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Abstract. This paper investigates the structure of Boolean networks via input-state structure. Using
the algebraic form proposed by the author, the logic-based input-state dynamics of Boolean networks,
called the Boolean control networks, is converted into an algebraic discrete-time dynamic system. Then
the structure of cycles of Boolean control systems is obtained as compounded cycles. Using the obtained
input-state description, the structure of Boolean networks is investigated, and their attractors are revealed
as nested compounded cycles, called Rolling Gears. This structure explains why small cycles mainly decide
the behaviors of cellular networks. Some illustrative examples are presented.
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1 Introduction

Input-output structure is essential in systems and control theory. How about the cellular networks? It
was pointed out by [11] that “Gene-regulatory networks are defined by trans and cis logic. · · · Both
of these types of regulatory networks have input and output.” Ignoring outputs, this paper focuses on
input-state structure only.

A Boolean network could be a description of genetic circuits, an explanation of self-organization
in organisms, and the structure causing order in the evolution, which leads to life [12]. In Boolean
network model gene expression is quantized to only two levels: “T”(True) and “F”(False), or “1” and
“0” respectively, denoted by D = {T, F}, (or D = {1, 0}). We refer to [7] for logical notations, concepts
and operators used in this paper, and refer to [2] for some related works in neural networks.

Denote the nodes of a network graph by A1(t), A2(t), · · · . Each node is functionally related to the
expression states of some other nodes. If Ai is affected directly by Aj , there is a directed edge from Aj to
Ai, and it is said that Aj is in the neighborhood of Ai. It can also be understood as the intracellular signal
transduction from j-th cellular to i-th cellular. Throughout this paper we consider only the networks,
which have fixed graph topologies. The actions between genes are described by logical rules, which are
described by a logical dynamic equation [6].





A1(t + 1) = f1(A1(t), A2(t), · · · , An(t)),

A2(t + 1) = f2(A1(t), A2(t), · · · , An(t)),
...

An(t + 1) = fn(A1(t), A2(t), · · · , An(t)),

(1)

where fi, i = 1, 2, · · · , n are logical functions (also called n-ary logical operators[1]).

* Supported partly by NNSF 60674022, 60736022, and 60221301 of China.
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We use an example to illustrate the graph and dynamics of a network. It will be used again in the
sequel.

Example 1.1 The graph of a Boolean network is depicted in Fig. 1.

A B C E

D

Figure 1: Graph of Network

Its dynamic model is assumed to be




A(t + 1) = A(t)

B(t + 1) = A(t) → C(t)

C(t + 1) = B(t) ∨D(t)

D(t + 1) = ¬B(t)

E(t + 1) = ¬C(t).

(2)

If the number of nodes in a Boolean network is n, then it is obvious that the state space considers
of 2n statues, which is a finite set described as Dn. So as a dynamic process on Dn, there must be at
least a fixed point or a cycle, and eventually a trajectory starting from any initial state must enter a
cycle (a fixed point can be considered as a cycle of length one). So a cycle is also called an attractor. For
convenience, we briefly denote by Ω the set of attractors. For a state x0, the smallest number of steps to
enter Ω is called its transient period, denoted by Tt(x0). That is, let x(t, x0) be the trajectory starting
from x0 (i.e., x(0, x0) = x0). Then

Tt(x0) = min{k | x(k, x0) ∈ Ω}.

For overall network, the transient period is defined as

Tt = max
x∈Dn

Tt(x).

One of the most important issues in investigating a Boolean network is to find its cycles and transient
period. These topics have been studied widely, e.g., in [10], [6]. But there was no reported technique,
which solves the problem systematically so far.

To investigate the structure of a Boolean network, [5] proposed a way to convert system (1) into an
standard discrete-time dynamic system. The key tool for this approach is the matrix expression of logic,
based on semi-tensor product of matrices. We give a very brief introduction here and refer to [3, 4] for
details. Investigating the structure of a network via its dynamics can also been found in [8, 16, 13].
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Definition 1.2 1. Let X be a row vector of dimension np, and Y be a column vector with dimension p.
Then we split X into p equal-size blocks as X1, · · · , Xp, which are 1 × n rows. Define the semi-tensor
product(STP), denoted by n, as





X n Y =
p∑

i=1

Xiyi ∈ Rn,

Y T nXT =
p∑

i=1

yi(Xi)T ∈ Rn.
(3)

2. Let A ∈ Mm×n and B ∈ Mp×q. If either n is a factor of p, say nt = p and denote it as A ≺t B,
or p is a factor of n, say n = pt and denote it as A Ât B, then we define the STP of A and B , denoted
by C = AnB, as the following: C consists of m× q blocks as C = (Cij) and each block is

Cij = Ai nBj , i = 1, · · · ,m, j = 1, · · · , q,

where Ai is i-th row of A and Bj is the j-th column of B.

Semi-tensor product of matrices is a generalization of the conventional matrix product, so the notation
n can be omitted. Moreover, all the basic properties of the conventional matrix product remain true for
this extension.

Denote by
∆k :=

{
δi
k|i = 1, 2, · · · , k

}
,

where δi
k is the i-th column of identity matrix Ik. In the framework of semi-tensor product, the logical

variables are expressed as a vector in ∆2 by identifying T with [1, 0]T and F with [0, 1]T . Then the region
D is replaced by

Dv =

{[
1
0

]
,

[
0
1

]}
.

In this way, for a logical operator we can always find a matrix, called its structure matrix, and the action
of a logical operator on logical variables becomes a (semi-tensor) product of the structure matrix with
its arguments’ vectors. For instance, consider conjunction ∧ [7], its structure matrix is

Mc =

[
1 0 0 0
0 1 1 1

]
.

Hence, (in vector form) we have
P ∧Q = McPQ, P,Q ∈ Dv.

In general, we have

Proposition 1.3 Let f be a logical function (operator) of X1, X2, · · · , Xn, and

Y = f(X1, X2, · · · , Xn). (4)

Then we can find a matrix, called the structure matrix of f and denoted by Mf , such that

Y = MfX1X2 · · ·Xn. (5)
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Note that Xi may appear in (4) many times, but in (5) Y is multi-linear with respect to X1, . . . , Xn.
Using this vector expression, [5] converts a logical equation of a Boolean network into a discrete time

linear system, called its algebraic form as x(t+1) = Lx(t). Analyzing the structure of L, precise formulas
have been obtained to reveal the structure of the network.

This paper considers the Boolean control networks, which have input-state structure. We first propose
a framework for Boolean control networks, and the structure of attractors of the networks is investigated.
The input-state approach is then applied to the analysis of the structure of general Boolean networks and
a structure of nested compounded cycles is obtained. We call such a structure “rolling gears” structure
and will discuss some interesting properties of this kind of structures. We guess it could be used to reveal
the hidden order in lives!

The paper is organized as follows: Section 2 reviews the converting technique from logical dynamic
equation to algebraic one. An example is used to depict it. In Section 3, a framework of Boolean control
networks is proposed and the structure of attractors of input-state type of networks is investigated. In
Section 4, the input-state approach is implemented to analyze the structure of general Boolean networks
and the structure of nested compounded cycles, called “rolling gears”, is revealed. Section 5 contains two
illustrative examples. Section 6 is a brief conclusion.

2 From Logical Equation to Algebraic Equation

In this section we briefly review the technique, developed in [5], which provides a systematic tool to treat
Boolean networks. Assume a logical variable is expressed in a vector form. That is: Ai(t) ∈ Dv ∼ D.
(We will use scalar form D and vector form Dv alternatively without explanation, and use D for both.
From the text, it is very easy to figure out what form is used there.) Consider system (1). Since fi,
i = 1, 2, · · · , n are logical functions, according to Proposition 1.3, we can convert the equation (1) into
an algebraic dynamic form as





A1(t + 1) = M1A1(t)A2(t) · · ·An(t),

A2(t + 1) = M2A1(t)A2(t) · · ·An(t),
...

An(t + 1) = MnA1(t)A2(t) · · ·An(t),

(6)

where Mi, i = 1, · · · , n are the structure matrices of fi. Define

x(t) = A1(t)A2(t) · · ·An(t) ∈ ∆2n . (7)

Multiplying Ai(t + 1) together yields

x(t + 1) =
n∏

i=1

[MiA1(t)A2(t) · · ·An(t)] . (8)

Using the properties of semi-tensor product of matrices, (8) can be converted into an algebraic form as

x(t + 1) = Lx(t), (9)

where L is called the network transition matrix of (1).
The following result reveals all the attractors from L.
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Theorem 2.1 Consider system (1) with its network transition matrix L.

1. The number of length s cycles, Ns, is inductively determined by




N1 = Trace(L),

Ns =
Trace(Ls)− ∑

k∈P(s)
kNk

s , 2 ≤ s ≤ 2n,
(10)

where P(s) is the set of proper factors of s.

2. The elements on cycles of length s, denoted by Cs, is

Cs = Da(Ls)\ ∪k∈P(s) Da(Lk), (11)

where Da(L) is the set of diagonal nonzero columns of L.

Note that a ∈ P(k), iff a ∈ Z+, a < k, and k/a ∈ Z+. For instance, P(8) = {1, 2, 4}, P(12) =
{1, 2, 3, 4, 6}, etc.

Denote
r0 = min

{
k|Lk ∈ {Lk+1, Lk+2, · · · , L22n}

}
.

Then we have

Theorem 2.2 For system (1) the transient period

Tt = r0 = min
{

k
∣∣∣Lk ∈ {Lk+1, Lk+2, · · · , L22n}

}
. (12)

The following theorem provides an easy way to construct the regions of attraction.

Theorem 2.3 Given an η ∈ ∆2n . Denote the columns of L, which equal to η, by Lij
= η, j =

1, 2, · · · , k. Then the set of parent points of η is

L−1(η) =
{
δi1
2n , δi2

2n , · · · , δik
2n

}
. (13)

We use an example to illustrate these results.

Example 2.4 Consider Example 1.1. Equation (2) can be converted into algebraic form as




A(t + 1) = A(t)

B(t + 1) = MiA(t)C(t)

C(t + 1) = MdB(t)D(t)

D(t + 1) = MnB(t)

E(t + 1) = MnC(t).

(14)
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Let x(t) := A(t)B(t)C(t)D(t)E(t). Then

x(t + 1) = A(t)MiA(t)C(t)MdB(t)D(t)MnB(t)MnC(t)
= (I2 ⊗Mi)MrACMdBDMnBMnC

= · · · (I4 ⊗Md)ACBDMnBMnC

= · · · (I16 ⊗Mn)ACBDBMnC

= · · ·ACBW[2]BDMnC

= · · · (I8 ⊗W[2])ACB2DMnC

= · · · (I4 ⊗Mr)(I16 ⊗Mn)ACBDC

= · · ·AW[2]BCW[2]CD

= · · · (I2 ⊗W[2])(I8 ⊗W[2])ABC2D

= · · · (I4 ⊗Mr)A(t)B(t)C(t)D(t).

(15)

Starting from the second row of (15) the front constant coefficient matrix in previous row is replaced in
the next row by “· · · ” to save space.

Note that now in the left hand side of (15) there is no E(t). To get x(t) we have to add it. We can
use a dummy operator [5]

Ed =

[
1 0 1 0
0 1 0 1

]
,

which satisfies

EdPQ = Q, ∀P, Q ∈ ∆2.

Hence (15) can be converted further as

x(t + 1) = · · · (I4 ⊗Mr)A(t)B(t)C(t)EdW[2]D(t)E(t)
= · · · (I8 ⊗ (EdW[2]))x(t).

(16)

From (16) we have

L = (I2 ⊗Mi)Mr(I4 ⊗Md)(I16 ⊗Mn)(I8 ⊗W[2])(I4 ⊗Mr)
(I16 ⊗Mn)(I2 ⊗W[2])(I8 ⊗W[2])(I4 ⊗Mr)(I8 ⊗ (EdW[2])).

(17)

Note that L ∈ M32×32. It is easy to calculate L. We express it into a condensed form as

L = δ32(4, 4, 4, 4, 11, 11, 11, 11, 2, 2, 6, 6, 9, 9, 13, 13,

20, 20, 20, 20, 19, 19, 19, 19, 18, 18, 22, 22, 17, 17, 21, 21),

where the i-th component µ means the i-th column of L is δµ
32.

It is easy to calculate that only when i = 1, or 2, Ni 6= 0, and Trace(L) = 2, Trace(L2) = 4. Theorem
2.1 yields that there are 2 fixed points, which are

11100, and 01100,

and a cycle of length 2, which is
11010 → 10101 → 11010.

We can also check that r0 = 4 and L4 = L6, so the transient period is Tt = 4.
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3 Boolean Control Networks

A Boolean control network is defined as




A1(t + 1) = f1(A1(t), A2(t), · · · , An(t), u1(t), · · · , um(t)),

A2(t + 1) = f2(A1(t), A2(t), · · · , An(t), u1(t), · · · , um(t)),
...

An(t + 1) = fN (A1(t), A2(t), · · · , An(t), u1(t), · · · , um(t)),

(18)

where ui, i = 1, 2, · · ·m are inputs (or controls), which are logical variables satisfying certain logical rule,
called the input network, described as





u1(t + 1) = g1(u1(t), u2(t), · · · , um(t)),

u2(t + 1) = g2(u1(t), u2(t), · · · , um(t)),
...

um(t + 1) = gm(u1(t), u2(t), · · · , um(t)).

(19)

In algebraic form a Boolean control network can be expressed as




u(t + 1) = Gu(t), u ∈ Dm

x(t + 1) = L(u)x(t), x ∈ Dn
(20)

where L(u) = Lu(t) is the control-depending network transition matrix.

Example 3.1 Consider Example 1.1 again. It is very natural to take A(t) as input. Ignoring E(t),
which is considered as an output, the system can be rewritten as





B(t + 1) = u(t) → C(t)

C(t + 1) = B(t) ∨D(t)

D(t + 1) = ¬B(t);

(21)

and the control network is
u(t + 1) := A(t + 1) = A(t).

Converting this system into algebraic form, we have




u(t + 1) = u(t)

x(t + 1) = L(u)x(t)
(22)
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where L(u) can be easily calculated as

L(u) = Mcu(I2 ⊗Md)(I8 ⊗Mn)W[2]W[2,8]Mr

=




0 0 0 0 1 0 1− α 0
1 1 1− α 1− α 0 0 0 0
0 0 0 0 0 1 0 1− α

0 0 0 0 0 0 0 0
0 0 0 0 0 0 α 0
0 0 α α 0 0 0 0
0 0 0 0 0 0 0 α

0 0 0 0 0 0 0 0




,

and u = (α, 1− α)T , where α = 0 or 1.
Now both δ1

2 and δ2
2 are fixed points of the control network. Using Theorem 2.1, it is easy to figure

out that for u = δ1
2, there is a fixed point for the system, which is x = (01000000) ∼ 110, there is also a

cycle of length 2, which is 101 → 010 → 101. While u = δ2
2, there is only a fixed point 110.

In general, we consider the structure of the Boolean control system (18), where the controls are
varying, according to its own logical evolution rule (19).

Denote by U = Dm the input space, X = Dn the state space, and let W = U ×X be the input-state
(product) space. Let w ∈ W . It is easy to prove that there exist unique u ∈ U and x ∈ X, such that
w = ux. Now assume there is a cycle of length k in the input-state space W . Say, it is

Ck
w : w(0) = w0 = u0x0 → w(1) = w1 = u1x1 → · · · → w(k) = wk = ukxk = w0.

First of all, one sees easily that since u0 = uk, {u0, u1, · · · , uk} contains, say, j folds of a cycle of length
`, say, j` = k. Hence u` = u0. Now let us see what condition the {xi} in the cycle Ck

w should satisfy.
Define a network transition matrix as

Ψ := L(u`−1)L(u`−2) · · ·L(u1)L(u0). (23)

Starting from w0 = u0x0, we have x component of the cycle Ck
w as

x0 → x1 = L(u0)x0 → x2 = L(u1)L(u0)x0 → · · · → x` = Ψx0 →
x`+1 = L(u0)Ψx0 → x`+2 = L(u1)L(u0)Ψx0 → · · · → x2` = Ψ2x0 →
...
x(j−1)`+1 = L(u0)Ψj−1x0 → x(j−1)`+2 = L(u1)L(u0)Ψj−1x0 → · · · → xj` = Ψjx0 = x0.

(24)

We conclude that x0 ∈ Dn is a fixed point of the equation (with j > 0 being the smallest one)

x(t + 1) = Ψjx(t). (25)

Conversely, if x0 ∈ Dn is a fixed point of (25) and u0 is a point on a cycle of control space C`
u. Then it

is obvious that we have the cycle (24).
Summarizing above arguments yields
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Theorem 3.2 Consider the Boolean control network (20). A set Ck
w ⊂ Dk(n+m) is a cycle of the control

system with length k, iff for any point w0 = u0x0 ∈ Ck
w, there exists an ` ≤ k as a factor of k, such that

u0, u1 = Gu0, u2 = G2u0, · · · , u` = G`u0 = u0 is a cycle in the control space, and x0 is a fixed point of
the equation (25)(with j > 0 being the smallest one).

Theorem 3.2 shows how to find all the cycles in the input-state space. First, we can find the cycles in
the input space. Pick a cycle in the input space, say C`

u, then for each point u0 ∈ C`
u we can construct

an auxiliary system

x(t + 1) = Ψx(t). (26)

Now, say, C`
u = (u0, u1, · · · , u` = u0) is a cycle in U , and Cj

x = (x0, x1, · · · , xj = x0) is a cycle of (26).
Then a cycle Ck

w, k = `j, can be constructed by

w0 = u0x0 → w1 = u1L(u0)x0 → w2 = u2L(u1)L(u0)x0 → · · · →
w` = u0x1 → w`+1 = u1L(u0)x1 → w`+2 = u2L(u1)L(u0)x1 → · · · →
...
w(j−1)` = u0x(j−1) → w(j−1)`+1 = u1L(u0)x(j−1) → w(j−1)`+2 = u2L(u1)L(u0)x(j−1) →
wj` = u0xj = u0x0 = w0.

(27)

We call this Ck
w the compounded cycle of C`

u and Cj
x, denoted by Ck

w = C`
u ◦ Cj

x.
Note that from a cycle in the input space, C`

u, we can choose any point as the starting point u0. Then
in equation (26) we have different Ψ, which produces different Cj

x. It is reasonable to guess that the final
Ck

w = C`
u ◦ Cj

x is independent of the choice of u0. Otherwise, the picture will be mess. In the following
we will prove this is true.

Definition 3.3 Let Ck
w = {w(t)|t = 0, 1, · · · , k} be a cycle in the input-state space, and C`

u be a cycle in
the input space. Splitting w(t) = u(t)x(t), we said that Ck

w is attached to C`
u at u0, if w(0) = u0x0, and

1. u(t) ∈ C`
u, with u(0) = u0;

2. x(0) = x0 is a fixed point of (25) with j = k
` ∈ Z+.

Remark 3.4 According to Theorem 3.2, each cycle Ck
w in the input-state space must be attached precisely

to one cycle in the input space. In fact, the following argument shows that Ck
w attaches C`

u at u0 at moment
t = 0 (and the attaching point of Ck

w is w0 = u0x0) and will attach it at u1 at moment t = 1 (with the
attaching point of Ck

w is w1 = u1x1) and so on. So, Ck
w and C`

u are moving as two assembled gears.

Proposition 3.5 The sets of cycles in the input-state space, attached to any point of a given cycle C`
u

are the same.

Proof. Let C`
u = {u0, u1, · · · , u` = u0} be the cycle we concern. S0, S1, · · · , S`−1 be the set of cycles

attached to u0, u1, · · · , u`−1 respectively. First, we show that

S0 ⊂ Si, i = 1, 2, · · · , `− 1.

Let C0
k = {w0, w1, · · · , wk} ∈ S0, i.e., it is a cycle attached to C`

u at u0. Using the elements of a
control cycle, we can define

Li := L(ui), i = 0, 1, · · · , `− 1.
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Then we construct ` system matrices as




Ψ0 := L`−1L`−2 · · ·L0,

Ψ1 := L0L`−1L`−2 · · ·L1,
...

Ψ`−1 := L`−2L`−3 · · ·L0, L`−1.

Correspondingly, we then construct ` auxiliary systems as

x(t + 1) = Ψix(t), i = 0, 1, , · · · , `− 1. (28)

Since w0 = u0x0 ∈ Ck
w ∈ S0, then x0 satisfies

(Ψ0)jx0 = x0. (29)

Note that w(1) := w1 = u1L0x0. To see that w1 ∈ C1
k ∈ S1 we have to show that L0x0 satisfies

(Ψ1)jL0x0 = L0x0. (30)

This is true because
L0x0 = L0(Ψ0)jx0

= L0 (L`−1 · · ·L0)
j
x0

= L0 (L`−1 · · ·L0) · · · (L`−1 · · ·L0)︸ ︷︷ ︸
j

x0

= (L0L`−1 · · ·L1) · · · (L0L`−1 · · ·L1)︸ ︷︷ ︸
j

L0x0

= (L0L`−1 · · ·L1)jL0x0

= Ψj
1L0x0.

Similarly, we can show that

usLs−1Ls−2 · · ·L0x0 ∈ Cs
k ∈ Ss, s = 1, 2, · · · `− 1.

Note that, precisely speaking, (30) can only assure there is a cycle of length `× j′ attached the cycle at
u1, where j′ is a factor of j. But since the above definition of {Ψi} is on a rotating style, staring from a
point w0 = u1x

′
0, same argument shows j ≤ j′. So j′ = j. 2

Example 3.6 Revisit Example 3.1. Now we may change the control to

A(t + 1) = ¬A(t).

We have an obvious control cycle: 0 → 1 → 0. Then we can easily calculate (using condensed form)

L(0) = δ8(2, 2, 2, 2, 1, 3, 1, 3),
L(1) = δ8(2, 2, 6, 6, 1, 3, 5, 7).

Then we consider auxiliary system

x(t + 1) = Ψx(t), (31)
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where
Ψ = L(1)L(0) = δ8(2, 2, 2, 2, 2, 6, 2, 6).

The routine calculation shows: (1) non-trivial power of Ψ is 1 and Trace(Ψ1) = 2. So there are two fixed
points, which are (0, 1, 0, 0, 0, 0, 0, 0) ∼ 110 and (0, 0, 0, 0, 0, 0, 1, 0) ∼ 010. The overall cycles are depicted
in Fig. 2, where the dash lines show the duplicated cycles. Overall, we have a cycle in the input space
and two compounded cycles of length 2 in the input-state space. Fig. 2 shows the cycles of this control
network.

0 1

0X110

1X110

0X010

1X010

1X110

0X110

0X010

1X010

Figure 2: Circles of a Control System

Finally, we consider the transient period of compounded cycles. Assume Ci
u, i = 1, · · · , p are the

cycles in control space. For a fixed Ci
u,which has length `i, we can construct Ψi and find the smallest ri

such that
(Ψi)ri

= (Ψi)ri+Ti ,

then it is clear that if a point will eventually enter the cycles attached to this cycle, then after ri

(compounded) steps the second component will enter the rotating cycle. Note that Ψi is a compounded
mapping, consisting of `i steps. Taking the first part ( C`

u ) into consideration, it is easily seen that the
transient period for cycles attached to Ci

u, denoted by Tt(Ci
u), satisfies

max
{
r0, `i(ri − 1)

} ≤ Tt(Ci
u) ≤ max

{
r0, `i(ri)

}
, i = 1, · · · , p. (32)

Define
Vi := max

{
r0, `i(ri − 1)

}

Ui := max
{
r0, `i(ri)

}
, i = 1, · · · , p.

Then the following is obvious:

Proposition 3.7 The transient period of the control network satisfies

max
1≤i≤p

{Vi} < Tt ≤ max
1≤i≤p

{Ui}. (33)

11



4 Cascaded Boolean Networks

The input-state structure proposed in previous section is very useful in analyzing the structure of Boolean
networks with cascading structure.

Definition 4.1 Consider system (1), where x ∈ X = Dn. A subspace V = Dk ⊂ X is called an invariant
subspace, if x0 ∈ V implies x(t, x0) ∈ V , ∀t > 0.

From last section one sees easily that the control space is an invariant subspace of the control-state
(product) space. Conversely, an invariant subspace can also be considered as a control space.

To testify if a subspace is a control invariant subspace, we can use either network graph or network
equation. We use the following two examples to illustrate this.

Let {Ai1 , · · · , Ais
} be a subset of the nodes of a network. V = Span{Ai1 , · · · , Ais

} means V ⊂ X is
the subspace of the states of the subnetwork with nodes {Ai1 , · · · , Ais

} and edges between them, inherited
from original graph.

Example 4.2 Consider the Fig. 3. One sees easily that V1 = Span{A} and V2 = Span{A,B, C, D} are
two invariant subspaces. We have the nested invariant subspaces as

V1 ⊂ V2 ⊂ X.
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Figure 3: Invariant Subspaces

Note that V = Span{A,B, C} is not an invariant subspace, because it will be affected by D. (If you
are familiar with graph theory, it is easy to see that a subspace is invariant iff the subgraph has in-degree
zero.)

The structure of nested invariant subspaces can also be discovered from network equations. Consider
the following example.

Example 4.3 Consider the following system
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A1(t + 1) = f1
1 (A1(t), · · · , A`(t)),

...

A`(t + 1)) = f1
` (A1(t), · · · , A`(t));

B1(t + 1) = f2
1 (A1(t), · · · , A`(t), B1(t), · · · , Bm(t)),

...

Bm(t + 1)) = f2
m(A1(t), · · · , A`(t), B1(t), · · · , Bm(t));

C1(t + 1) = f3
1 (A1(t), · · · , A`(t), B1(t), · · · , Bm(t), C1(t), · · · , Cn(t)),

...

Cn(t + 1)) = f3
n(A1(t), · · · , A`(t), B1(t), · · · , Bm(t), C1(t), · · · , Cn(t)).

(34)

Then we have at least two nested invariant subspaces: V1 = Span{A1, · · · , A`} = D` and
V2 = Span{A1, · · · , A`, B1, · · · , Bm} = D`+m, and

V1 ⊂ V2 ⊂ X = D`+m+n.

We consider a cycle, say, U3 ∈ X. As we discussed in last section, it must attach to a cycle, say,
U2 ∈ V2. Similarly, U2 must attach to a cycle, say, U1 ∈ V1. Now in Fig. 4 we assume two cycles,
U2

1 , U2
2 ∈ V2 are attached to U1 ∈ V1, and U3

1 , U3
2 ∈ X are attached to U2

1 and U3
3 , U3

4 ∈ X are attached
to U2

2 . We call such connected cycles as chaired gears.

U3
1

U3
3

U2
1 U1 U2

2

U3
2 U3

4

Figure 4: Structure of cycles in a Cascaded Boolean Network

Chaired gears have the following properties:

• Each chair of gears, such as U1 → U2
1 → U3

1 , have multiplicative perimeters (precisely, the numbers
of states in cycles), i.e., perimeter of U3

1 is a multiplier of perimeter of U2
1 , perimeter of U2

1 is a
multiplier of perimeter of U1.
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• In each chair the smaller gears affect the larger gears, and the larger gears do not affect the smaller
gears.

• Smallest gears look like steering gears, which steer the other gears to run.

Kauffman claimed that[12] in a cellular network the tiny attractors decide the vast order. The “rolling
gears” structure explained why small cycles decide the order of the whole network. We guess that the
structure of “Rolling Gears” may be used to explain the “hidden Order” in lives!

Finally, one may ask: why there should be invariant subspace? In fact, if a large or huge network has
small cycles, then the small cycles with the elements in their region of attraction form small invariant
subspaces. If there are no such small cycles, the system is in chaos [12]! So an ordered large scale network
should have the structure of nested invariant subspaces.

5 Two Illustrative Examples

First example is from [14]. It is used for two purposes: (1) showing the standard algorithm; (2) demon-
strating that the “small cycles” have decisive importance for the structure of overall network.

Example 5.1 Consider a system with 5 nodes, as

Ai = fi(Aj1 , Aj2 , Aj3), i = 1, 2, 3, 4, 5, (35)

where the logical functions fi, i = 1, · · · , 5, are determined by the following truth table:

f1 f2 f3 f4 f5

1 1 1 1 1
1 1 0 1 0
1 1 1 1 0
0 0 1 0 0
1 0 0 1 0
1 1 1 0 0
1 1 1 0 0
0 0 0 0 0

j1 5 3 3 3 5
j2 2 5 1 4 4
j3 4 4 5 4 1

Tab. 1 Truth Table of (35)
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Then the matrix form of the system (35) is




A(t + 1) =


1 1 1 0 1 1 1 0

0 0 0 1 0 0 0 1


E(t)B(t)D(t),

B(t + 1) =


1 1 1 0 0 1 1 0

0 0 0 1 1 0 0 1


C(t)E(t)D(t),

C(t + 1) =


1 0 1 1 0 1 1 0

0 0 0 0 1 0 0 1


C(t)A(t)E(t),

D(t + 1) =


1 1 1 0 1 0 0 0

0 0 0 1 0 1 1 1


C(t)D(t)D(t),

E(t + 1) =


1 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1


E(t)D(t)A(t).

(36)

To get the structure matrix note that the first row of the structure matrix of fi is exactly the same as
its values in truth table.

To convert the matrix form back to logical form, mod(2) algebra is more convenient. Using mod(2)
algebra, system (35) can be expressed as





A(t + 1) = B(t) +2 D(t) +2 B(t)×2 D(t)

B(t + 1) = D(t) +2 E(t) +2 C(t)×2 D(t)×2 E(t)

C(t + 1) = A(t) +2 C(t) +2 E(t) +2 C(t)×2 E(t) +2 A(t)×2 C(t)×2 E(t)

D(t + 1) = D(t)

E(t + 1) = A(t)×2 D(t)×2 E(t)

(37)

It is easy to see that the structure matrix of mod(2) times, ×2 is Mc and mod(2) plus, “+2” is easy to
get that

M+ =

[
0 1 1 0
1 0 0 1

]
.

Let x(t) = A(t)B(t)C(t)D(t)E(t). Then

x(t + 1) = M2
+BDMcBDM2

+DEM2
c CDEM4

+ACEMcCEM2
c ACEDM2

c ADE.

Now there is a normal routine to figure out L. In fact,

L = δ32[1, 6, 4, 16, 13, 2, 8, 12, 1, 6, 20, 32, 13, 2, 24, 28,

2, 2, 4, 12, 10, 6, 4, 16, 2, 2, 20, 28, 10, 6, 20, 32].

Then one can check that the non-trivial powers are 1 and 2, and

Trace(L) = 4, Trace(L2) = 6.

We conclude that there are 4 fixed points and 1 cycle of length 2. Using Theorem 2.1, one sees easily that
the fixed points are

E1 = 11111; E2 = 10011; E3 = 00100; E4 = 00000;
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and the cycle of length 2 is
11110 → 11010 → 11110.

The smallest repeating Lk is L3 = L5, so the transient period Tt = 3.
Finally, we use Theorem 2.3 to get the whole picture of the state space.

• Starting from E1 = 11111, we calculate its parent states, its grand parent states, and so on. We
have, (in the following [x] is used to show that x is already on the cycle, so remove it from the
retrieving chain,)

E1 = 11111 ∼ δ1 ⇒ [L1 → δ1], L9 → δ9 ∼ 10111 ⇒ ∅.

•
E2 = 10011 ∼ δ13 ⇒ [L13 → δ13], L5 → δ5 ∼ 11011 ⇒ ∅.

•
E3 = 00100 ∼ δ28 ⇒ [L28 → δ28], L16 → δ16 ∼ 10000 ⇒



L4 → δ4 ∼ 11100 ⇒





L3 → δ3 ∼ 11101 ⇒ ∅
L19 → δ19 ∼ 01101 ⇒ ∅
L23 → δ23 ∼ 01001 ⇒ ∅

L24 → δ24 ∼ 01000 ⇒ L15 → δ15 ∼ 10001 ⇒ ∅.
•

E4 = 00000 ∼ δ32 ⇒ [L32 → δ32], L12 → δ12 ∼ 10100 ⇒



L20 → δ20 ∼ 01100 ⇒





L11 → δ11 ∼ 10101 ⇒ ∅
L27 → δ27 ∼ 00101 ⇒ ∅
L31 → δ31 ∼ 00001 ⇒ ∅

L8 → δ8 ∼ 11000 ⇒ L7 → δ7 ∼ 11001 ⇒ ∅.
• Next, we consider two points on cycle: C1 = 11010 and C2 = 11110. For C1:

C1 = 11010 ∼ δ6 ⇒



[L2 → δ2 ∼ 11110],

L10 → δ10 ∼ 10110 ⇒




L21 → δ21 ∼ 01011 ⇒ ∅
L29 → δ29 ∼ 00011 ⇒ ∅

L22 → δ22 ∼ 01010 ⇒ ∅
L31 → δ31 ∼ 00010 ⇒ ∅.

•

C2 = 11110 ∼ δ2 ⇒





[L6 → δ6 ∼ 11010],

L14 → δ14 ∼ 11010 ⇒ ∅
L17 → δ17 ∼ 01111 ⇒ ∅
L18 → δ18 ∼ 01110 ⇒ ∅
L25 → δ25 ∼ 00111 ⇒ ∅
L26 → δ26 ∼ 00110 ⇒ ∅.
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The following state transition diagram from [14] verifies our conclusion.

Part 1. D = 0

00000

10100

01100 11000

00101 00001 10101 11001

00100

10000

01000 11100

10001 01101 01001 11101

Part 2. D = 1

10010 01111 01110 00111 00110

11110

11010

1011001010 00010

01011 00011

10011

11011

11111

10111

Figure 5: The State-transition Diagram

What is significant in this example is the following observation: There is a smallest “cycle”: fixed
point D. From Fig. 5 one sees easily that for D = 0 and D = 1 the topological structures of the state
space graphs are completely different.

Next, we analyze a system, which is used to simulate gene and protein signaling activity patterns [9].

Example 5.2 The network depicted in Fig. 6 and Tab. 2 is presented in [9] to simulate gene and protein
signaling activity patterns within a small model Boolean network. For notational brevity, we use A for
“Erk”, B for “cyclin D1”, C for “p27”, D for “cyclin E”, E for “E2F”, F for “pRb”, G for “S phase
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genes”, U for “growth factors”, V for cell “shape(spreading)”, and W for “X”. We refer to [9] for the
biological meanings of the notations.

W

U

V

A

D

G

H

U

B

C E

F
y

Σ

Figure 6: Gene and Protein Signaling Activity Patterns

network element W A B C D E F G H

input 1 U U A H E D B F H
input 2 V G C W C F D E G

boolean function and not if not if implicate implicate not if nand not if not if

Tab. 2 Logical Relations

Then the logical equation is expressed as





A(t + 1) = ¬(U(t) → G(t))

B(t + 1) = ¬(A(t) → C(t))

C(t + 1) = H(t) → W (t)

D(t + 1) = E(t) → C(t)

E(t + 1) = ¬(D(t) → F (t))

F (t + 1) = ¬(B(t) ∧D(t))

G(t + 1) = ¬(F (t) → E(t))

H(t + 1) = ¬(H(t) → G(t)).

(38)

As for control network, we have




U(t + 1) = g1(U(t))

V (t + 1) = g2(V (t))

W (t + 1) = g3(U(t), V (t)).

(39)
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In matrix form, we have algebraic equation as




A(t + 1) = MnMiU(t)G(t)

B(t + 1) = MnMiA(t)C(t)

C(t + 1) = MiH(t)W (t)

D(t + 1) = MiE(t)C(t)

E(t + 1) = MnMiD(t)F (t)

F (t + 1) = MnMcB(t)D(t)

G(t + 1) = MnMiF (t)E(t)

H(t + 1) = MnMiH(t)G(t).

(40)

As in [9], we first set the control network as




U(t + 1) = U(t)

V (t + 1) = V (t)

W (t + 1) = U(t) ∧ V (t).

(41)

Case 1. U(0) = V (0) = [1, 0]T , σ1 = σ2 = identity, i.e., U(t) and V (t) equal to [1, 0]T constantly.
Plugging them into (39) yields the system

L(U(t),W (t)) = L

([
1
0

]
,

[
1
0

])

In calculation, a control can be treated as a logical operator, so the routine for calculating network tran-
sition matrix remain available. Then it is easy to get the following result:

• The only attractor is a fixed point 00110110;

• L10 = L11 and the transient period is Tt = 10.

Case 2. U(0) = [1, 0]T and V (0) = [0, 1]. In this case, we have same conclusion.
Case 3. U(0) = [0, 1]T , then we always have W (t) = [0, 1]T , t ≥ 1. The conclusion is

• The only attractor is a fixed point 00110110;

• L6 = L7 and the transient period is Tt = 6. (Taking W (0) into consideration, Tt should be 7.)

Next, we assume the control network is as




U(t + 1) = ¬U(t)

V (t + 1) = ¬V (t)

W (t + 1) = V (t) ∧W (t).

(42)

Then we have two sequence of nested invariant subspaces. We consider them separately. Consider the
first chair, which is

V1 = Span{U} ⊂ V2 = Span{A,B, C, D, E, F, G,H, U, V, W};
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In V1 we have an obvious cycle: 0 → 1 → 0. For U = 0, a routine computation shows that there is only
a cycle of length 2, which is

0011011010 → 0011011000 → 0011011010.

L(0) is a 1024 × 1024 matrix. We omit it here. But we can calculate that L(0)7 = L(0)9 and Tt = 7.
Similarly, for U = 1, we have the same cycle. L(1)11 = L(1)13 and Tt = 11.

Finally, let Ψ = L(1)L(0). Then Ψ has only one fixed point 0011011010. We conclude that overall in
U space we have only one cycle 0 → 1 → 0; and in whole space we have only one product cycle

0× 0011011010 → 1× 0011011000 → 0× 0011011010.

They are depicted in Fig. 7 (a), where I − S is the overall input-state space.
Next, we consider the second chair, which is

V1 = Span{V } ⊂ V2 = Span{V, W} ⊂ V3 = Span{A,B, C, D, E, F, G, H, U, V, W}.

First, there is a trivial cycle in V space as: 0 → 1 → 0.
Then in V ×W space, it is easy to calculate that

L(0) =

[
0 0
1 1

]
, L(1) =

[
1 0
0 1

]

So

Ψ = L(1)L(0) =

[
0 0
1 1

]
,

which has unique fixed point (0, 1) ∼ 0. We conclude that in V ×W space we have only one cycle: 0×0 →
1×0 → 0×0. Finally, we consider the space V ×W ×ABCDEFGHU . Calculating Ψ = L(0×0)L(1×0)
it is easy to find that the only cycle is a fixed point: 001101101. We conclude that there is only one cycle
of length 2 in the overall product space, which is: 0 × 0 × 001101101 → 1 × 0 × 001101100. Circles in
nested subspaces are depicted in Fig. 7 (b).

6 Conclusion

In this paper we first reviewed the main results in [5]: How to convert a logical form of Boolean equation
into an algebraic form. Then we proposed a framework for control Boolean networks. The structure of
the cycles in the input-state space was obtained. Using the input-state technique, we investigated the
general structure of Boolean networks. Then, as a network has cascade structure, a structure of chaired
cycles, called Rolling Gears, has been revealed. It was shown that the Rolling Gears structure is the
explanation that tiny attractors decide the order of networks.

Acknowledgment
A toolbox is provided in http://lsc.amss.ac.cn/ dcheng/STP Toolbox for the related computations.

(a). Circles in U ⊂ I − S spaces.
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0 10X0011011010

(b). Circles in V ⊂ V ×W ⊂ I − S spaces
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I−S I−S I−S I−S
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1X0X001101100

1X0 0X0

Figure 7: Chaired Circles
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