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Abstract

The controllability and observability of Boolean control networks are investigated. After a brief review on converting a logic
dynamics to a discrete-time linear dynamics with a transition matrix, some formulas are obtained for retrieving network and
its logical dynamic equations from this network transition matrix. Based on the discrete-time dynamics, the controllability
via two kinds of inputs is revealed by providing the corresponding reachable sets precisely. Then the problem of observability
is also solved by giving necessary and sufficient conditions.
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1 Introduction

A Boolean network is a network with nodes and directed
edges, denoted by (N , E), whereN is a finite set of nodes
and E ⊂ N ×N is the edge set. A node can take a logic
value from {0, 1} at a discrete time 0, 1, 2, · · · . Assume
that A,B ∈ N and (A,B) ∈ E , then it means that in
the network dynamics B(k + 1) depends on A(k).

We give a simple example to describe it.
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Fig. 1. A network

Example 1. In Fig.1 we have a Boolean network with
two nodes A and B. Its dynamics is described as{

A(t+ 1) = A(t) ∨B(t),
B(t+ 1) = A(t) ∧B(t),

(1)
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where the disjunction ∨ (conjunction ∧) can be consid-
ered as max(A(t), B(t)) (min(A(t), B(t))).

In 1960s, Jacob and Monod (Nobel Prize winners) found
that “Any cell contains a number of ‘regulatory’ genes
that act as switches and can turn one another on and off.
... If genes can turn one another on and off, then you can
have genetic circuits.” (Waldrop, 1992) Based on these
Boolean-type actions in genetic circuits, Kauffman pro-
posed using the Boolean network to describe the genetic
circuits (Kauffman, 1969). Some general descriptions of
the Boolean network and its applications to biological
systems can be found in Kauffman (1993) and Kauffman
(1995). Since then the Boolean network has been inves-
tigated widely and has become a power tool in analyzing
and manipulating genetic circuits.

The first interesting problem concerns the topologi-
cal structure of a Boolean network, including its fixed
points, its cycles, basin of attractors, and transient
times, etc. (Albert and Barabasi, 2000; Albert and
Othmer, 2003; Aldana, 2003; Drossel, Mihaljev and
Greil, 2005; Harris, Sawhill, Wuensche and Kauff-
man, 2002). The applications of Boolean network to
analysis of genetic regulation networks are of particular
interest (Akutsu, Miyano and Kuhara, 2000; Huang and
Ingber, 2000; Huang, 2002; Heidel, Maloney, Farrow
and Rogers, 2003).

The control of Boolean networks is also a challeng-
ing problem. There are some recent papers con-
cerning this problem (Data, Choudhary, Bittner



and Dougherty, 2003; Data, Choudhary, Bittner and
Dougherty, 2004; Pal, Datta, Bittner and Dougherty,
2005; Pal, Datta, Bittner and Dougherty, 2006). When
the random Boolean network is considered, the main
interest lies on the stationary distribution of the sys-
tem. Only for the deterministic network, the reacha-
bility problem as in control theory becomes a common
concern (Akutsu, Hayashida, Ching and Ng, 2007).

Recently, a new matrix product, namely, semi-tensor
product of matrices, has been introduced. Consider an
m × n matrix A and a p × q matrix B. We defined a
semi-tensor product of A and B, denoted as AnB. We
refer to Cheng, Hu and Wang (2004) for a brief intro-
duction. When n = p, A n B = AB. So it is a general-
ization of the conventional matrix product, and hence n
can be omitted. Moreover, all the main properties of the
conventional matrix product remain true for this gener-
alization. Throughout this paper the matrix product is
assumed to be the semi-tensor product.

Using semi-tensor product, a logical function can be con-
verted into an algebraic function (Cheng, 2007). To do
this we give logical values a vector form as: T = 1 ∼ δ1

2 ,
F = 0 ∼ δ2

2 , where δin is the ith column of the iden-
tity matrix In. Then the logical variable A(t) takes value
from these two vectors, i.e.,

A(t) ∈ D :=
{
δ1
2 , δ

2
2

}
.

According to Cheng (2007), for each logical function ξ =
ξ(A1, · · · , An) there exists a structure matrix of ξ, say
Mξ ∈ M2×2n , such that as Ai takes vector values, we
have

ξ(A1, · · · , An) = MξA1 · · ·An. (2)

For instance, for conjunction ∧ and disjunction ∨, we
can find their structure matrices Mc and Md as

Mc = δ2[1, 2, 2, 2]; Md = δ2[1, 1, 1, 2].

Where and hereafter we use the following compact no-
tation: Assume that a matrix L is of the following form

L =
[
δi1q , δ

i2
q , · · · , δisq

]
. (3)

The L is expressed as

L = δq[i1, i2, · · · , is]. (4)

Using the structure matrices, the logical dynamics (1)
can be expressed in the following algebraic form:{

A(t+ 1) = MdA(t)B(t),
B(t+ 1) = McA(t)B(t).

(5)

Using this form, Cheng and Qi (2009) further convert
the algebraic form into a standard discrete-time dynam-
ics and then using its transition matrix to provide for-
mulas for fixed points, cycles, transient time and basin
of attractions etc. In the next section, we will briefly re-
view it. In Cheng (2009) the control Boolean network
was considered. Using the input-state approach, a gen-
eral structure of Boolean network, called the “rolling
gears”, is proposed to explain why in a cellular network
the smallest cycle(s) plays fundamental role for the prop-
erties of overall cellular network as described in Kauff-
man (1995).

This paper considers two fundamental problems: con-
trollability and observability of a Boolean control net-
work. The paper is organized as follows. Section 2 briefly
reviews how to convert a logical dynamics to a discrete-
time dynamics proposed by Cheng and Qi (2009). Sec-
tion 3 provides a systematic procedure to reconstruct the
network with its logical dynamics of a Boolean network
from its network transition matrix. The controllability
via two types of controls is considered in Section 4. Nec-
essary and sufficient conditions are proved for each case
by constructing reachable sets for each case. In Section 5
the observability of a Boolean control network with out-
puts of logical functions is discussed and necessary and
sufficient conditions are also proved. Section 6 is a brief
concluding remark.

2 Converting a Logical Dynamics to a Discrete-
time Dynamics

A Boolean network with n nodes Ai, i = 1, 2, · · · , n can
be expressed as

A1(t+ 1) = ξ1(A1(t), A2(t), · · · , An(t)),
...
An(t+ 1) = ξn(A1(t), A2(t), · · · , An(t)),

(6)

where ξi, i = 1, 2, · · ·n, are logical functions.

Using (2), for each logical function ξi we can find its
structure matrix Wi such that the equations in (6) can
be converted into an algebraic form as

Ai(t+ 1) = WiA1(t) · · ·An(t), i = 1, · · · , n. (7)

Define x(t) = A1(t)A2(t) · · ·An(t). Multiplying all the
equations in (7) together yields

x(t+ 1) = W1x(t)W2x(t) · · ·Wnx(t). (8)

Using the properties of semi-tensor product and the
power reducing matrix Mr = δ4[1, 4] (Cheng, 2007), (6)
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can be converted to a standard discrete-time dynamic
system as

x(t+ 1) = Lx(t), (9)

where L is called the network transition matrix of (6). It
was proved in Cheng and Qi (2009) that (9) is equivalent
to (6).

For example, consider the system (1) in Example 1. Set-
ting x(t) = A(t)B(t), it is easy to show that x(t+ 1) =
Lx(t) with L = δ4[1, 2, 2, 4].

Next, we consider a control Boolean network as (Cheng,
2009)


A1(t+ 1) = f1(A1(t), · · · , An(t), u1(t), · · · , um(t))

...
An(t+ 1) = fn(A1(t), · · · , An(t), u1(t), · · · , um(t)),

(10)
yj(t) = hj(A1(t), · · · , An(t)), j = 1, 2, · · · , p, (11)

where fi, i = 1, 2, · · ·n, hj , j = 1, 2, · · · p are logical
functions; ui, i = 1, 2, · · ·m, are inputs (or controls), yj ,
j = 1, 2, · · · p, are outputs.

Two kinds of controls are considered:

(1) The controls are logical variables satisfying certain
logical rule, called the input network, as


u1(t+ 1) = g1(u1(t), · · · , um(t)),

...
um(t+ 1) = gm(u1(t), · · · , um(t)).

(12)

(2) The control is a free Boolean sequence. Precisely,
set u(t) = u1(t)u2(t) · · ·um(t). Then the control is
a designed sequence u(0), u(1), · · · ∈ Dm.

Using the structure matrix approach to the Boolean con-
trol network, it is easy to obtain the algebraic form of
the network (10)-(12) as

{
u(t+ 1) = Gu(t), u ∈ Dm

x(t+ 1) = Lu(t)x(t) := Lu(t)x(t), x ∈ Dn

y(t) = Hx(t), y ∈ Dp,

(13)

where Lu(t) = Lu(t) is the control-depending network
transition matrix, G is the network transition matrix of
the input network, H is the transition matrix from x to
y (calculated exactly in the same way as for L and G).

3 Reconstructing Networks

From a set of input-output data we may identify the
structure matrix L. Particularly, in the case of large or
huge networks, we may find an L to approximate the
original system or a particular input-output response of
the original network. We leave the identification problem
for further investigation. Since L is the coefficient matrix
of a standard discrete-time linear system it seems that
many known methods can be used for this purpose.

In this section we consider how to reconstruct the
Boolean network from its network matrix L. This is
important because we will work on state space and try
to design a network matrix. Then we have to convert
it back to the network and give its logical relations for
design purposes.

Assume that L is known, we will try to retrieve (6) and
the network.

First, we have to reconstruct the structure matrices Wi

of the logical operators fi. We define a set of 2 × 2n
matrices, Sni , called retrievers, in the following way. Di-
vide columns, labeled by 1, 2, · · · , 2n, into 2i equal parts,
where 1 ≤ i ≤ n. Then put δ1

2 into the first segment of
columns, and put δ2

2 into the second segment of columns,
then the δ1

2 again, and continue this process to define
Sni . In this way we have defined

Sn1 = δ2[1, · · · , 1︸ ︷︷ ︸
2n−1

, 2, · · · , 2︸ ︷︷ ︸
2n−1

];

Sn2 = δ2[1, · · · , 1︸ ︷︷ ︸
2n−2

, 2, · · · , 2︸ ︷︷ ︸
2n−2

, 1, · · · , 1︸ ︷︷ ︸
2n−2

, 2, · · · , 2︸ ︷︷ ︸
2n−2

];

...

Snn = δ2[1, 2, 1, 2, · · · , 1, 2].

(14)

We need the swap matrix W[m,n] (with W[n] := W[n,n]),
which is the unique mn×mn matrix, such that for any
X ∈ Rm, Y ∈ Rn (Cheng et al., 2004)

W[m,n]XY = Y X.

To construct Wi we have

Proposition 2. The structure matrices Wi of fi can be
retrieved as follows:

Wi = Sni L, i = 1, 2, · · · , n. (15)

PROOF. We prove (15) for i = 1. The proof for other
i is similar (using the swap matrix to change the order
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of factors first). Denote

P = A2(t+ 1)A3(t+ 1) · · ·An(t+ 1) ∈ Dn−1.

Then
x(t+ 1) = A1(t+ 1)P.

IfA1(t+1) = δ1
2 , x(t+1) = [PT 0, · · · , 0︸ ︷︷ ︸

2n−1

]T , ifA1(t+1) =

δ2
2 , x(t+ 1) = [0, · · · , 0︸ ︷︷ ︸

2n−1

PT ]T . Note that P = δi2n−1 , for

some i, it follows immediately that A1(t+ 1) = Sn1 x(t+
1). Equivalently, W1x(t) = Sn1Lx(t). Since x(t) ∈ Dn is
arbitrary, W1 = Sn1L.

Note that the neighborhood of node i (equivalently,
edges, starting from other nodes, toward i), called the
in-degree of node i, is usually much smaller than n. We
have to find which node is connected to i. We have the
following:

Proposition 3. Consider system (6) with its algebraic
form (7). j is not in the neighborhood of i, (i.e., the edge
j → i does not exist), iff Wi satisfies

WiW[2,2j−1](Mn − I2) = 0, (16)

where Mn is the structure matrix of negation ¬ (Cheng,
2007).

Moreover, as long as (16) holds, the equation of Ai can
be replaced by

A(t+ 1) = W ′iA1(t) · · ·Aj−1(t)Aj+1(t) · · ·An(t), (17)

where
W ′i = WiW[2,2j−1]δ

1
2 .

PROOF. Note that we can rewrite the ith equation of
(7) as

Ai(t+ 1) = WiW[2,2j−1]Aj(t)
n∏

i=1,i6=j

Ai(t).

Now we replace Aj(t) by ¬Aj(t), if it does not affect
the overall structure matrix, it means Ai(t+ 1) is inde-
pendent of Aj(t). The invariance of replacement is de-
picted by (16). As for (17), since Aj(t) does not affect
Ai(t + 1), we can simply set Aj(t) = δ1

2 (equally, you
can set Aj(t) = δ2

2 if you wish,) to simplify the expres-
sion.

Repeating the verification of (16), all the redundant
dummy variables can be removed from the equation. We
give an example to show this.

Example 4. Assume that we have a Boolean network
with 5 nodes A, B, C, D, E. Let x = ABCDE. We have
x(t+ 1) = Lx(t) with

L = δ32[3, 6, 7, 6, 19, 22, 31, 30, 19, 22, 23, 22, 3, 6, 15, 14,

3, 5, 7, 5, 19, 21, 31, 29, 19, 21, 23, 21, 3, 5, 15, 13].

We try to recover the logic dynamic system from L. We
know that Wi = S5

i L, i = 1, 2, 3, 4, 5, which yield

W1 = δ2[1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1,

1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1];

W2 = δ2[1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2,

1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2];

W3 = δ2[1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2,

1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2];

W4 = δ2[2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1,

2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1];

W5 = δ2[1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1].

Next, considering W1 it is easy to verify that

W1Mn = W1, W1W[2]Mn 6= W1,

W1W[2,22]Mn 6= W1, W1W[2,23]Mn = W1,

W1W[2,24]Mn = W1.

We conclude that A(t + 1) depends on B(t) and
C(t) only. Then we can remove the dummy variables
A(t), D(t), E(t) from the first equation A(t + 1) =
W1A(t)B(t)C(t)D(t)E(t) by replacing A(t), D(t), E(t)
by A(t) = D(t) = E(t) = δ1

2 , which yields

A(t+ 1) = W1δ
1
2B(t)C(t)δ1

2δ
1
2

= W1W[4,8](δ1
2)3B(t)C(t)

= δ2[1, 2, 2, 1]B(t)C(t).

(18)

Its logical form is: A(t + 1) = B(t) ↔ C(t). Similarly,
we can get the logical equations for other nodes. Finally,
we have 

A(t+ 1) = B(t)↔ C(t)
B(t+ 1) = C(t) ∨D(t)
C(t+ 1) = D(t) ∧ E(t)
D(t+ 1) = ¬E(t)
E(t+ 1) = A(t)→ E(t).

(19)
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Fig. 2. Reconstructed Graph from System Matrix

Then we can reconstruct the network as shown in Fig. 2.

In general converting an algebraic form back to logical
form is not an easy job. The following proposition pro-
vides a mechanical procedure for this.

Proposition 5. Assume that a logical variable E has an
algebraic expression as

E = L(A1, A2, · · · , An) = WLA1A2 · · ·An, (20)

where WL is the structure matrix of L. Then

E = [A1 ∧ L1(A2, · · · , An)] ∨ [¬A1 ∧ L2(A2, · · · , An)],
(21)

where WL = (WL1 | WL2), i.e., the structure matrix of
L1 (L2) is the first (last) half of WL.

PROOF. Using (20), when A1 = δ1
2

E = WLδ
1
2A2 · · ·An = WL1A2 · · ·An,

and when A1 = δ2
2

E = WLδ
2
2A2 · · ·An = WL2A2 · · ·An.

Then (21) follows.

Example 6. Assume that

E = δ2[1, 2, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2]ABCD.
(22)

Then

E = [A ∧ L1(B,C,D)] ∨ [¬A ∧ L2(B,C,D)],

and
WL1 = δ2[1, 2, 2, 1, 2, 1, 2, 1],
WL2 = δ2[1, 1, 2, 2, 2, 1, 1, 2].

Next,

L1(B,C,D) = [B ∧ L11(C,D)] ∨ [¬B ∧ L12(C,D)],

where

WL11 = δ2[1, 2, 2, 1] ⇒ L11(C,D) = C ↔ D;

WL12 = δ2[2, 1, 2, 1] ⇒ L12(C,D) = ¬D.

L2 can be calculated similarly. Finally, we have

E = [A ∧B ∧ (C ↔ D)] ∨ [A ∧ (¬B) ∧ (¬D)]∨
[(¬A) ∧B ∧ C] ∨ [(¬A) ∧ (¬B) ∧ (¬(C ↔ D))].

4 Controllability

The known results on controllability of Boolean control
networks is very limited (Akutsu et al., 2007). In this
section we consider the problem via two different kinds
of controls.

4.1 Control via Input Boolean Network

Definition 7. Consider system (10) with control (12).
Given initial state x(0) = x0 and destination state xd,
xd is said to be controllable from x0 (at s steps) with
fixed (designable) input structure G, if we can find u0

(and G), such that x(u, 0) = x0 and x(u, s) = xd (for a
fixed s ≥ 1).

Note that according to the above definition we may con-
sider four cases: (i) fixed s and fixed G; (ii) fixed s and
designable G; (iii) free s > 0 and fixed G; (iv) free s > 0
and designable G.

Definition 8. For a fixedG the input-state transfer ma-
trix ΘG(t, 0) is defined as follows: for any u0 ∈ Dm and
any x(0) = x0 ∈ Dn, we have x(t) = ΘG(t, 0)u0x0, t >
0.

It is obvious that ΘG(t, 0) depends onG. In the following
we will find the input-state transfer matrix. Since

x1 = Lu0x0,

we have ΘG(1, 0) = L. Next, we calculate x2 = x(2),
which is

x2 = Lu1x1 = LGu0Lu0x0 = LG(I2m ⊗ L)Φmu0x0,

where Φm is defined as

Φm = nm
i=1I2i−1 ⊗

[(
I2 ⊗W[2,2m−i]

)
Mr

]
;

Mr = δ4[1, 4] is defined in Cheng (2007), and ⊗ is the
Kronecker product. Then we have ΘG(2, 0) = LG(I2m⊗
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L)Φm. Using mathematical induction, it is easy to prove
that

ΘG(t, 0) = LGt−1(I2m ⊗ LGt−2)(I22m ⊗ LGt−3) · · ·
(I2(t−1)m ⊗ L)(I2(t−2)m ⊗ Φm)

(I2(t−3)m ⊗ Φm) · · · (I2m ⊗ Φm)Φm.
(23)

We start from case (i). From the above argument the
following result is obvious:

Theorem 9. Consider system (10) with control (12),
equivalently, (13), where G is fixed. xd is s step reachable
from x0, iff

xd ∈ Col
{

ΘG(s, 0)W[2n,2m]x0

}
, (24)

where and hereafter Col is the column set.

We give an example to describe this result.

Example 10. Consider the following system
A(t+ 1) = B(t)↔ C(t)
B(t+ 1) = C(t) ∨ u1(t)
C(t+ 1) = A(t) ∧ u2(t),

(25)

with controls satisfying{
u1(t+ 1) = g1(u1(t), u2(t)) = ¬u2(t),
u2(t+ 1) = g2(u1(t), u2(t)) = u1(t).

(26)

Assume that A(0) = 1, B(0) = 0, and C(0) = 1 and
s = 5. Denote u(t) = u1(t)u2(t), then

u(t+1) = u1(t+1)u2(t+1) = Mnu2(t)u1(t) = MnW[2]u(t).

So G = MnW[2] = δ4[3, 1, 4, 2].

x(t+1) = MeB(t)C(t)MdC(t)u1(t)McA(t)u2(t) = Lx(t),

where

L = δ8[1, 5, 5, 1, 2, 6, 6, 2, 2, 6, 6, 2, 2, 6, 6, 2,
1, 7, 5, 3, 2, 8, 6, 4, 2, 8, 6, 4, 2, 8, 6, 4].

Φ2 = (I2 ⊗W[2])Mr(I2 ⊗Mr) = δ16[1, 6, 11, 16].
Finally, using formula (23) yields Θ(5, 0) ∈M8×32 as

Θ(5, 0) = LG4(I26 ⊗ LG3)(I24 ⊗ LG2)(I26 ⊗ LG)

(I28 ⊗ L)(I26 ⊗ Φ2)(I24 ⊗ Φ2)

(I22 ⊗ Φ2)(I2 ⊗ Φ2)Φ2

= δ8[6, 5, 5, 6, 6, 5, 5, 6, 2, 2, 2, 2, 2, 2, 2, 2,

8, 8, 8, 8, 2, 2, 2, 2, 4, 8, 4, 8, 4, 8, 4, 8].

Now assume that (A(0), B(0), C(0)) = (1, 0, 1), then
x0 = A(0)B(0)C(0) = [0, 0, 1, 0, 0, 0, 0, 0]T . Using Theo-
rem 9, we have that the reachable set is

Θ(5, 0)W[8,4]x0 = δ8[5, 2, 8, 4].

We conclude that the reachable set at step 5 is{
δ5
8 , δ

2
8 , δ

8
8 , δ

4
8

}
.

Converting them to binary form, we have

(A(5), B(5), C(5)) ∈ {(0, 1, 1), (1, 1, 0), (0, 0, 0), (1, 0, 0)}.

Finally, we have to find the initial control u0, which
drives the trajectory to the assigned xd. Since

xd = Θ(5, 0)W[8,4]x0u0 = δ8[5, 2, 8, 4]u0,

it is obvious that to reach, say, 5 ∼ (0, 1, 1), the u0 =
[1, 0, 0, 0]T , i.e., u1(0) = 1 and u2(0) = 1. Similarly, to
reach the four points {(0, 1, 1), (1, 1, 0), (0, 0, 0), (1, 0, 0)}
the corresponding controls should be (u1(0), u2(0)) =
{(1, 1), (1, 0), (0, 1), (0, 0)}.

Next, we consider case (ii).

Since there are m0 = (2m)2m possible distinct G′s, we
may express each G in the condensed form and order
them in “increasing order”. Say, when m = 2 we have
G1 = δ4[1111], G2 = δ4[1112], . . . , G256 = δ4[4444]. In
general, we may consider a subset Λ ⊂ {1, 2, . . . ,m0},
and allow G be chosen from the admissible set {Gλ|λ ∈
Λ}. The following result is an immediate consequence of
Theorem 9.

Corollary 11. Consider system (10) with control (12),
where G ∈ {Gλ|λ ∈ Λ}. Then xd is reachable from x0, iff

xd ∈ Col
{

ΘGλ(s, 0)W[2n,2m]x0|λ ∈ Λ
}
. (27)

Example 12. Consider the system (25) again. We still
assume that A(0) = 1, B(0) = 0, and C(0) = 1 (equiva-
lently, x(0) = δ3

8) and s = 5. Assume that the admissible
set of G is nonsingular G′s. Denote G1 = δ4[1234], G2 =
δ4[1243], G3 = δ4[1324], . . . , G24 = δ4[4, 3, 2, 1], the cor-
responding Vi = Col

{
Θi(5, 0)W[2n,2m]x0

}
are

δ8[5684], δ8[5686], δ8[5684], δ8[5742], δ8[5824], δ8[5288],

δ8[5684], δ8[5686], δ8[6824], δ8[6274], δ8[1248], δ8[6882],

δ8[8564], δ8[5284], δ8[5684], δ8[7681], δ8[5288], δ8[2678],

δ8[6272], δ8[8582], δ8[8614], δ8[5688], δ8[2278], δ8[5688].

So the reachable set at 5 steps is

{δ1
8 , δ

2
8 , δ

4
8 , δ

5
8 , δ

6
8 , δ

7
8 , δ

8
8}.
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It is interesting that starting from (A(0), B(0), C(0)) =
(1, 0, 1), the only unreachable point in 5 steps is δ3

8 , which
is the starting point. Now assume that we want to reach
(A(5), B(5), C(5)) = (1, 1, 1), which is δ1

8 . Since the first
component of V11 is 1, (we have some other choices such
as V16, V21,) we can choose G11 and u1(0)u2(0) = δ1

4 to
drive (1, 0, 1) to (1, 1, 1) in 5 steps. It is easy to figure
out that G11 = δ4[2413].

From u1(0)u2(0) = δ1
4 , we have u1(0) = 1 and u2(0) = 1.

To reconstruct the control dynamics, we need retrievers

S2
1 = δ2[1, 1, 2, 2]; S2

2 = δ2[1, 2, 1, 2].

Then we have the structure matrices as

W1 = S2
1G = δ2[1, 2, 1, 2]; W2 = S2

2G = δ2[2, 2, 1, 1].

It follows that

u1(t+ 1) = W1u1(t)u2(t) = u2(t);

u2(t+ 1) = W2u1(t)u2(t) = ¬u1(t).

Finally, we consider cases (iii) and (iv), i.e., for free s.

First we give a lemma, which itself is interesting.

Lemma 13. For a Boolean network, if its network tran-
sition matrix is nonsingular, then every point is on a cy-
cle.

Before proving this lemma, we need some preparation.
The transient period Tt is the smallest time, such that
starting from any x0 and after Tt time the trajectory will
enter an attractor.

Lemma 14. (Cheng and Qi, 2009) The transient period
Tt is the smallest k ≥ 0 such that there exists a T > 0
such that

Lk = Lk+T .

Proof of Lemma 13 According to Lemma 14, it suf-
fices to show that the transient period Tt is zero. Let the
network matrix be L. Consider the sequence L, L2, · · · .
Since there are only finite distinct 2n× 2n logical matri-
ces, there must be two integers p < q such that Lp = Lq.
It follows that Lp−q = I, which means the transient pe-
riod is zero.

In the following we assume that

A1 G is nonsingular.

According to Lemma 13, we, starting from u0, can
find a minimum T0 > 0 such that GT0u0 = u0. Hence
u0, Gu0, · · · , GT0u0 is a cycle of length T0. Following the
procedure in Cheng (2009), we can construct a mapping

Ψ := (LGT0−1u0)(LGT0−2u0) · · · (LGu0)(Lu0). (28)

Then for x0 we consider the sequence x0,Ψx0, . . . , and
find the transient period r1 and a minimum T1 > 0 such
that

Ψr1x0 = Ψr1+T1x0. (29)

Then the reachable set starting from x0 with u0, can be
constructed easily. We give the following algorithm:

• Step 1. Find T0 such that u0, Gu0, · · · , GT0u0 is a cycle
in the input space.

• Step 2. Find the transient period r1 and minimum
T1 > 0, satisfying (29).

• Step 3. Construct a sequence

xi0 = Ψix0, i = 0, 1, 2, · · · , r1 + T1 − 1. (30)

• Step 4. For each xi0 construct inductively a sequence

xij = LGj−1u0x
i
j−1, j = 1, · · · , T0 − 1. (31)

Note that the above construction is the special case of the
general one discussed in Cheng (2009) for constructing
input-state product cycles. So it is easily seen that {xij}
is the set of reachable points starting from x0 using u0

and fixed G. We write it as the following theorem.

Theorem 15. Consider system (10) with control (12).
Assume A1 and use the above algorithm, then

(1) for given u0 and Gi, the set of reachable states is

Riu0
=
{
xij
∣∣ i = 0, 1, · · · , r1 + T1 − 1;

j = 0, 1, · · · , T0 − 1
}

;

where {xij} are constructed by (30)-(31) and the
steady state reachable set is

RSiu0
=
{
xij ∈ Riu0

| i ≥ r1

}
;

(2) for fixed G = Gi, the reachable set from x0 is

Ri = ∪u0R
i
u0
.

(3) for admissible {Gλ|λ ∈ Λ}, the reachable set is

R = ∪λ∈Λ ∪u0 R
λ
u0
.
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Table 1
Reachable Set for G1 = δ4[1, 2, 3, 4]

u(0) T0 r1 T1 RG1

1 1 2 2 (2,3,5)

2 1 2 1 (3,6)

3 1 1 7 (3,4,8)

4 1 4 1 (3,4,6,8)

Table 2
Reachable Set for G2 = δ4[2, 4, 3, 1]

u(0) T0 r1 T1 RG2

1 3 2 1 (1,2,3,4,5,8)

2 3 2 1 (2,3,5,6,8)

3 1 1 7 (2,3,4,5,6,7,8)

4 3 2 1 (3,6,8)

Example 16. Consider the system (25) again with
x(0) = δ3

8 . It is easy to get the reachable set for each G
and each u(0). We give two special G′s.

• G1 = δ4[1, 2, 3, 4]
So the overall reachable set for G1 is {2, 3, 4, 5, 6, 8}

(Table 1).
• G2 = δ4[2, 4, 3, 1]

So the overall reachable set for G2 is D3 (Table
2), which means the system is G2-controllable from
(1, 0, 1), (equivalently, x(0) = δ3

8).

4.2 Controllability via Free Boolean Sequence

In the following we consider the case when the controls
are free Boolean sequences. The following definition is
from Akutsu et al. (2007) with our notation.

Definition 17. (Akutsu et al., 2007) Given x0, xe ∈ Dn.
The Boolean control network (10) is said to be con-
trollable from x0 to xe (by free Boolean sequence) at
the s steps, if we can find control u(t) ∈ Dm, t =
0, 1, · · · , s − 1, such that the state nn

i=1Ai(0) = x0 and
nn
i=1Ai(s) = xe, i = 1, · · · , n.

Define L̃ = LW[2n,2m], then the second equation in (13)
can be expressed as

x(t+ 1) = L̃x(t)u(t). (32)

Using it repetitively yields

x(s) = L̃sx(0)u(0)u(1) · · ·u(s− 1). (33)

So the answer to this kind of control problem is obvious.

Theorem 18. xe is reachable from x0, at the sth time
step by controls of Boolean sequences of length s, iff

xs ∈ Col{L̃sx0}. (34)

Example 19. Akutsu et al. (2007)

Consider the Boolean control system depicted in Fig. 3.

OR

NOTB

AND
C

A u1

u2

Fig. 3. A Boolean control network

Its logical equation is
A(t+ 1) = B(t) ∧ u1(t)
B(t+ 1) = ¬u2(t)
C(t+ 1) = A(t) ∨B(t).

(35)

Denote x(t) = A(t)B(t)C(t), u(t) = u1(t)u2(t). Then
we can express the system by

x(t+ 1) = L̃x(t)u(t) (36)

where L̃ is

L̃ =δ8[ 3, 1, 7, 5, 3, 1, 7, 5, 7, 5, 7, 5, 7, 5, 7, 5,
3, 1, 7, 5, 3, 1, 7, 5, 8, 6, 8, 6, 8, 6, 8, 6 ].

As in Akutsu et al. (2007) we assume that (A(0), B(0), C(0)) =
(0, 0, 0). We want to know if a design state can be
reached at the sth step. Say, s = 3. Using Theorem 18,
we calculate L̃3x0 ∈M8×64 as

L̃3x0 = δ8[ 8, 6, 8, 6, 3, 1, 7, 5, 8, 6, 8, 6, 3, 1, 7, 5

7, 5, 7, 5, 3, 1, 7, 5, 8, 6, 8, 6, 3, 1, 7, 5

8, 6, 8, 6, 3, 1, 7, 5, 8, 6, 8, 6, 3, 1, 7, 5

7, 5, 7, 5, 3, 1, 7, 5, 8, 6, 8, 6, 3, 1, 7, 5 ].

It is clear that at the 3rd step all states, but δ2
16 δ

4
16,

can be reached. Now we choose one state, say, 5, which
means δ5

8 ∼ (0, 1, 1). Note that in 8th, 16th, 18th, 20th
· · · columns we have 5, which means controls δ8

64, or δ16
64 ,

or δ18
64 , or δ20

64 , or · · · can drive the initial state (0, 0, 0) to
the destination state (0, 1, 1). we choose, for example,

u1(0)u2(0)u1(1)u2(1)u1(2)u2(2) = δ8
64.
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Converting 64 − 8 = 56 to binary form yields 111000,
which means the corresponding controls are: u1(0) = 1,
u2(0) = 1, u1(1) = 1, u2(1) = 0, u1(2) = 0, u2(2) = 0. It
is easy to check directly that this set of controls works.
We may check some others. Say, choosing δ24

64 , similar
calculation yields the controls as: u1(0) = 1, u2(0) = 0,
u1(1) = 1, u2(1) = 0, u1(2) = 0, u2(2) = 0, which also
works.

In general, it is easy to calculate that when s = 1 the
reachable set from (0, 0, 0) is {(0, 1, 0), (0, 0, 0)}. When
s > 1 the reachable set is {(1, 1, 1), (1, 0, 1), (0, 1, 1),
(0, 1, 0), (0, 0, 1), (0, 0, 0)}.

A generalization for the controllability via controls of
Boolean sequences is when the length of sequences, s, is
free. An immediate consequence of Theorem 18 is

Corollary 20. xd is reachable from x0, iff

xd ∈ Col{∪∞i=1L̃
ix0}. (37)

Denote by R(x0, s) the reachable set from x0 at time s,
and R(x0) = ∪s≥0R(x0, s). The following proposition
makes (37) verifiable.

Proposition 21. (1) The reachable set, R(x0), is a
subset of Col{L̃};

(2) Assume that k∗ is the smallest k > 0, such that

Col{L̃k+1x0} ⊂ Col{ L̃sx0

∣∣∣ s = 1, 2, · · · , k},

then the reachable set

R(x0) = Col{∪k
∗

i=1L̃
ix0} (38)

PROOF.

(1) A straightforward computation shows that L̃kx0 ∈
M2n×2km . Since L̃ ∈ M2n×2n+m by the property
of semi-tensor product we have (cf Cheng et al.
(2004))

L̃k+1x0 = L̃n L̃kx0 = L̃ · [L̃kx0 ⊗ I2m ],

where · is the conventional matrix product. The
conclusion follows immediately.

(2) We use the notation

Col{L̃k} ⊗ Im :=
{
X ⊗ Im|X ∈ Col{L̃k}

}
.

Assume that

Col{L̃k+1x0} ⊂ Col{ L̃sx0

∣∣∣ s = 1, 2, · · · , k}.

Then

Col{L̃k+2x0}

=
{
L̃η
∣∣∣η ∈ Col{L̃k+1x0} ⊗ Im

}
⊂
{
L̃η
∣∣∣η ∈ Col{L̃sx0} ⊗ Im, s = 1, 2, · · · , k

}
= Col

{
L̃sx0| s = 2, 3, · · · , k + 1

}
⊂ Col

{
L̃sx0 ⊗ Im| s = 1, 2, 3, · · · , k

}
.

This inequality shows that after k there are no more
new columns. From part 1 we know that such k∗

does exist.

Example 22. Consider Example 19 again. We denote
the 8 possible initial points by (in decreasing order) x1

0 =
(1, 1, 1), x2

0 = (1, 1, 0), · · · , x8
0 = (0, 0, 0). Then it is easy

to see that for all of them the first degenerate steps are
the same, which is s0 = 3. For x1

0, x2
0, x5

0, x6
0, the first

step reachable set is:

R(x1
0, 1) = R(x2

0, 1) = R(x5
0, 1) = R(x6

0, 1)
= {(1, 1, 1), (1, 0, 1), (0, 1, 1), (0, 0, 1)}.

For x3
0, x4

0, the first step reachable set is:

R(x3
0, 1) = R(x4

0, 1) = {(0, 1, 1), (0, 0, 1)}.

For x7
0, x8

08, the first step reachable set is:

R(x7
0, 1) = R(x8

0, 1) = {(010), (000)}.

They have the same second step reachable set

R(xi0, 2) ={(1, 1, 1), (1, 0, 1), (0, 1, 1),
(0, 1, 0), (0, 0, 1), (0, 0, 0)},

i = 1, 2, · · · , 8.

Note that the since R(xi0, 2) = Col{L̃}, according to the
part 1 of Proposition 21, no more states can be reached.

Definition 23. System (10) is said to be globally reach-
able from x0 (by controls of free length Boolean se-
quence) if R(x0) = Dn. System (10) is called glob-
ally controllable (by controls of free length Boolean se-
quence) if R(x0) = Dn, ∀x0 ∈ Dn.

Example 24. Consider the following system
A(t+ 1) = B(t) ∧ u1(t)
B(t+ 1) = C(t)↔ (¬u2(t))
C(t+ 1) = A(t) ∨ u2(t).

(39)
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It is easy to check that from point x0 = (1, 0, 0) the first
three steps reachable sets are:

R(x0, 1) = {(0, 1, 1), (0, 0, 1)};
R(x0, 2) = {(1, 1, 0), (1, 0, 1), (0, 1, 0), (0, 0, 1)};
R(x0, 3) = {(1, 1, 1), (1, 0, 1), (1, 0, 0), (0, 1, 1),

(0, 1, 0), (0, 0, 1), (0, 0, 0)}.

So system (39) is globally reachable from (1, 0, 0).

It is obvious that control by free length Boolean se-
quences is the strongest way of control. It was pointed
out by some literatures that in some Boolean net-
work problems the controls can only be generated by a
Boolean system of controls. The control of free length
Boolean sequences could destroy the cycle structure of
the systems, which could be very important, such as
deciding the type of cells.

5 Observability

It is obvious that for a Boolean network the observability
is control depending. We first give a definition.

Definition 25. System (10) with outputs (11) is said
to be observable if for any initial state x0 there exists at
least a Boolean sequence of control, such that the initial
state can be determined by the output sequence.

We give an algorithm for observability.

• Step 1. Construct a sequence Γi, i = 1, 2, · · · , which
are sets of 2n × 2n matrices as follows:

Γ1 =
{
Lδi2m |i = 1, 2, · · · , 2m

}
;

Γk+1 =
{
Lδi2mγ|γ ∈ Γk; i = 1, 2, · · · , 2m

}
, k ≥ 1;

If Col{Γk∗+1} ⊂ Col{Γi|i ≤ k∗}, k∗ + 1 is called the
degenerated step. Let k∗ > 0 be the first degenerated
step, the sequence will stop at k∗. (Since there are at
most 2n different columns, k∗ ≤ 2n.
• Step 2. Construct a sequence of sets of 2p×2n matrices

as H0 = H, Hi = HΓi = {Hγ|γ ∈ Γi}.
• Step 3. Using condensed form, each matrix in Hi be-

comes a 2n dimensional row.
Choosing h0 ∼ H and linearly independent rows

hij ∈ Hi, i = 1, 2, · · · , k∗ to form a matrix as

C =
[
(h0)T (h1

1)T · (h1
i1)T · (hk

∗

1 )T · (hk
∗

ik∗
)T
]T
.

(40)

Theorem 26. Assume that system (10) is globally con-
trollable, then with outputs (11) it is observable, iff C has
all distinct columns.

PROOF. Starting from one point x0 we can observe
Hx0. Using different controls δi2n , we can observeHLδi2n .
Using different δi2n is allowed because the system is glob-
ally controllable. Hence we can start from the same point
as many times as we wish. Continuing this process, one
sees that

HLδi12nLδ
i2
2n · · ·Lδ

is
2nx0, s ≥ 0

are observable. Since s ≥ k0 adds no linearly indepen-
dent rows to the previous set, and linearly dependent
row is useless in distinguishing initial values, the initial
values can be distinguished, iff C contains all distinct
columns.

Next, we consider the controllability and observability
with control of sequence of 1−0−∅, where ∅ means the
input channel is disconnected. This is reasonable. For
instance, in cellular network the active cycles determine
the type of cells. Now the genetic regulation network can
change the active cycles in the cellular network to change
the type of cells. But it acts only over a very short time
period like a pulse. So the control becomes a sequence
of 1− 0−∅.

When an input ui is disconnected, we should ask what is
the nominal network dynamics? Principally, it is reason-
able to ask the network graph being a subgraph of the
original one by removing ui related edges. In this way
the nominal network graph is unique. But the nominal
network dynamics could be different. To specify it, we as-
sume that it has a network matrix L∅. For convenience,
we assume that there is a frozen control u∅

i = constant
such that the ith input disconnected system has the form
as ui = u∅

i . When ui = u∅
i , ∀i, the control-free system

is the nominal network of the original Boolean control
network. That is,

L∅ = Lu∅
1 u

∅
2 · · ·u∅

m.

In many cases we are only interested in the steady state
case. For the nominal Boolean network, let Ci, i =
1, 2, · · · , k be its cycles (attractors), and denote by S =
∪ki=1C

i its set of steady states, Bi denotes the region of
attraction of Ci.

Definition 27. A Boolean network is globally steady
state controllable by control of sequences of 1− 0−∅, if
for any two points x, y ∈ S there is a control of sequences
of 1 − 0 − ∅, which drives the trajectory from x to y.
A Boolean network is steady state observable, if for any
x0, y0 ∈ S, there is a control sequence of 1− 0−∅, such
that x0, y0 are distinguished from outputs.

The following result is a direct consequence of the defi-
nition and Theorem 26.
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Proposition 28. (1) Consider a Boolean control
network, its nominal system has cycles Ci,
i = 1, 2, . . . , k. The system is globally steady state
controllable, iff for any 1 ≤ i, j ≤ k there exist at
least one x ∈ Ci, one y ∈ Bj and a 1 − 0 − ∅
sequence of control, which drives x to y.

(2) If a Boolean control network is steady state control-
lable, then it is steady state observable, iff C, defined
in (40), has all distinct columns.

PROOF. Note that a point on a cycle of the nominal
system can be reached infinity times as ∅ is used. Then
the conclusions are trivial.

We give an example.

Example 29. Consider system (25) in Example 10. It
is natural to assume its nominal system to be (by using
frozen controls u∅

1 = 0 and u∅
2 = 1)

A(t+ 1) = B(t)↔ C(t)
B(t+ 1) = C(t)
C(t+ 1) = A(t).

(41)

Using the technique developed in Cheng and Qi (2009), it
is easy to calculate that there are two cycles: equilibrium
C1 : (1, 1, 1) and length 7 cycle

C2 : (1, 1, 0)→ (0, 0, 1)→ (0, 1, 0)→ (0, 0, 0)→
(1, 0, 0)→ (1, 0, 1)→ (0, 1, 1)→ (1, 1, 0).

Since there are no transient states, globally steady state
controllable is the same as globally controllable. To prove
global steady state controllability, we have to find a con-
trol to drive a point in one cycle to the other and vise
versa.

Let (A(0), B(0), C(0)) = (1, 1, 1) ∈ C1 and use u1(0) =
0, u2(0) = 0. Then (A(1), B(1), C(1)) = (1, 1, 0) ∈ C2.
Let (A(0), B(0), C(0)) = (1, 0, 0) ∈ C2 and use u1(0) =
1, u2(0) = 1. Then (A(1), B(1), C(1)) = (1, 1, 1) ∈ C1.
By Proposition 28, system (25) is globally steady state
controllable.

Now we assume that the outputs are

y1(t) = A(t)

y2(t) = B(t) ∨ C(t).
(42)

Then we have

y(t) := y1(t)y2(t) = A(t)MdB(t)C(t) = Hx(t),

where H ∈M4×8 is

H = δ4[1, 1, 1, 2, 3, 3, 3, 4].

For system (25), it is easy to calculate that

L =δ8[1, 5, 5, 1, 2, 6, 6, 2, 2, 6, 6, 2, 2, 6, 6, 2,
1, 7, 5, 3, 2, 8, 6, 4, 2, 8, 6, 4, 2, 8, 6, 4].

Then we can calculate that

HLδ1
4 = δ4[1, 3, 3, 1, 1, 3, 3, 1];

HLδ2
4 = δ4[1, 3, 3, 1, 1, 3, 3, 1];

HLδ3
4 = δ4[1, 3, 3, 1, 1, 4, 3, 2];

HLδ4
4 = δ4[1, 4, 3, 2, 1, 4, 3, 2].

We need only to construct part of C. Choosing linearly
independent rows, we have

C =



H

HLδ1
4

HLδ2
4

HLδ3
4

HLδ4
4

...


=



1 1 1 2 3 3 3 4

1 3 3 1 1 3 3 1

1 3 3 1 1 4 3 2

1 4 3 2 1 4 3 2
...


.

From part of C it is enough to see that there are no equal
columns in C. So the system is observable.

6 Conclusion

The paper considered the controllability and observabil-
ity of Boolean control networks. As a necessary tool,
we first discussed how to reconstruct a Boolean net-
work from its known network matrix. Then the control-
lability via two kinds of controls has been investigated.
First, assume that the controls are generated by a con-
trol Boolean network. Second, assume that the controls
are free Boolean sequences (with control-disconnected
moments). In both cases, necessary and sufficient condi-
tions have been obtained to show the reachable sets pre-
cisely. The observability problem has also been solved
for the controls of free Boolean sequences. 1

Overall, the paper provided a framework for using sys-
tem and control techniques to analyze and manipulate
Boolean networks.

1 A toolbox in Matlab is provided in http://lsc.amss.ac.
cn/~dcheng/stp/STP.zip for the related computations.
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Since the dimension of state space is 2n, where n is the
number of nodes, as n is large, the complexity of compu-
tation is a series problem in this approach. It is not dis-
cussed in this paper. As mentioned at the beginning of
Section 3, a large network or its some particular input-
output responses may be approximated by a smaller net-
work.

There are many control related problems for Boolean
control systems, such as realization, stabilization and
optimal control etc., which remain for further study.
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