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Abstract

The input-state incidence matrix of control Boolean network is proposed. It
is shown that this matrix contains complete information of the input-state
mapping. Using it, an easily verifiable necessary and sufficient condition for
the controllability of Boolean control network is obtained. The corresponding
control which drives a point to a given reachable point is designed. Moreover,
certain topological properties such as the fixed points and cycles of a Boolean
control network are investigated. Then, as another application, a sufficient
condition for the observability is presented. Finally, the results are extended
to mix-valued logical control systems.
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1. Introduction

The Boolean network was firstly proposed by Kauffman for modeling
complex and nonlinear biological systems [1, 2, 3]. Since then, it has been
studies widely and applied to some other systems. The first interesting topic
is the topological structure of a Boolean network. Many progresses have
been done [4, 5, 6]. Another challenging and important topic is the control
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of Boolean networks. The main efforts have been put on the controllability
of Boolean networks [7, 8, 9].

Recently, a new matrix product, called the semi-tensor product of ma-
trices, has been proposed, and using it a logical mapping can be expressed
into a matrix form [10]. Using them, a Boolean (control) network can be
converted into a standard discrete-time dynamic (control) system [11, 12].

In this paper the same framework is utilized. We, therefore, give a brief
review on this new technique. For statement ease, we introduce some nota-
tions first.

(i) Denote by Col(A) (Row(A)) the set of columns (rows) of a matrix A,
and Coli(A) (Rowi(A)) the i-th column (row) of A.

(ii) D := {0, 1}.
(iii) Let δin be the i-th column of the identity matrix In, and ∆n := {δ1n, δ2n, · · · , δnn}.

When n = 2 we simply use ∆ := ∆2.

(iv) 1k := [1 1 · · · 1︸ ︷︷ ︸
k

]T .

(v) Assume a matrix M = [δi1n δi2n · · · δisn ] ∈ Mn×s , i.e., its columns,
Col(M) ⊂ ∆n. Then M is called a logical matrix, and simply denoted
as

M = δn[i1 i2 · · · is].

The set of n× s logical matrices is denoted by Ln×s.
(vi) A matrix B ∈ Mn×s is called a Boolean matrix, if its entries bij ∈ D,

∀ i, j. The set of n× s Boolean matrices is denoted by Bn×s.
(vii) Let A ∈Mn×mn, denoted by Blki(A) the i-th n× n square block of A,

i = 1, 2 · · · ,m.

A Boolean network with n nodes is described as
x1(t+ 1) = f1(x1(t), · · · , xn(t))
...

xn(t+ 1) = fn(x1(t), · · · , xn(t)), xi ∈ D,
(1)

where fi : Dn → D, i = 1, · · · , n are logical functions.
Similarly, a Boolean control network with n network nodes, m input
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nodes, and p outputs is described as
x1(t+ 1) = f1(x1(t), · · · , xn(t), u1(t), · · · , um(t))
...

xn(t+ 1) = fn(x1(t), · · · , xn(t), u1(t), · · · , um(t)), xi, uj ∈ D,
yj(t) = hj(x1(t), · · · , xn(t)), j = 1, · · · , p,

(2)

where fi : Dn+m → D, i = 1, · · · , n and hj : Dn → D, j = 1, · · · , p are
logical functions.

Throughout this paper the matrix product is assumed to be semi-tensor
product as An B, and the symbol “n” is omitted in most places. We refer
to [10] for details.

Identifying 1 ∼ δ12, 0 ∼ δ22, and using semi-tensor product of matrices,
logic functions can be expressed by logical matrix, vectors, and their prod-
ucts. For example, the truth table of some common logical functions such
as “negation (¬)”, “conjunction (∧)”, “disjunction (∨)”, “conditional (→)”,
“biconditional (↔)” and “exclusive or (∨̄)” is given in Table 1, and their
structure matrices are given in Table 2.

Table 1: Truth Table

p q ¬p p ∧ q p ∨ q p→ q p↔ q p∨̄q
1 1 0 1 1 1 1 0
1 0 0 0 1 0 0 1
0 1 1 0 1 1 0 1
0 0 1 0 0 1 1 0

Table 2: Matrix Expressions of Logical Functions

¬ Mn = δ2[2 1] → Mi = δ2[1 2 1 1]
∨ Md = δ2[1 1 1 2] ↔ Me = δ2[1 2 2 1]
∧ Mc = δ2[1 2 2 2] ∨̄ Mp = δ2[2 1 1 2]

Then, in vector form we have ¬p = Mn n p and p ∧ q = Mc n pn q, etc.
Set x = nn

i=1xi, u = nm
i=1ui, and y = np

i=1yi. Using vector form, (1)
and (2) can be expressed by the following (3) and (4) respectively, which are
called the algebraic forms of (1) and (2) respectively.

x(t+ 1) = Lx(t), (3)
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where L ∈ L2n×2n is called structure matrix of the Boolean network.{
x(t+ 1) = Lu(t)x(t)

y(t) = Hx(t),
(4)

where L ∈ L2n×2n+m , and H ∈ L2p×2n .
A matrix, A = (aij) ∈Mn×n is called the adjacency matrix (or incidence

matrix) of the Boolean network (1), if

aij =

{
1, xj(t+ 1) depends on xi(t)

0, otherwise.

If we consider the network graph, aij 6= 0, iff there is an edge from xi to
xj. The difference between L of (3) and A is that L contains complete
information of the network dynamics, precisely, (1) can be recovered from L
easily, while A does not.

The controllability and observability of Boolean control networks were
investigated under this framework [13]. As a related topic, the controllable
normal form and the realization of Boolean networks were discussed in [14].
The topological structure of Boolean network (without control) such as fixed
points and cycles was investigated in [11]. We first give rigorous definitions
for the controllability, observability, fixed points and cycles.

Definition 1.1. Consider system (2). Denote its state space as X = Dn,
and let X0 ∈ X .

1. X ∈ X is said to be reachable from X0 at time s > 0, if we can find a se-
quence of controls U(0) = {u1(0), · · · , um(0)}, U(1) = {u1(1), · · · , um(1)},
· · · , such that the trajectory of (2) with the initial value X0 and the con-
trols {U(t)}, t = 0, 1, · · · will reach X at time t = s. The reachable set
at time s is denoted by Rs(X0). The overall reachable set is denoted by

R(X0) = ∪∞s=1Rs(X0).

2. System (2) is said to be controllable at X0 if R(X0) = X . The system
is said to be controllable if it is controllable at every X ∈ X .

Definition 1.2. Consider system (2). Denote by Y (t) = (y1(t), · · · , yp(t)) ∈
Dp.
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1. X0
1 and X0

2 are said to be distinguishable, if there exists a control se-
quence {U(0), U(1), · · · , U(s)}, where s ≥ 0, such that

Y 1(s+ 1) = ys+1(U(s), · · · , U(0), X0
1 ) 6= Y 2(s+ 1) = ys+1(U(s), · · · , U(0), X0

2 ).
(5)

2. The system is said to be observable, if any two initial points X0
1 , X

0
2 ∈ X

are distinguishable.

Definition 1.3. Consider system (2). Denote the input-state (product) space
by

S = {(U,X) |U = (u1, · · · , um) ∈ Dp, X = (x1, · · · , xn) ∈ Dn} .

Note that |S| = 2m+n.

1. Let Si = (U i, X i) ∈ S and Sj = (U j, Xj) ∈ S. Denote by U i =
(ui1, · · · , uim), X i = (xi1, · · · , xin), etc. (Si, Sj), is said to be a directed
edge, if X i, U i, Xj satisfy (2). Precisely,

xjk = fk(x
i
1, · · · , xin, ui1, · · · , uim), k = 1, · · · , n.

The set of edges is denoted by E ⊂ S × S.

2. The pair (S, E) forms a directed graph, which is called the input-state
transfer graph.

3. (S1, S2, · · · , S`) is called a path, if (Si, Si+1) ∈ E, i = 1, 2, · · · , `− 1.

4. A path (S1, S2, · · · ) is called a cycle, if Si+` = Si for all i, the smallest
` is called the length of the cycle. Particular, the cycle of length 1 is
called a fixed point.

Note that when the vector form of logical variables is used, the state space
becomes X = ∆2n , similarly, the input-state space becomes S = ∆2m+n .
According to the corresponding statement, it is easy to tell which form is
used there.

In this paper we propose a matrix, called the input-state incidence matrix.
Using it, a neat result about to controllability of Boolean control networks
is presented by verifying the controllability matrix. The corresponding con-
troller is also designed. Based on the structure of reachable set, an easily
verifiable sufficient condition for observability is also obtained. Then the
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input-state incidence matrix is also used to reveal some topological struc-
tures of Boolean control networks, including fixed points, cycles etc. Finally,
the results are extended to general mix-valued logical dynamic systems. In
the conclusion we compare this result with the result obtained in [13] to show
that a significant progress has been achieved in this paper.

The paper is organized as follows. Section 2 proposes the concept of in-
cidence matrix of Boolean control networks, called the input-state incidence
matrix. Its relationship with the algebraic form of the Boolean dynamics is
revealed, which provides a convenient way to calculate it. Its basic proper-
ties are also investigated. Using the input-state incidence matrix, Section
3 provides a very convenient necessary and sufficient condition for the con-
trollability of the Boolean control networks. Section 4 considers the control
design from any point to a point in its reachable set. The corresponding
trajectory is also provided. Section 5 gives an easily verifiable sufficient con-
dition for the observability. Formulas for the numbers of fixed points and
cycles of a Boolean control network are obtained in Section 6. All the afore-
mentioned results have been extended to mix-valued logical control systems
in Section 7. Section 8 is a brief conclusion, which contains a comparison
with the existing results.

2. Incidence Matrix of Boolean Control Networks

The incidence matrix of a Boolean control network is used to describe the
dynamic process of a Boolean control network. Roughly speaking, it is an
algebraic version of the input-state dynamic graph. To begin with, we give
a simple example to describe the input-state transfer graph.

Example 2.1. Consider a Boolean control network Σ as

Σ :

{
x1(t+ 1) = (x1(t) ∨ x2(t)) ∧ u(t)

x2(t+ 1) = x1(t)↔ u(t).
(6)

Setting x(t) = x1(t) n x2(t), it is easy to calculate that the algebraic form of
Σ is

Σ : x(t+ 1) = Lu(t)x(t), (7)

where

L = δ4
[
1 1 2 4 4 4 3 3

]
. (8)
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According to the dynamic equation (6) (equivalently, (7)), we can draw the
flow of (u(t), (x1(t), x2(t))) on the product space U ×X , called the input-state
dynamic graph, as in Fig. 1.

0×(1, 0) 1×(0, 0)

0×(0, 0)0×(0, 1) 0×(1, 1)

1×(0, 1) 1×(1, 0) 1×(1, 1)

Fig. 1: Input-state dynamic graph

Using vector form, the input-state product space becomes ∆×∆4. We may
define the points in the input-state product space as P1 = δ12×δ14, P2 = δ12×δ24,
· · · , P8 = δ22 × δ44.

Now we construct an 8× 8 matrix, J (Σ) in the following way:

Jij =

{
1, there exists an edge from Pj to Pi,

0, otherwise.

Then J (Σ), called the input-state incidence matrix of the Boolean control
network Σ, is

J (Σ) =



1 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 1
0 0 0 1 1 1 0 0
1 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 1
0 0 0 1 1 1 0 0


. (9)

It is easy to see that the incidence matrix of a Boolean control network
is indeed the transpose of the adjacency matrix of the input-state transfer
graph (notice that it is different from the adjacency matrix of a Boolean
network). However, it is very difficult to find this matrix by drawing the
graph, since the graph will be very complex when n and m are not very
small.
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Next, we explore the structure of the input-state incidence matrix. Com-
paring (9) with (8), one might be surprised to find that

J (Σ) =

[
L
L

]
.

In fact, this is also true for general case. Consider equation (4). Note that,
the j-th column of L corresponds to the “output” x(t+ 1) for Pj-th “input”
(u(t), x(t)) of the dynamic system. If this column Colj(L) = δi2n , then it
means that the output x(t + 1) is exactly the i-th element of x(t) ∈ ∆2n .
Now since u(t+ 1) can be arbitrary, it follows that the input-state incidence
matrix of system (4) is

J := J |(4) =


L
L
...
L


 2m ∈ B2m+n×2m+n , (10)

where the first block corresponds to u(t + 1) = δ12m , the second block corre-
sponds to u(t+ 1) = δ22m , and so on.

Next, we consider the properties of J .

Definition 2.2. A matrix A ∈ Mm×n is called a row-periodic matrix with
period τ , if τ is a proper factor of m such that Rowi+τ (A) = Rowi(A),
1 ≤ i ≤ m− τ .

The following property can be verified via a straightforward computation.

Proposition 2.3. 1. A ∈ Mm×m is a row-periodic matrix with period τ
(where m = τk), iff

A = 1τA0,

where A0 ∈ Mk×m consists of the first k rows of A, called the basic
block of A.

2. A ∈ Mm×m is a row-periodic matrix with period τ (where m = τk),
then so is As, s ∈ Z+. (Z+ is the set of positive integers).

Applying Proposition 2.3 to the incidence matrix, we have
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Corollary 2.4. Consider system (4). Its input-state incidence matrix is

J = 12m n J0, where J0 = L. (11)

Moreover, the basic block of J s is

J s
0 = Ln (12m n L)s−1 . (12)

Note that since J s is a row-periodic matrix, it is easy to see that

J s+1
0 = J0J s = LJ s = L12m n J s

0 . (13)

This equation shows that in calculating J s
0 we do not need to take the whole

J into the calculation. We summarize it as follows.

Proposition 2.5.

J s+1
0 = M sL, (14)

where

M =
2m∑
i=1

Blki(L).

Proof. From (13) it is easy to see J s+1
0 = MJ s

0 . Since J0 = L, (14) is
obtained. 2

3. Controllability

First, we consider the physical meaning of J s. When s = 1 we know that
Jij means whether there exists a set of controls such that Pi is reachable
from Pj in one step by judging if Jij = 1 or not. Is there a similar meaning
for J s? The following result answers this.

Theorem 3.1. Consider system (4). Assume that the (i, j)-th element of
the s-th power of its input-state incidence matrix, J s

ij = c. Then there are c
paths from point Pj reach Pi at s-th step with proper controls.
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Proof. We prove it by mathematical induction. When s = 1 the conclusion
follows from the definition of input-state incidence matrix.

Now assume J s
ij is the number of the paths from Pj to Pi at s-th step.

Since a path from Pj to Pi at (s + 1)-th step can always be considered as a
path from Pj to Pk at s-th step and then from Pk to Pi at one step. It can
be calculated as

c =
2m+n∑
k=1

JikJ s
kj,

which is exactly J s+1
ij . 2

From the above theorem the following result is obvious.

Corollary 3.2. Consider system (4) with its input-state incidence matrix
J . Pi is reachable from Pj at s-th step, iff J s

ij > 0.

The above arguments showed that the whole controllability information
is contained in {J s|s = 1, 2, · · · }. By Cayley-Hamilton Theorem in linear
algebra, it is easy to see that if J s

ij = 0, s < 2m+n, then so are J s, ∀ s.
Next, we consider only {J s|s < 2m+n}. Since they are row-periodic matri-
ces, we need only to consider their basic blocks J s

0 . From Proposition 2.5,
Blki(J s

0 ) = M s−1 Blki(L). By the construction, it is clear that Blki(J s
0 ) cor-

responds to the i-th input u = δi2m . Moreover, the j-th column of Blkµ(J s
0 )

corresponds to the initial value x0 = δj2n . Then the following conclusion is
clear.

Theorem 3.3. Consider system (4) with its input-state incidence matrix J .

1. x(s) = δα2n is reachable from x(0) = δj2n at s-th step, iff

2m∑
i=1

(Blki(J s
0 ))αj = (M s)αj > 0. (15)

2. x = δα2n is reachable from x(0) = δj2n, iff

2m+n−1∑
s=1

2m∑
i=1

(Blki(J s
0 ))αj =

2m+n−1∑
s=1

(M s)αj > 0. (16)
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3. The system is controllable at x(0) = δj2n, iff

2m+n−1∑
s=1

2m∑
i=1

Colj[Blki(J s
0 )] =

2m+n−1∑
s=1

Colj(M
s) > 0. (17)

4. The system is controllable, iff

2m+n−1∑
s=1

2m∑
i=1

Blki(J s
0 ) =

2m+n−1∑
s=1

M s > 0. (18)

Note that let A ∈ Mm×n. The inequality A > 0 means all the entries of A
are positive, i.e., ai,j > 0, ∀ i, j.

When the controllability is considered, we do not need to consider how
many paths from one state to the other. Hence the true number of J s is less
interesting. What we really need is: Whether it is positive or not. Hence,
we can simply use the Boolean algebra in the above calculation.

We give a brief review on Boolean algebra in the following remark.

Remark 3.4. 1. If a, b ∈ D, we can define the Boolean addition and the
Boolean product respectively as

a+B b = a ∨ b; a×B b = a ∧ b.

{D,+B,×B} forms an algebra, called the Boolean algebra.

2. Let A = (aij), B = (bij) ∈ Bm×n. Then we define

A+B B = (aij +B bij).

3. Let A ∈ Bm×n and B ∈ Bn×p. Then A×B B := C ∈ Bm×p as

cij =
∑ n

B k=1
aik ×B bkj.

Particularly, Let A ∈ Bn×n. Then

A(2) := A×B A.

We use a simple example to illustrate the Boolean operations.
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Example 3.5. Assume

A =

1 0 0
0 1 0
1 0 1

 ; B =

0 1 0
1 0 1
1 0 1

 .
Then

A+B B =

1 1 0
1 1 1
1 0 1

 ; AnB B =

0 1 0
1 0 1
1 1 1

 .
A(2) =

1 0 0
0 1 0
1 0 1

 ; A(s) =

1 0 0
0 1 0
1 0 1

 , s ≥ 3.

Using Boolean algebra, we have the following corollary.

Corollary 3.6. The results 1, 2, 3, and 4 of Theorem 3.3 remain true if in
the corresponding conditions (15)-(18) J s

0 is replaced by J (s)
0 .

Particularly, we call

C :=
2m+n−1∑
s=1

2m∑
i=1

Blki(J (s)
0 ) =

2m+n−1∑
s=1

M (s) ∈ B2n×2n (19)

the controllability matrix, and denote C = (ci,j). Then

(i) δi2n is reachable from δj2n, iff ci,j > 0;

(ii) The system is controllable at δj2n, iff Colj(C) > 0;

(iii) The system is controllable, iff C > 0.

The following example shows how to use Theorem 3.3 or Corollary 3.6.

Example 3.7. Consider the following Boolean control network{
x1(t+ 1) = (x1(t)↔ x2(t)) ∨ u1(t)
x2(t+ 1) = ¬x1(t) ∧ u2(t),
y(t) = x1(t) ∨ x2(t).

(20)
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Setting x(t) = n2
i=1xi(t), u = n2

i=1ui(t), we have{
x(t+ 1) = Lu(t)x(t)

y(t) = Hx(t),
(21)

where

L = δ4[2 2 1 1 2 2 2 2 2 4 3 1 2 4 4 2],

H = δ2[1 1 1 2].

For system (20), the basic block of its input-state incidence matrix J0 = L.

1. Is δ14 reachable from x(0) = δ24?
After a straightforward computation, we have

(M (1))12 = 0, (M (2))12 > 0.

That means that x(2) = δ14 is reachable from x(0) = δ24 at 2nd step.

2. Is the system controllable or controllable at any point?
We check the controllability matrix:

C =
24−1∑
s=1

M (s) =


1 1 1 1
1 1 1 1
0 0 1 0
1 1 1 1

 .
According to Corollary 3.6, we conclude that

(i) The system is not controllable. It is controllable at x0 = δ34 ∼
(0, 1).

(ii) xd = δ34 ∼ (0, 1) is not reachable from x0 = δ14 ∼ (1, 1), or x0 =
δ24 ∼ (1, 0), or x0 = δ44 ∼ (0, 0).

4. Trajectory Tracking and Control Design

Assume xd ∈ R(x0). The purpose of this section is to find a control,
which drives x0 to xd. Since the trajectory from x0 to xd (driven by a proper
sequence of controls) is in general not unique, we only try to find the shortest
one. A similar way can produce all the required trajectories.

Assume x0 = δj2n and xd = δi2n . We give the following algorithm.
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Algorithm 4.1. Assume the (i, j)-th element of the controllability matrix,
ci,j > 0.

• Step 1: Find the smallest s, such that in the block decomposed form

J s
0 =

[
Blk1(J s

0 ) Blk2(J s
0 ) · · · Blk2m(J s

0 )
]
, (22)

(where Blki(J s
0 ) ∈ M2n×2n) there exists a block, say, Blkα

(
J (s)

0

)
,

which has its (i, j)-element[
Blkα

(
J (s)

0

)]
ij
> 0. (23)

Set u(0) = δα2m and x(s) = δi2n. If s = 1, stop. Else, go to next step.

• Step 2: Find k, β, such that

[Blkβ (J0)]ik > 0;
[
Blkα

(
J s−1

0

)]
kj
> 0.

Set u(s− 1) = δβ2m and x(s− 1) = δk2n.

• Step 3: If s − 1 = 1, stop. Else, set s = s − 1, and i = k (that is,
replace s by s− 1 and replace i by k), and go back to Step 2.

Proposition 4.2. As long as xd ∈ R(x0) the control sequence {u(0), u(1), · · · , u(s−
1)} generated by Algorithm 4.1 can drive the trajectory from x0 to xd. More-
over, the corresponding trajectory is {x(0) = x0, x(1), · · · , x(s) = xd}, which
is also produced from the algorithm.

Proof. Since xd ∈ R(x0), by the construction of controllability matrix C,
there exists the smallest s such that

[
Blkα

(
J (s)

0

)]
i,j
> 0. That means if

u(0) = δα2m , x(0) = δj2n , there exists at least one path from x(0) to x(s) = δi2n .
Then we know x0 can reach xd at s-th step if u(0) = δα2m . Hence, it is obvious
that there must exist k such that x0 can reach δk2n at (s − 1)-th step with
u(0) = δα2m , and β such that u(s − 1) = δβ2m which make Lδβ2mδ

k
2n = δi2n .

Equivalently, we can find k, β, such that

[Blkβ (J0)]ik > 0,
[
Blkα

(
J s−1

0

)]
kj
> 0.

In the same way, we can found β′ and k′ such that δk
′

2n can be reached at

(s − 2)-th step and Lδβ
′

2mδ
k′
2n = δk2n . Continue this process, the sequence of

controls and states from x0 to xd can be obtained. 2
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Example 4.3. Recall Example 3.7. For x0 = δ24 and xd = δ14, we want to
find a trajectory from x0 to xd. We follow Algorithm 4.1 step by step as
follows:

• Step 1: The smallest s is 2. We can calculate that

[Blk3(J 2
0 )]12 > 0.

So u(0) = δ34, x(2) = δ14.

• Step 2: From a straightforward computation, we have

[Blk1(J0)]14 > 0; [Blk3(J 2−1
0 )]42 > 0.

So u(1) = δ14, x(1) = δ44.

• Step 3: Now s− 1 = 1, we stop the process.

Hence the control sequence for x0 = δ24 ∼ (1, 0) and xd = δ14 ∼ (1, 1) is
{u(0) = δ34 ∼ (0, 1), u(1) = δ14 ∼ (1, 1)}, and the trajectory is {x(0) = δ24 ∼
(1, 0), x(1) = δ44 ∼ (0, 0), x(2) = δ14 ∼ (1, 1)}. In general, the smallest step
trajectory is not unique. For this example there are 4 ways drive x0 to xd in
2 steps. By the same way, we can find the other 3 paths, which are

{u(0) = δ34, u(1) = δ34}, {x(0) = δ24, x(1) = δ44, x(2) = δ14};
{u(0) = δ44, u(1) = δ14}, {x(0) = δ24, x(1) = δ44, x(2) = δ14};
{u(0) = δ44, u(1) = δ34}, {x(0) = δ24, x(1) = δ44, x(2) = δ14}.

5. Observability

This section considers the observability of system (2). We need some new
notations.

Definition 5.1. 1. Let A = (aij) ∈ Bn×s, σ is a unary operator. Then
σ : Bn×s → Bn×s is defined as

σA := (σaij). (24)

2. Let A = (ai,j), B = (bi,j) ∈ Bn×s, σ is a binary operator. Then σ :
Bn×s × Bn×s → Bn×s is defined as

AσB := (ai,jσbi,j). (25)
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We give a simple example for this.

Example 5.2. Assume

A =

[
1 0 1
0 0 1

]
; B =

[
1 1 0
1 0 1

]
.

Then

¬A =

[
0 1 0
1 1 0

]
; A∨̄B =

[
0 1 1
1 0 0

]
.

From the construction of J and the property of semi-tensor product, It
is easy to see that Blki(J (s)

0 ) corresponds to the input u(0) = δi2m . Moreover,

each block Colj[Blki(J (s)
0 )] corresponds to x0 = δj2n . To exchange the running

order of the indexes i and j, we use the swap matrix to define

J̃ (s)
0 := J (s)

0 W[2n,2m], (26)

and then split it into 2n blocks as

J̃ (s)
0 =

[
Blk1(J̃ (s)

0 ) Blk2(J̃ (s)
0 ) · · · Blk2n(J̃ (s)

0 )
]
, (27)

where Blki(J̃ (s)
0 ) ∈ B2n×2m , i = 1, · · · , 2n.

Now each block Blki(J̃ (s)
0 ) corresponds to x0 = δi2n , and in each block

Colj(Blki(J̃ (s)
0 )) corresponds to u(0) = δj2m .

Using the Boolean algebraic expression, we have the following sufficient
condition for the observability.

Theorem 5.3. Consider system (2) with its algebraic form (4). If

∨2m+n−1
s=1

[(
H n Blki(J̃ (s)

0 )
)
∨̄
(
H n Blkj(J̃ (s)

0 )
)]
6= 0, 1 ≤ i < j ≤ 2n,

(28)

then the system is observable.

Proof. According to the construction and the above argument, it is easy to
see that (28) implies that at least at one step the outputs corresponding to
x0 = δi2m and x0 = δj2m are distinct. 2
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Remark 5.4. 1. Comparing with the result in [13], one of the advantages
of this result is when the step s increasing, the corresponding matrices,
concerned in the condition, do not increase their dimensions. So, it
is easily computable. The major disadvantage is that this result is not
necessary.

2. This observability result has been generated to mix-valued logical control
systems. An numerical example for observability of generalized case can
be found in Example 7.3.

6. Fixed Points and Cycles

The fixed points and cycles of an input-state dynamic graph are very
important topological property of a Boolean control network. For instance,
the optimal control can always be realized over a fixed point or a cycle [15].
Input-state incidence matrix can also provide the information about this.

Taking the properties of J s into consideration and recalling the argument
for the fixed points and cycles for free Boolean network (without control) [11],
the following result is obvious.

Theorem 6.1. Consider the state equation of system (2) with its input-state
incidence matrix J .

1. The number of the fixed points in the input-state dynamic graph is

N1 =
2m∑
i=1

tr (Blki(J0)) = tr(M). (29)

2. The number of length s cycles can be calculated inductively as

Ns =

tr(M s)−
∑

k∈P(s)
kNk

s
, 2 ≤ s ≤ 2m+n. (30)

We use an example to depict it.

Example 6.2. Recall Example 2.1. We can calculate that

trM = 3, trM3 = 6,
trM4 = 15, trM5 = 33,
trM6 = 66, trM7 = 129,
trM8 = 255.
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Using Theorem 6.1, we conclude that N1 = 3, N3 = 1, N4 = 3, N5 = 6,
N6 = 10, N7 = 18, N8 = 30. It is not an easy job to count them from the
graph directly.

7. Mix-valued Logical System

In multi-valued logic case, say, consider the k-valued logical network, we
have xi, ui ∈ Dk [16]. When the infinitely repeated game is considered, the
dynamics of the strategies, depending on one history, may be expressed as in
(2) but xi ∈ Dki , and ui ∈ Dsi . Such a dynamic system is called a mix-valued
logical dynamic system.

Set

x = nn
i=1xi ∈

n∏
i=1

Dki ; u = nm
α=1uα ∈

m∏
α=1

Djα .

Then in vector forms, we have xi ∈ ∆ki , and uα ∈ ∆jα . Set k =
∏n

i=1 ki and
j =

∏m
α=1 jα, then we have

x ∈ ∆k; u ∈ ∆j.

In this section, we claim that all the major results obtained in previous
sections remain true for mix-valued logical dynamic systems (including multi-
valued logical control networks as a particular case). We state it as a theorem
and omit the proves, because the proves are exactly the same.

Theorem 7.1. Consider system (2), and assume it is a mix-valued logical
dynamic system. Precisely, xi ∈ Dki, i = 1, · · · , n, uα ∈ Djα, α = 1, · · · ,m,
yβ ∈ D`β , β = 1, · · · , p. That is, each state xi, each control uα, and each
output yβ can have different dimensions. Then we have the following gener-
alizations.

1. Consider the controllability of this mix-valued logical dynamic system,
Theorem 3.3 and Corollary 3.6 remain true.

2. Consider the observability of this mix-valued logical dynamic system,
Theorem 5.3 remains true.

3. Consider the number of fixed points and the number of cycles of this
mix-valued logical dynamic system, Theorem 6.1 remains true.

4. Consider the trajectories and the corresponding controls, Algorithm 4.1
remains available.
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To apply the extended results technically we need to solve the following
problem: How to calculate {xi} from x and vise versa. Similarly, we have
also to calculate {ui} from u and vise versa. We give the following formula.

Proposition 7.2. Let xi = δαiki , i = 1, · · · , n, and x = δαk . Then

1.

α = (α1 − 1)× k

k1
+ (α2 − 1)× k

k1k2
+ · · ·+ (αn−1 − 1)× kn + αn.

(31)

2. 

x1 = diag

1Tk1 , · · · ,1
T
k1︸ ︷︷ ︸

k/k1

x

xj = diag

1Tkj , · · · ,1
T
kj︸ ︷︷ ︸

k/kj

W[
∏j−1
i=1 ki,kj ]

x.

(32)

Proof. Equation (31) can be proved via a straightforward computation. The
first equality in (32) comes from the definition of semi-tensor product. To
prove the second one we have

W[
∏j−1
i=1 ki,kj ]

x = xjx1 · · ·xj−1xj+1 · · ·xn.

Using the first equality to it yields the second equality. 2

We use the following example to demonstrate all the extended results in
Theorem 7.1.

Example 7.3. Consider the following mix-valued dynamic system{
x1(t+ 1) = f1(u(t), x1(t), x2(t))

x2(t+ 1) = f2(u(t), x1(t), x2(t)),

y(t) = h(x1(t), x2(t)),

(33)

where x1(t) ∈ D2, x2(t) ∈ D3, u(t) ∈ D2, f1 : D2
2×D3 → D2, f2 : D2

2×D3 →
D3, and h : D2 ×D3 → D3 are mix-valued logical functions.
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Using vector form, system (33) can be expressed as{
x1(t+ 1) = M1u(t)x1(t)x2(t),

x2(t+ 1) = M2u(t)x1(t)x2(t), x1, u ∈ ∆2, x2 ∈ ∆3,

y(t) = Hx1(t)x2(t), y ∈ ∆3.

(34)

In fact, in mix-valued case to describe a logical function is not an easy
job. In general it should be described by a Truth Table. We skip this, and
give their structure matrices directly. We assume the structure matrices of
f1, f2, and h are M1, M2, and H respectively, where

M1 = δ2[1 1 1 2 1 2 2 2 2 2 2 2];

M2 = δ3[3 1 3 2 2 1 3 2 1 3 3 3];

H = δ3[1 3 3 2 2 2].

Setting x(t) = x1(t)x2(t), the algebraic form of (33) can be calculated as{
x(t+ 1) = Lu(t)x(t)

y(t) = Hx(t),
(35)

where
L = δ6[3 1 3 5 2 4 6 5 4 6 6 6].

1. Consider the controllability of the system. The basic block of the input-
state incidence matrix J0 = L. From a straightforward computation,
we have the controllability matrix as

C =
12−1∑
s=1

M (s) =


1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

 > 0.

We conclude that system (33) is controllable.

2. Given any two points, say, x0 = δ16 ∼ (δ12, d
1
3) and xd = δ56 ∼ (δ22, δ

2
3).

we want to find a trajectory from x0 to xd with proper controls.
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• Step 1: the smallest s is 3 for

[Blk1 J (3)
0 ]51 > 0,

so u(0) = δ12, x(3) = δ56.

• Step 2: we have

[Blk1 J0]54 > 0, [Blk1 J 3−1
0 ]41 > 0,

so u(2) = δ12, x(2) = δ46. Then

[Blk2 J0]43 > 0, [Blk1 J 2−1
0 ]31 > 0,

so u(1) = δ22, x(1) = δ36.

• Step 3: s− 1 = 1, stop the process.

Hence the control sequence leads x0 = δ16 to xd = δ56 is {u(0) =
δ12, u(1) = δ22, u(2) = δ12}, and the trajectory is {x(0) = δ16, x(1) =
δ36, x(2) = δ46, x(3) = δ56}.

3. Next, we calculate the number of fixed points and the numbers of cycles
of different lengths.
It is easy to calculate that

tr(M) = 2, tr(M2) = 6,
tr(M3) = 8, tr(M4) = 14,
tr(M5) = 37, tr(M6) = 60,
tr(M7) = 135, tr(M8) = 254,
tr(M9) = 512, tr(M10) = 1031,
tr(M11) = 2037, tr(M12) = 4112.

We conclude that there are N1 = 2 fixed points; and Ni cycles of length
i, i = 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, where N2 = 2 , N3 = 2, N4 = 2, N5 = 7,
N6 = 8, N7 = 19, N8 = 30, N9 = 56, N10 = 99, N11 = 185, N12 = 337.

4. Finally, we consider the observability of the system.
Denote

Oij = ∨2×6−1s=1

[(
H n Blki(J̃ (s)

0 )
)
∨̄
(
H n Blkj(J̃ (s)

0 )
)]
.
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A straightforward computation yields

O12 =

1 1
1 0
1 0

 , O13 =

0 0
0 1
0 1

 , O14 =

1 0
1 0
1 0

 , O15 =

1 0
1 0
1 0

 ,
O16 =

0 0
1 0
1 0

 , O23 =

1 1
1 1
1 1

 , O24 =

1 1
1 0
0 0

 , O25 =

1 1
0 0
1 0

 ,
O26 =

1 1
0 0
1 0

 , O34 =

1 0
1 1
1 1

 , O35 =

1 0
1 1
1 1

 , O36 =

0 0
1 1
1 1

 ,
O45 =

1 0
1 0
1 0

 , O46 =

1 0
1 0
1 0

 , O56 =

1 0
0 0
0 0

 .
Since Oij 6= 0, 1 ≤ i < j ≤ 6, according to Theorems 5.3 and 7.1, the
system is observable.

8. Conclusion

The controllability of a Boolean control network is investigated. The set
of admissible controls are a sequence of m-dimensional Boolean numbers,

{U(t) = (u1(t), · · · , um(t))| t = 0, 1, 2, · · · } .

Formulas are obtained for reachable set of each point, for the controllability of
each point and overall controllability. Particularly, the controllability matrix
is constructed to verify the reachability from any initial x0 to any destination
xd. Control design and the corresponding trajectory are presented. Formulas
for calculating the numbers of fixed points and cycles are also obtained.

All the previous results have been extended to mix-valued logical control
systems.

Comparing the new controllability result with the corresponding result in
[13]. The main result for free sequences of controls in [13] is as follows:

Theorem 8.1. Consider system (2). Assume its algebraic form is expressed
as

x(t+ 1) = Lx(t)u(t), (36)
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where L ∈ L2n×2m+n. Then the reachable set from x0 is

R(x0) = Col
{
∪2ni=1L

ix0
}
. (37)

Note that according to semi-tensor product, Ls ∈ L2n×2n+sm . So, when the
step s is not small enough, the size of Ls will be too large to be calculated in
a memory restricted computer. But the main result in this paper requires to
check J (s)

0 . When applying to the simplest case — Boolean network, since

J (s)
0 ∈ L2n×2m , ∀ s, it is always easily computable (as long as the first step is

computable).
The major shortage of this result is still the computational complexity.

Since the controllability matrix is of the dimension 2n × 2n, it is a large
matrix when n is not small. Using our toolbox (http://lsc.amss.ac.cn/

~dcheng/STP/stp.zip) based on MatLab and calculated in PC, we can only
deal with n ≤ 25 or so.
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