𝑦𝑖 and 𝑥 = ⋉𝑛
𝑖=1𝑥𝑖. From (21) we can easily

get its algebraic form as

𝑦 = 𝐿𝑥 :=

⎡⎢⎢⎢⎣
ℓ11 ℓ12 ⋅ ⋅ ⋅ ℓ1,2𝑛

...

ℓ2𝑟,1 ℓ2𝑟,2 ⋅ ⋅ ⋅ ℓ2𝑟,2𝑛

⎤⎥⎥⎥⎦𝑥. (22)

Proposition 9. Assume that the structure matrix of 𝑔𝑖
is

𝑀𝑖 = [𝜉𝑖1 𝜉𝑖2 ⋅ ⋅ ⋅ 𝜉𝑖2𝑛 ], 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑟.
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Then
𝐿 = [ℓ1 ℓ2 ⋅ ⋅ ⋅ ℓ2𝑛 ],

where
ℓ𝑘 = ⋉𝑟

𝑖=1𝜉
𝑖
𝑘, 𝑘 = 1, ⋅ ⋅ ⋅ , 2𝑛.

PROOF. Assume 𝑥1 = 𝑥2 = ⋅ ⋅ ⋅ = 𝑥𝑛 = 𝛿12 ∼ 1. By
the construction of structure matrix it is easily seen that
𝑦𝑖 = 𝜉𝑖1, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑟. Hence 𝑦 = ⋉𝑟

𝑖=1𝜉
𝑖
1. Similarly, let

𝑥𝑖 = 𝛼𝑖 ∈ {0, 1}, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛, and set 𝑘 = 2𝑛 − [𝛼1 ×
2𝑛−1+𝛼2×2𝑛−2+ ⋅ ⋅ ⋅+𝛼𝑛]. Then 𝑦𝑖 = 𝜉𝑖𝑘, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑟.
Hence 𝑦 = ⋉𝑟

𝑖=1𝜉
𝑖
𝑘. □

The following corollary is easily verifiable.

Corollary 10. Assume that 𝑦1, ⋅ ⋅ ⋅ , 𝑦𝑝 and 𝑧1, ⋅ ⋅ ⋅ , 𝑧𝑞
are two sets of logical functions of 𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑛. Denote
𝑦 = ⋉𝑝

𝑖=1𝑦𝑖, 𝑧 = ⋉𝑞
𝑖=1𝑧𝑖, 𝑤 = 𝑦𝑧, and 𝑥 = ⋉𝑛

𝑖=1𝑥𝑖.
Moreover,

𝑦 = 𝑀𝑥, 𝑧 = 𝑁𝑥, 𝑤 = 𝐿𝑥,

where 𝑀 , 𝑁 , and 𝐿 are 2𝑝 × 2𝑛, 2𝑞 × 2𝑛, and 2𝑝+𝑞 × 2𝑛

logical matrices respectively. Denote by𝑀 𝑖 the 𝑖th column
of 𝑀 etc. Then we have

𝐿𝑖 = 𝑀 𝑖𝑁 𝑖, 𝑖 = 1, ⋅ ⋅ ⋅ , 2𝑛. (23)

The following theorem shows when {𝑦1, ⋅ ⋅ ⋅ , 𝑦𝑟} is a reg-
ular sub-basis.

Theorem 11. Assume that there is a set of logical vari-
ables 𝑦1, ⋅ ⋅ ⋅ , 𝑦𝑟 (𝑟 ≤ 𝑛) satisfying (22). It is a regular
sub-basis, iff the corresponding coefficient matrix 𝐿 sat-
isfies

2𝑛∑
𝑖=1

ℓ𝑘,𝑖 = 2𝑛−𝑟, 𝑘 = 1, 2, ⋅ ⋅ ⋅ , 2𝑟. (24)

PROOF. (Sufficiency) Note that condition (24) means
there are 2𝑛−𝑟 different 𝑥 which makes 𝑦 = 𝛿𝑘2𝑟 , 𝑘 =
1, 2, ⋅ ⋅ ⋅ , 2𝑟. Now we can choose 𝑦𝑟+1 as follows. Set

𝑆𝑘
𝑟 = {𝑥 ∣𝐿𝑥 = 𝛿𝑘2𝑟}, 𝑘 = 1, 2, ⋅ ⋅ ⋅ , 2𝑟.

Then the cardinal number
∣∣𝑆𝑘

𝑟

∣∣ = 2𝑛−𝑟. For half of the

elements of 𝑆𝑘
𝑟 , define 𝑦𝑟+1 = 0, and for the other half,

set 𝑦𝑟+1 = 1. Then it is easy to see that for 𝑦 = ⋉𝑟+1
𝑖=1 𝑦𝑖

the corresponding 𝐿̃ satisfies (24) with 𝑟 being replaced
by 𝑟 + 1.

Continuing this process till 𝑟 = 𝑛. Then (24) becomes

2𝑛∑
𝑖=1

ℓ𝑘,𝑖 = 1, 𝑘 = 1, 2, ⋅ ⋅ ⋅ , 2𝑛. (25)

(25) means the corresponding 𝐿 contains all the columns
of 𝐼2𝑛 , i.e., it is obtained from 𝐼2𝑛 via a column permu-
tation. It is, hence, a coordinate change.

(Necessity) Note that using the swap matrix, it is easy
to see that the order of 𝑦𝑖 does not affect the property
of (24). First, we claim that if {𝑦𝑖 ∣ 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑘} satisfies
(24), then any of its subset {𝑦𝑖𝑡} ⊂ {𝑦𝑖∣𝑖 = 1, ⋅ ⋅ ⋅ , 𝑘}
also satisfies (24). Since the order does not affect this
property, it is enough to show that a 𝑘−1 subset {𝑦𝑖 ∣ 𝑖 =
2, ⋅ ⋅ ⋅ , 𝑘} is a proper sub-basis, because from 𝑘−1 we can
go to 𝑘 − 2 and so on. Assume that 𝑦2 = ⋉𝑘

𝑖=2𝑦𝑖 = 𝑄𝑥,
and 𝑦1 = 𝑃𝑥. Using Corollary 10, we have

𝐿𝑖 = 𝑃 𝑖𝑄𝑖, 𝑖 = 1, ⋅ ⋅ ⋅ , 2𝑛. (26)

Next, we split 𝐿 into two blocks with equal size as

𝐿 =

[
𝐿1

𝐿2

]
.

Note that either 𝑃 𝑖 = 𝛿12 or 𝑃 𝑖 = 𝛿22 . Using this fact to

(26), one sees easily that either 𝐿𝑖 =

[
𝑄𝑖

0

]
(as 𝑃 𝑖 = 𝛿12)

or 𝐿𝑖 =

[
0

𝑄𝑖

]
(as 𝑃 𝑖 = 𝛿22). Hence, 𝑄𝑖 = 𝐿𝑖

1 + 𝐿𝑖
2. It

follows that

𝑄 = 𝐿1 + 𝐿2. (27)

Since 𝐿 satisfies (24), (27) assures that 𝑄 satisfies (24)
too.

Now since {𝑦𝑖 ∣ 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑘} is a proper sub-basis, so
there exists {𝑦𝑖 ∣ 𝑖 = 𝑘 + 1, ⋅ ⋅ ⋅ , 𝑛} such that {𝑦𝑖 ∣ 𝑖 =
1, ⋅ ⋅ ⋅ , 𝑛} is a coordinate transformation of 𝑥, it satisfies
(24). (Precisely, it satisfies (25) with row sum equal to
1.) According to the claim, the subset {𝑦𝑖 ∣ 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑘}
also satisfies (24). □

We give a simple example to explain this.

Example 12. Let 𝑥1, 𝑥2 be a basis. (i) Consider 𝑦 =
𝑥1 ∧ 𝑥2. Since

𝑀𝑐 =

[
1 0 0 0

0 1 1 1

]
,
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4∑
𝑖=1

ℓ1𝑖 = 1, and
4∑

𝑖=1

ℓ2𝑖 = 3. Hence 𝑦 cannot be a regular

sub-basis.

(ii) Consider 𝑧 = 𝑥1 ↔ 𝑥2. Since

𝑀𝑒 =

[
1 0 0 1

0 1 1 0

]
,

4∑
𝑖=1

ℓ1𝑖 = 2, and
4∑

𝑖=1

ℓ2𝑖 = 2. Hence 𝑧 is a regular sub-

basis.

The constructive proof of the sufficiency of Theorem 11
provides a way to construct a basis from a regular sub-
basis. Since 𝑀𝑒 = 𝛿2[1, 2, 2, 1], we need to find a 𝑦 such
that𝑀𝑦 has half 1 and half 2 in the position of 1 (or 2) of
𝑀𝑒. So, 𝑀𝑦 should be one of the followings: 𝛿2[1, 1, 2, 2],
𝛿2[1, 2, 1, 2], 𝛿2[2, 1, 2, 1], 𝛿2[2, 2, 1, 1]. That is, 𝑦 = 𝑥1,
𝑦 = 𝑥2, 𝑦 = ¬𝑥2, 𝑦 = ¬𝑥1, correspondingly. Then {𝑧, 𝑦}
becomes a coordinate transformation.

Next, we consider a set of nested regular sub-bases.

Theorem 13. Let 𝑦1, ⋅ ⋅ ⋅ , 𝑦𝑠 and 𝑧1, ⋅ ⋅ ⋅ , 𝑧𝑡 be two reg-
ular sub-bases of 𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑛. Assume

𝑦𝑖 ∈ 𝐹ℓ{𝑧1, ⋅ ⋅ ⋅ , 𝑧𝑡}, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑠.

Then 𝑦1, ⋅ ⋅ ⋅ , 𝑦𝑠 is also a regular sub-basis of 𝑧1, ⋅ ⋅ ⋅ , 𝑧𝑡.

PROOF. Choosing 𝑧𝑡+1, ⋅ ⋅ ⋅ , 𝑧𝑛, such that 𝑧 =
⋉𝑛

𝑖=𝑡+1𝑧𝑖 ⋉𝑡
𝑖=1 𝑧𝑖 is a coordinate transformation of 𝑥. It

is easy to check that if 𝑦 = ⋉𝑠
𝑖=1𝑦𝑖 is a regular sub-basis

with respect to 𝑥 = ⋉𝑛
𝑖=1𝑥𝑖, it is also a regular sub-basis

with respect to 𝑧, i.e., “regularity” is independent of a
particular choice of the coordinates. So we have

𝑦 = 𝐻𝑧 := [𝐻1,𝐻2]𝑧, (28)

where 𝐻 satisfies (24) and 𝐻1 and 𝐻2 are two equal size
blocks of𝐻. Setting 𝑧𝑡+1 = 𝛿12 we have𝐻1𝑧

′, and setting
𝑧𝑡+1 = 𝛿22 we have 𝐻2𝑧

′, where 𝑧′ = ⋉𝑛
𝑖=𝑡+2𝑧𝑖 ⋉𝑡

𝑖=1 𝑧𝑖.
Now since 𝑦 is independent of 𝑧𝑡+1, we conclude that
𝐻1 = 𝐻2. Removing the fabricated variable 𝑧𝑡+1 from
(28) yields

𝑦 = [𝐻1]𝑧
′. (29)

Since 𝐻1 = 𝐻2, one sees that 𝐻1 satisfies (24). Contin-
uing this procedure, we can finally have

𝑦 = 𝐻0𝑧, (30)

where 𝑧 = ⋉𝑠
𝑖=1𝑧𝑖, and 𝐻0 satisfies (24). The conclusion

follows from Theorem 11. □

Using Theorem 13, we can construct a universal coor-
dinate frame for a set of nested regular sub-bases. The
following corollary is obvious.

Corollary 14. Let {𝑧𝑖1, ⋅ ⋅ ⋅ , 𝑧𝑖𝑛𝑖
}, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑘 be a set

of regular sub-basis of {𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑛}. Assume

{𝑧𝑖1, ⋅ ⋅ ⋅ , 𝑧𝑖𝑛𝑖
} ⊂ 𝐹ℓ{𝑧𝑖+1

1 , ⋅ ⋅ ⋅ , 𝑧𝑖+1
𝑛𝑖+1

}, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑘 − 1.

Then there exists a coordinate frame 𝑤1, ⋅ ⋅ ⋅ , 𝑤𝑛, such
that

𝐹ℓ{𝑧𝑖1, ⋅ ⋅ ⋅ , 𝑧𝑖𝑛𝑖
} = 𝐹ℓ{𝑤1, ⋅ ⋅ ⋅ , 𝑤𝑛𝑖}, 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑘.

Corollary 15. Let 𝑌 and 𝑍 be two regular subspaces
and 𝑌 ⊂ 𝑍. Then there exists a regular subspace 𝑊 such
that 𝐹ℓ(𝑊,𝑌 ) = 𝑍, which is denoted by

𝑊 ⊕ 𝑌 = 𝑍. (31)

Remark 16. If (31) holds, 𝑊 is called the complement
of 𝑌 in 𝑍, denoted by 𝑊 = 𝑍∖𝑌 . It is obvious that 𝑊
is not unique.

5 State Space Coordinate Transformation

This section considers the logical coordinate transfor-
mation of Boolean (control) networks.

Consider the dynamics of a Boolean network (without
control). Assume that its algebraic form is

𝑥(𝑡+ 1) = 𝐿𝑥(𝑡). (32)

Let 𝑧 = 𝑇𝑥 be a logical coordinate change. Then

𝑧(𝑡+ 1) = 𝑇𝑥(𝑡+ 1) = 𝑇𝐿𝑥(𝑡) = 𝑇𝐿𝑇−1𝑧(𝑡).

That is, the dynamics of the Boolean network (32) be-
comes

𝑧(𝑡+ 1) = 𝑇𝐿𝑇𝑇 𝑧(𝑡). (33)

In fact, this is similar to any discrete-time linear dynamic
systems.

Next, we consider the Boolean control system (2). De-
note its algebraic form as{

𝑥(𝑡+ 1) = 𝐿𝑢(𝑡)𝑥(𝑡)

𝑦(𝑡) = 𝐻𝑥(𝑡).
(34)

Then

𝑧(𝑡+ 1) = 𝑇𝑥𝑡+1 = 𝑇𝐿𝑢(𝑡)𝑥(𝑡) = 𝑇𝐿𝑢(𝑡)𝑇𝑇 𝑧(𝑡)

= 𝑇𝐿(𝐼2𝑚 ⊗ 𝑇𝑇 )𝑢(𝑡)𝑧(𝑡).
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This form with a similar computation for 𝑦 shows that
under the state space coordinate transformation 𝑧 = 𝑇𝑥
system (34) can be expressed as{

𝑧(𝑡+ 1) = 𝐿̃𝑢(𝑡)𝑧(𝑡), 𝑧 ∈ Δ2𝑛

𝑦(𝑡) = 𝐻̃𝑧(𝑡), 𝑦 ∈ Δ2𝑝 ,
(35)

where

𝐿̃ = 𝑇𝐿(𝐼2𝑚 ⊗ 𝑇𝑇 ); 𝐻̃ = 𝐻𝑇𝑇 . (36)

(36) is very useful in our further investigation.

We give an example to describe this.

Example 17. Consider the following system⎧⎨⎩
𝑥1(𝑡+ 1) = ¬(𝑥1(𝑡) ↔ 𝑥2(𝑡))

𝑥2(𝑡+ 1) = ¬(𝑥2(𝑡) ↔ 𝑥3(𝑡))

𝑥3(𝑡+ 1) = 𝑢(𝑡) ∧ 𝑥1(𝑡),

𝑦(𝑡) = 𝑥1(𝑡) ↔ 𝑥2(𝑡).

(37)

In algebraic form, it becomes⎧⎨⎩
𝑥1(𝑡+ 1) = 𝑀𝑝𝑥1𝑥2(𝑡)

𝑥2(𝑡+ 1) = 𝑀𝑝𝑥2(𝑡)𝑥3(𝑡)

𝑥3(𝑡+ 1) = 𝑀𝑐𝑢(𝑡)𝑥1(𝑡),

𝑦(𝑡) = 𝑀𝑒𝑥1(𝑡)𝑥2(𝑡).

(38)

Let 𝑥(𝑡) = 𝑥1(𝑡)𝑥2(𝑡)𝑥3(𝑡). Then

𝑥(𝑡+ 1) = 𝑀𝑝𝑥1𝑥2𝑀𝑝𝑥2𝑥3𝑀𝑐𝑢𝑥1 := 𝐿𝑢(𝑡)𝑥(𝑡),

where 𝐿 ∈ 𝑀8×16 can be easily calculated as

𝐿 = 𝑀𝑝(𝐼4 ⊗𝑀𝑝)(𝐼2 ⊗𝑀𝑟)(𝐼8 ⊗𝑀𝑐)𝑊[4,8](𝐼2 ⊗𝑀𝑟)

= 𝛿8[7, 5, 1, 3, 4, 2, 6, 8, 8, 6, 2, 4, 4, 2, 6, 8].

Since there is no 𝑥3 in 𝑦, we introduce a dummy matrix,
as 𝐸𝑑 = 𝛿2[1 1 2 2], then we have (Cheng and Qi, 2009b)

𝐸𝑑𝑝𝑞 = 𝑝. (39)

Using it, 𝑦 can be expressed as

𝑦(𝑡) = 𝑀𝑒𝑥1(𝑡)𝐸𝑑𝑥2(𝑡)𝑥3(𝑡)

= 𝑀𝑒(𝐼2 ⊗ 𝐸𝑑)𝑥(𝑡)

= 𝛿2[1 2 1 2 2 1 2 1]𝑥(𝑡).

Assume that we use the coordinate change 𝑧 = 𝑇𝑥 as⎧⎨⎩
𝑧1 = 𝑥1∨̄𝑥2

𝑧2 = ¬𝑥1

𝑧3 = ¬𝑥3,

which is the inverse of coordinate change in (16). So its
transfer matrix is 𝑇𝑇 , where 𝑇 is as in (19).

Using logical coordinate transformation (35), we have

𝐿̃ = 𝑇𝐿(𝐼2 ⊗ 𝑇𝑇 )

= 𝛿8[7, 3, 4, 8, 5, 1, 2, 6, 7, 3, 3, 7, 5, 1, 1, 5];

𝐻̃ = 𝐻𝑇𝑇 = 𝛿2[1 2 2 1 1 2 2 1].

We also have

𝑀̃1 = 𝑆3
1 𝐿̃ = 𝛿2[2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2];

𝑀̃2 = 𝑆3
2 𝐿̃ = 𝛿2[2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1];

𝑀̃3 = 𝑆3
3 𝐿̃ = 𝛿2[1 1 2 2 1 1 2 2 1 1 1 1 1 1 1 1].

Using the converting procedure,

𝑧1(𝑡+ 1) = [𝑢(𝑡) ∧ 𝑔11(𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡))]∨
[¬𝑢(𝑡) ∧ 𝑔21(𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡))].

Since 𝑀̃1
1 = 𝑀̃2

1 , then 𝑔11 = 𝑔21 , we conclude that

𝑧1(𝑡+ 1) = 𝑔11(𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡)).

Continuing this mechanical process, we finally get the
expression of the Boolean control network (37) under 𝑧
coordinate frame as⎧⎨⎩

𝑧1(𝑡+ 1) = 𝑧2(𝑡)∨̄𝑧3(𝑡)
𝑧2(𝑡+ 1) = ¬𝑧1(𝑡)
𝑧3(𝑡+ 1) = 𝑢(𝑡) → 𝑧2(𝑡),

𝑦(𝑡) = 𝑧2(𝑡) ↔ 𝑧3(𝑡).

(40)

6 Decomposition and Normal Forms

First, we introduce the incidence matrix of a logical map-
ping (Robert, 1986).

Consider a logical mapping 𝐹 : 𝒟𝑛 → 𝒟𝑚, described as

𝐹 : 𝑦𝑖 = 𝑓𝑖(𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑛), 𝑖 = 1, ⋅ ⋅ ⋅ ,𝑚. (41)

𝑓𝑖 is said to be a clear form, if 𝑓𝑖 has no fabricated ar-
guments. That is, if 𝑓𝑖 is independent of 𝑥𝑗 then 𝑥𝑗 will
not appear into 𝑓𝑖. Note that in a logical function, it is
not obvious to identify if an argument is fabricated or
not. Cheng and Qi (2009a) provided a mechanical pro-
cedure to get the clear form of arbitrary logical function
𝑓 . Hereafter we assume that the logical equations con-
cerned are in clear form. That is, there are no fabricated
variables.
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For mapping 𝐹 with clear 𝑓𝑖, its incidence matrix is an
𝑚× 𝑛 matrix 𝐵(𝐹 ), whose entries are defined by

𝑏𝑖,𝑗 =

{
1, if 𝑥𝑗 appears into 𝑓𝑖,

0, otherwise.

Recall system (2). Denote the incidence matrices for
mapping 𝐹 with respect to 𝑥, 𝑢 and the mapping 𝐻
with respect to 𝑥 respectively by 𝐵(𝐹 ) ∈ 𝑀𝑛,𝑛+𝑚, and
𝐵(𝐻) ∈ 𝑀𝑝,𝑚. For convenience, we arrange 𝐵(𝐹 ) in
such a way: the first 𝑛 columns are for 𝑥 and the last 𝑚
columns are for 𝑢. That is, 𝑏𝑖,𝑗 = 1, 𝑗 ≤ 𝑛 means 𝑥𝑗 ap-
pears in 𝑓𝑖(𝑥, 𝑢) and 𝑏𝑖,𝑗 = 1, 𝑗 > 𝑛means 𝑢𝑗−𝑛 appears
in 𝑓𝑖(𝑥, 𝑢).

Definition 18. (1) A subspace 𝑉 = 𝐹ℓ{𝑥𝑗1 , 𝑥𝑗2 , ⋅ ⋅ ⋅ , 𝑥𝑗𝛽}
is called an uncontrollable subspace, if it does not
affected by {𝑢(𝑡)}.

(2) A subspace 𝑉 = 𝐹ℓ{𝑥𝑘1 , 𝑥𝑘2 , ⋅ ⋅ ⋅ , 𝑥𝑘𝛾} is said to be
an unobservable subspace if the output 𝑦𝑗(𝑡), 𝑗 =
1, 2, ⋅ ⋅ ⋅ , 𝑝 are not affected by 𝑥𝑘ℓ

(𝑡), ℓ = 1, 2, ⋅ ⋅ ⋅ , 𝛾
under arbitrary controls {𝑢(𝑡)}.

To make the definition more clear, we consider the in-
cidence matrices. If (after possible variable reordering)
the incidence matrix of state equations becomes

𝐵(𝐹 ) =

[
𝐿11 𝐿12 𝐿13

0 𝐿22 0

]
, (42)

where the first block row corresponds to equations
of 𝑥1 = (𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑘), and the second to 𝑥2 =
(𝑥𝑘+1, ⋅ ⋅ ⋅ , 𝑥𝑛); the first, second and third block
columns correspond to 𝑥1, 𝑥2 and 𝑢 respectively. Then
𝑥2 = (𝑥𝑘+1, ⋅ ⋅ ⋅ , 𝑥𝑛) is an uncontrollable subspace.

Similarly, if (after possible variable reordering) the inci-
dence matrix of states becomes

𝐵(𝐹 ) =

[
𝐿11 0 𝐿13

𝐿21 𝐿22 𝐿23

]
, (43)

and the incidence matrix of outputs becomes

𝐵(𝐻) =
[
𝐻11 0

]
, (44)

where the block decompositions of 𝐵(𝐹 ) and 𝐵(𝐻)
are corresponding to the block coordinates 𝑥1 =
(𝑥1, ⋅ ⋅ ⋅ , 𝑥𝑘′), and 𝑥2 = (𝑥𝑘′+1, ⋅ ⋅ ⋅ , 𝑥𝑛) (and 𝑢 for last
block column 𝐵(𝐹 )). Then 𝑥2 = (𝑥𝑘′+1, ⋅ ⋅ ⋅ , 𝑥𝑛) is the
unobservable subspace.

Unfortunately, the aforementioned definition is coordinate-
depending. It may be seen from the following example.

Example 19. Consider the following system⎧⎨⎩
𝑥1(𝑡+ 1) = (𝑢(𝑡) ∧ (𝑥1(𝑡) ∨ 𝑥2(𝑡)))∨

(¬𝑢(𝑡) ∧ (𝑥1(𝑡) ∧ 𝑥2(𝑡)))

𝑥2(𝑡+ 1) = 𝑥1(𝑡) ∧ 𝑥2(𝑡)

𝑦(𝑡) = 𝑥2(𝑡).

(45)

We have the incidence matrices as

𝐵(𝐹 ) =

[
1 1 1

1 1 0

]
,

and

𝐵(𝐻) =
[
0 1

]
.

It is easy to check that even with reordering the variables
we can get neither uncontrollable nor unobservable sub-
space. Skipping a normal routine computation, we give
the algebraic form of the system (45):{

𝑥(𝑡+ 1) = 𝐿𝑢(𝑡)𝑥(𝑡)

𝑦 = 𝐻𝑥(𝑡),
(46)

where

𝐿 = 𝛿8[1, 2, 2, 4, 1, 4, 4, 4]; 𝐻 = 𝛿2[1, 2, 1, 2].

Now we consider a coordinate transformation:{
𝑧1 = 𝑥1∨̄𝑥2

𝑧2 = ¬𝑥2.

Note that since

𝑧 = 𝑀𝑝𝑥1𝑥2𝑀𝑛𝑥2 = 𝑀𝑝(𝐼4 ⊗𝑀𝑛)𝑥1𝑀𝑟𝑥2

= 𝑀𝑝(𝐼4 ⊗𝑀𝑛)(𝐼2 ⊗𝑀𝑟)𝑥 := 𝑇𝑥,

then

𝐿 = 𝑀𝑝(𝐼4 ⊗𝑀𝑛)(𝐼2 ⊗𝑀𝑟) = 𝛿4[4, 1, 2, 3],

which is nonsingular. Hence 𝑧 = 𝑇𝑥 is a coordinate
transformation.

Under coordinate frame 𝑧, we have{
𝑧(𝑡+ 1) = 𝐿̃𝑢(𝑡)𝑧(𝑡)

𝑦(𝑡) = 𝐻̃𝑧(𝑡),
(47)

where, by using (36),

𝐿̃ = 𝑇𝐿(𝐼2 ⊗ 𝑇𝑇 ) = 𝛿8[1, 1, 3, 4, 3, 3, 3, 4];

𝐻̃ = 𝛿2[2, 1, 2, 1].
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Using the standard procedure provided in Cheng and
Qi (2009a), we can reconstruct the dynamics of (47).
Skipping the routine computation, we have⎧⎨⎩

𝑧1(𝑡+ 1) = 𝑧1(𝑡) ∧ 𝑢

𝑧2(𝑡+ 1) = 𝑧1(𝑡) ∨ 𝑧2(𝑡)

𝑦(𝑡) = ¬𝑧1(𝑡).
(48)

Observing (48), one sees easily that 𝑧2 is unobservable
subspace.

We give the following coordinate free definition.

Definition 20. (1) Let 𝜉(𝑥) ∈ 𝒰 , with structure ma-
trix 𝑀𝜉. 𝜉 is said to be uncontrollable if

𝜉(𝑡+ 1) = 𝑀𝜉𝑥(𝑡+ 1) = 𝑀𝜉𝐿𝑥(𝑡)𝑢(𝑡)

is 𝑢(𝑡)-independent, i.e., it does not affected by 𝑢(𝑡).
Let 𝒞𝑐 ⊂ 𝒰 be the subspace of all 𝑢(𝑡)-independent
functions, called the largest uncontrollable sub-
space.

(2) A regular subspace 𝑍𝑟 is called an unobservable
subspace, if under the coordinate 𝑍 = {𝑍𝑟, 𝑍

𝑐
𝑟},

it is unobservable. Let 𝒪𝑐 be the set of functions
of all unobservable regular subspaces, i.e., 𝒪𝑐 =
𝐹ℓ{𝑍𝑟∣𝑍𝑟 is unobservable regular subspaces},
called the largest unobservable subspace.

The following two proposition about controllable and
observable normal forms respectively is an immediate
consequence of the definition.

Proposition 21. (1) Assume that the largest uncon-
trollable subspace 𝒞𝑐 is a regular subspace, then there
exists a state space expression of (2) which have
largest uncontrollable subspace 𝑧2 (unique up to a
coordinate transformation) as{

𝑧1(𝑡+ 1) = 𝐹 1(𝑧(𝑡), 𝑢(𝑡)),

𝑧2(𝑡+ 1) = 𝐹 2(𝑧2(𝑡)).
(49)

(49) will be called the normal controllable form.
(2) Assume that the unobservable subspace 𝒪𝑐 is a reg-

ular subspace, then there exists an expression of (2)
which have largest unobservable subspace 𝑧2 (unique
up to a coordinate transformation) as⎧⎨⎩

𝑧1(𝑡+ 1) = 𝐹 1(𝑧1(𝑡), 𝑢(𝑡)),

𝑧2(𝑡+ 1) = 𝐹 2(𝑧(𝑡), 𝑢(𝑡));

𝑦(𝑡) = 𝐻(𝑧1(𝑡)).

(50)

(50) will be called the normal observable form.

Finally, we propose a Kalman decomposition form. Con-
sider system (2). Assume that 𝒞𝑐,𝒪𝑐, 𝒞𝑐∪𝒪𝑐, and 𝒞𝑐∩𝒪𝑐

are regular subspaces of {𝑥}. Denote

𝑉1 = 𝒞 ∩ 𝒪 := 𝐷𝑛∖(𝒞𝑐 ∪ 𝒪𝑐), 𝑉2 = 𝒞 ∩ 𝒪𝑐 := (𝒞𝑐 ∪ 𝒪𝑐)∖𝒞𝑐
𝑉3 = 𝒞𝑐 ∩ 𝒪 := 𝒞𝑐∖(𝒞𝑐 ∩ 𝒪𝑐), 𝑉4 = 𝒞𝑐 ∩ 𝒪𝑐.

Theorem 22. Assume that 𝒞𝑐, 𝒪𝑐, 𝒞𝑐∪𝒪𝑐, and 𝒞𝑐∩𝒪𝑐

are regular subspaces of {𝑥}. System (2) has the following
Kalman decomposition:

⎧⎨⎩
𝑧1(𝑡+ 1) = 𝐹 1(𝑧1(𝑡), 𝑧3(𝑡), 𝑢(𝑡)), 𝑧1 ∈ 𝑉1

𝑧2(𝑡+ 1) = 𝐹 2(𝑧1(𝑡), 𝑧2(𝑡), 𝑧3(𝑡), 𝑧4(𝑡), 𝑢(𝑡)), 𝑧2 ∈ 𝑉2

𝑧3(𝑡+ 1) = 𝐹 3(𝑧3(𝑡)), 𝑧3 ∈ 𝑉3

𝑧4(𝑡+ 1) = 𝐹 4(𝑧3(𝑡), 𝑧4(𝑡)), 𝑧4 ∈ 𝑉4;

𝑦𝑠(𝑡) = ℎ𝑠(𝑧
1(𝑡), 𝑧3(𝑡)), 𝑠 = 1, 2, ⋅ ⋅ ⋅ , 𝑝,

(51)

where 𝑧1(𝑡) is the controllable and observable subspace,
𝑧2(𝑡) is the controllable and unobservable subspace, 𝑧3(𝑡)
is the uncontrollable and observable subspace, and 𝑧4(𝑡)
is the uncontrollable and unobservable subspace. More-
over, the expression is unique up to a coordinate trans-
formation.

PROOF. Consider the nested regular subspaces

𝒞𝑐 ∪ 𝒪𝑐 ⊃ 𝒞𝑐 ⊃ 𝒞𝑐 ∩ 𝒪𝑐.

Assume dim𝑉𝑖 = 𝑛𝑖, 𝑖 = 1, 2, 3, 4. Denote 𝑗1 = 𝑛1,
𝑗2 = 𝑛1 +𝑛2, 𝑗3 = 𝑛1 +𝑛2 +𝑛3. According to Corollary
14, we can find a coordinate frame 𝑧 = {𝑧𝑖∣𝑖 = 1, ⋅ ⋅ ⋅ , 𝑛},
such that

𝒞𝑐 ∪ 𝒪𝑐 = 𝐹ℓ{𝑧𝑘∣𝑘 > 𝑗1};
𝒞𝑐 = 𝐹ℓ{𝑧𝑘∣𝑘 > 𝑗2};
𝒞𝑐 ∩ 𝒪𝑐 = 𝐹ℓ{𝑧𝑘∣𝑘 > 𝑗3}.

Under this coordinate frame (51) follows immediately.□

Next, we give an example to depict this.
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Example 23. Consider the following system⎧⎨⎩

𝑥1(𝑡+ 1) = 𝑢

𝑥2(𝑡+ 1) = ¬𝑥2(𝑡)

𝑥3(𝑡+ 1) = [𝑥3(𝑡) ∧ 𝑥4(𝑡) ∧ (𝑥5(𝑡) ↔ 𝑥6(𝑡))]∨
[𝑥3(𝑡) ∧ (¬(𝑥4(𝑡)) ∧ 𝑥5(𝑡)] ∨ (¬𝑥3(𝑡))

𝑥4(𝑡+ 1) = ¬(𝑥1(𝑡) ↔ 𝑥2(𝑡))

𝑥5(𝑡+ 1) = [𝑥1(𝑡) ∧ (𝑥2(𝑡) ↔ 𝑥3(𝑡))] ∨ [(¬𝑥1(𝑡))∧
(¬(𝑥2(𝑡) ↔ 𝑥3(𝑡)))]

𝑥6(𝑡+ 1) = [𝑥1(𝑡) ↔ 𝑥2(𝑡)] ∧ {[𝑥4(𝑡)∧
(𝑥5(𝑡) ↔ 𝑥6(𝑡))] ∨ [(¬𝑥4(𝑡)) ∧ 𝑥5(𝑡)]},

𝑦1(𝑡) = ¬𝑥4(𝑡),

𝑦2(𝑡) = (𝑥1(𝑡) ↔ 𝑥2(𝑡)) → (¬𝑥2(𝑡)).

(52)

We skip the tedious process for finding the subspaces by
using coordinate transformations, and give the logical
coordinate transformation as follows:⎧⎨⎩

𝑧1(𝑡) = 𝑥1(𝑡) ↔ 𝑥2(𝑡)

𝑧2(𝑡) = 𝑥4(𝑡)

𝑧3(𝑡) = 𝑥6(𝑡)

𝑧4(𝑡) = ¬𝑥2(𝑡)

𝑧5(𝑡) = ¬𝑥3(𝑡)

𝑧6(𝑡) = [𝑥4(𝑡) ∧ (𝑥5(𝑡) ↔ 𝑥6(𝑡))] ∨ [(¬𝑥4(𝑡)) ∧ 𝑥5(𝑡)] .

(53)

Its inverse mapping is:⎧⎨⎩

𝑥1(𝑡) = ¬(𝑧1(𝑡) ↔ 𝑧4(𝑡))

𝑥2(𝑡) = ¬𝑧4(𝑡)
𝑥3(𝑡) = 𝑧5(𝑡)

𝑥4(𝑡) = 𝑧2(𝑡)

𝑥5(𝑡) = [𝑧2(𝑡) ∧ (𝑧3(𝑡) ↔ 𝑧6(𝑡))] ∨ [(¬𝑧2(𝑡)) ∧ 𝑧6(𝑡)]

𝑥6(𝑡) = 𝑧3(𝑡).

(54)

Using (53)-(54), it is easy to calculate that under {𝑧𝑖}
coordinate frame system (52) can be converted into the
following form:⎧⎨⎩

𝑧1(𝑡+ 1) = 𝑧4(𝑡) ↔ 𝑢

𝑧2(𝑡+ 1) = ¬𝑧1(𝑡)
𝑧3(𝑡+ 1) = 𝑧1(𝑡) ∧ 𝑧6(𝑡)

𝑧4(𝑡+ 1) = ¬𝑧4(𝑡)
𝑧5(𝑡+ 1) = 𝑧5(𝑡) ∨ 𝑧6(𝑡)

𝑧6(𝑡+ 1) = ¬𝑧5(𝑡),
𝑦1(𝑡) = ¬𝑧2(𝑡),
𝑦2(𝑡) = 𝑧1(𝑡) → 𝑧4(𝑡).

(55)

It is easy to check that (55) is the Kalman decomposition
form of system (52) with

𝒞 ∩ 𝒪 = 𝐹ℓ{𝑧1(𝑡), 𝑧2(𝑡)}; 𝒞 ∩ 𝒪𝑐 = 𝐹ℓ{𝑧3(𝑡)};
𝒞𝑐 ∩ 𝒪 = 𝐹ℓ{𝑧4(𝑡)}; 𝒞𝑐 ∩ 𝒪𝑐 = 𝐹ℓ{𝑧5(𝑡), 𝑧6(𝑡)}.

7 Realization

Definition 24. Given two Boolean control networks.
They are said to be equivalent if for any point 𝑥0 of one
network there is a point 𝑥̃0 of the other network such
that for the same inputs 𝑢(𝑡), 𝑡 = 0, 1, 2, ⋅ ⋅ ⋅ with initial
values 𝑥0 and 𝑥̃0 respectively, the outputs {𝑦(𝑡)} are the
same.

Consider a linear control system (Wonham, 1979){
𝑥̇ = 𝐴𝑥+𝐵𝑢, 𝑥 ∈ ℝ𝑛, 𝑢 ∈ ℝ𝑚

𝑦 = 𝐶𝑥, 𝑦 ∈ ℝ𝑝.
(56)

Its Kalman decomposition form is⎡⎢⎢⎢⎢⎢⎣
𝑧̇1

𝑧̇2

𝑧̇3

𝑧̇4

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
𝐴11 0 𝐴13 0

𝐴21 𝐴22 𝐴23 𝐴24

0 0 𝐴33 0

0 0 𝐴33 𝐴34

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
𝑧1

𝑧2

𝑧3

𝑧4

⎤⎥⎥⎥⎥⎥⎦ ,

𝑦(𝑡) =
[
𝐶1 0 𝐶3 0

]
𝑧.

(57)

Then its minimum realization is{
𝑥̇1 = 𝐴11𝑥

1

𝑦 = 𝐶1𝑥
1.

(58)

We define the minimum realization of system (2) in a
mimic way.

Definition 25. Consider system (2) with its Kalman
decomposition (51). Given a fixed (frozen) value 𝑧3 =
𝑧30 , the minimum realization of system (2) with frozen
𝑧3 = 𝑧30 is defined by{

𝑧1(𝑡+ 1) = 𝐹 1(𝑧1(𝑡), 𝐴𝑡
3𝑧

3
0 , 𝑢(𝑡))

𝑦𝑠(𝑡) = ℎ𝑠(𝑧
1(𝑡), 𝐴𝑡

3𝑧
3
0), 𝑠 = 1, 2, ⋅ ⋅ ⋅ , 𝑝, (59)

where 𝐴3, as the structure matrix of 𝐹 3, is an 𝑛3 × 𝑛3

known logical matrix, and 𝑧30 is a parameter, which is
adjustable.
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Note that in general the minimum realization depends
on 𝐴3 and 𝑧30 . In the following two cases the minimum
realization is unique:

∙ Case 1. 𝑧3 does not appear into the dynamic equation
of 𝑧1.

∙ Case 2. subsystem of 𝑧3 globally converges to 𝜉. Then
in (59) we can replace 𝐴𝑡

3𝑧
3
0 by 𝜉, and call (59) the

stationary state realization.

Example 26. Recall Example 23. To get the minimum
realization of (52), we write the first block equation by
using its Kalman decomposition form (55).⎧⎨⎩

𝑧1(𝑡+ 1) = 𝑧4(𝑡) ↔ 𝑢

𝑦1(𝑡) = ¬𝑧4(𝑡),
𝑦2(𝑡) = 𝑧1(𝑡) → 𝑧4(𝑡).

(60)

Note that in (55) the third block variable is 𝑧3 = 𝑧4.
Since 𝑧4 = 𝑀 𝑡

𝑛𝑧
0
4 , we have the minimum realization as⎧⎨⎩
𝑧1(𝑡+ 1) = 𝑀𝑒𝑀

𝑡
𝑛𝑧

0
4𝑢

𝑦1(𝑡) = 𝑀 𝑡+1
𝑛 𝑧04 ,

𝑦2(𝑡) = 𝑀𝑖𝑧1(𝑡)𝑀
𝑡
𝑛𝑧

0
4 .

(61)

It is easy to verify that the input-output mapping of
system (52) with initial value (𝑧01 , ⋅ ⋅ ⋅ , 𝑧06) is exactly the
same as (61) with initial value 𝑧01 and parameter 𝑧04 .

8 Conclusion

In this paper we consider the realization problem of
Boolean control systems. First, we give a rigorous def-
inition for the coordinate transformation of the state
variables of a Boolean network. Then the coefficient ma-
trices of the Boolean (control) systems under algebraic
expression are investigated. The formulas are obtained
for system coefficients under coordinate transformation.
Introducing the concept of regular sub-basis and regu-
lar subspace, we then investigate the controllable and
observable normal forms. Under certain regularity as-
sumption, the Kalman decomposition of Boolean con-
trol networks is presented. Finally, based on the Kalman
decomposition the minimum realization is obtained.
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