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Abstract. Boolean function can be expressed as matrix form using semi-tensor product of matrices.

Using this approach, we give a neat proof of the conversion between the truth table and polynomial form

of a Boolean function. The linear structure of Boolean functions is also investigated.
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1 Introduction

Boolean function (or logical function) is a basic concept in Boolean algebra, which plays a fundamental

role in computer sciences, circuit design, cryptography, etc.[1, 2, 3, 4]. In investigation of cellular networks,

Kauffman proposed the Boolean network, which is a dynamic system consisting of Boolean functions[5].

It has then become a very useful tool in modeling of cell regulation[6, 7]. Boolean function can also be

used in game theory[8, 9, 10], it is called a simple game or voting game, by which the social choice (e.g.

the election) can be analyzed.

Denoting D = {0, 1}, an n-ary Boolean function is a function f : Dn → D. There are many ways

to express a Boolean function, among them the truth table is the most natural one. The polynomial

expression and Walsh spectral expression are two of the most useful tools in the analysis of Boolean

function. There are also some graphic expressions which are more efficient in computing, such as binary

decision diagrams[11] and propositional directed acyclic graphs[12]. The conversion among different

expressions is a fundamental and challenging topic.

Different applications invoke different properties of Boolean functions. Linearity is a basic property.

In the design of circuits, linear Boolean functions are widely used, since they are easily realizable. But the

linearity is a critical weakness in cryptography for the functions with linear structure are easily breakable

[13], the ones with high nonlinearity are preferred. Thus, it is important to check whether a Boolean

function has a linear structure.

Recently, using the semi-tensor product of matrices, a Boolean function can be expressed in a matrix

form[14, 15]. In this paper, using the matrix form of Boolean function, we give a formula for the conversion

between the truth table and the polynomial expression of Boolean functions and propose a way to find

out the linear structure of a Boolean function.

The rest of the paper is organized as follows: Section 2 reviews the polynomial expression and the

matrix form of Boolean function. Using the matrix form, a formula converting the truth table to the
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polynomial expression is obtained in Section 3, which is essentially the same as the known result [3],

but neat proof is provided by using semi-tensor product. Section 4 investigates the linear structure of

Boolean networks. Section 5 is a brief conclusion.

2 Expressions of Boolean Functions

To introduce the matrix expression of Boolean functions, we first briefly review the semi-tensor product

(STP) of matrices.

Definition 2.1 [14] Let A ∈ Mm×n, B ∈ Mp×q, and c = lcm(n, p) (the least common multiple of n

and p). Then the semi-tensor product (STP) of matrix A and B, denoted by AnB, is defined as

AnB = (A⊗ I c
n

)(B ⊗ I c
p
), (1)

where “⊗” is Kronecher product.

When n = p, it is easy to see that A n B = AB, and hence “n” will be omitted hereafter. For

statement ease, we introduce some notations.

Notations:

(i) Let δin be the i-th column of the identity matrix In, and ∆n := {δ1n, δ2n, · · · , δnn}. When n = 2 we

simply use ∆ := ∆2.

(ii) Denote by Col(A) (Row(A)) the set of columns (rows) of A, and Coli(A) (Rowi(A)) the i-th column

(row) of A.

(iii) Assume a matrix L = [δi1n δi2n · · · δisn ] ∈Mn×s , i.e., its columns, Col(L) ⊂ ∆n. We call L a logical

matrix, and simply denote it as

L = δn[i1 i2 · · · is].

The set of n× s logical matrices is denoted by Ln×s.

(iv) W[n,m] is a swap matrix which can swap two vectors in their “product”. We refer to [14] for its

definition and properties, and (2) for its basic functions.

One advantage of the STP is pseudo-commutativity. This property is important for obtaining the

matrix form of Boolean functions. The following proposition about pseudo-commutativity and reducing

matrix will be frequently used in this paper.

Proposition 2.2 [15]

1. Let x ∈ Rm and y ∈ Rn be two column vectors. Then

W[m,n]xy = yx. (2)

2. Let x ∈ Rt and A is a given matrix. Then

xA = (It ⊗A)x. (3)
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3. Let x ∈ ∆n. Then x2 = Mn
r x, where

Mn
r := diag[δ1n δ

2
n · · · δnn ].

is call the base-n order reducing matrix.

Then, we consider the expression of elements in Dn. We propose the following three ways to express

it.

(i) Component-wise (C-W) Form:

X = (x1, x2, · · · , xn), xi ∈ D, i = 1, · · · , n. (4)

(ii) Scalar Form: Consider x1 x2 · · · xn as a binary number. Then in decimal form we have a number

as

χ = x12n−1 + x22n−2 + · · ·+ xn, (5)

where 0 ≤ χ ≤ 2n − 1.

(iii) Vector form: Identify 1 ∼ δ12 and 0 ∼ δ22 , then xi ∈ ∆2 and we set

x := nni=1xi ∈ ∆2n . (6)

The component-wise form can be considered as the binary representation of the scalar form, thus

they are equivalent. The vector form is obtained from the component-wise form. Then, the following

conversion between scalar form and vector form ensures that the three expressions of elements in Ds are

equivalent. Thus, in the sequel we will not distinct them if there is no possible confusion.

Proposition 2.3 Let χ be a scalar form of x ∈ ∆2n . Then

x = δ2
n−χ

2n . (7)

Equivalently, let x = δt2n . Then

χ = 2n − t. (8)

Using the definitions and Proposition 2.3, it is easy to convert an element in Dn from one form to

another. We give an example for this.

Example 2.4 Let n = 8. Then

χ = 51 ⇔ X = (0, 0, 1, 1, 0, 0, 1, 1) ⇔ x = δ20528 ;

X = (1, 1, 0, 0, 1, 0, 1, 0) ⇔ χ = 27 + 26 + 23 + 21 = 202 ⇔ x = δ5428 ;

x = δ12028 ⇔ χ = 28 − 120 = 136 ⇔ X = (1, 0, 0, 0, 1, 0, 0, 0).

A natural way to express a Boolean function f is to range the values of all the elements in Dn in a

vector:

[f(δ12n), f(δ22n), · · · , f(δ2
n

2n )]T . (9)

That is the truth table of f .
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The addition ⊕ and the multiplication � over D is defined asa⊕ b := a+ b (mod 2)

a� b := ab (mod 2).
(10)

Then GF (2) := {D,⊕,�} forms a field, call the Galois Field. In fact, ⊕ and � are logical operators ∨̄
and ∧ respectively. For the sake of compactness, we simply denote a⊕ b = a+ b, and a� b = ab.

For x ∈ D, denote x1 := x, x0 = ¬x. Then, it is obvious that for c ∈ D,

xc =

1, x = c

0, x 6= c.
(11)

For X = (x1, x2, · · · , xn) ∈ Dn and C = (c1, c2, · · · , cn) ∈ Dn, define

XC :=

n∏
i=1

xcii =

1, X = C

0, X 6= C.
(12)

Hence, it is obvious that

f(X) =

2n−1∑
C=0

f(C)XC . (13)

Replacing x1i by xi, and x0i by xi+1 in (13), the Boolean function f can be expressed as a polynomial

in GF (2) as

f(x) =a0 + a1x1 + · · · anxn + a12x1x2 + · · ·+ an−1 nxn−1xn + · · ·+ a12···nx1x2 · · ·xn

=a0 +

n∑
k=1

∑
1≤j1<···<jk≤n

aj1···jkxj1 · · ·xjk .
(14)

The following theorem about the matrix form of Boolean functions was proved in [14].

Theorem 2.5 Let f : Dn → D be a Boolean function. Then there exists a unique logical matrix Mf ∈
L2×2n , called the structure matrix of f , such that in vector form f can be expressed as

f(x1, · · · , xn) = Mf nni=1 xi, xi ∈ ∆. (15)

The following table is the structure matrices of some logical operators.

Table 1: Structure Matrices of Operators

Operator Structure Matrix

¬ M¬ = δ2[2 1]

∧ M∧ = δ2[1 2 2 2]

∨ M∨ = δ2[1 1 1 2]

→ M→ = δ2[1 2 1 1]

↔ M↔ = δ2[1 2 2 1]

∨̄(or ⊕) M⊕ = δ2[2 1 1 2]
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Remark 2.6 Since the structure matrix is a logical matrix, it can be totally determined by its first row:

mf = Row1(Mf ).

Actually, mf is the truth table of Boolean function f .

We give an example to depict these expressions.

Example 2.7 Consider a Boolean function

f(x1, x2, x3) = x1 ∧ ¬(x2 → x3).

In vector form, we have

f(x1, x2, x3) =M∧x1M¬M→x2x3

=M∧(I2 ⊗M¬M→)x1x2x3

:=Mfx1x2x3 = δ2[2 1 2 2 2 2 2 2]x1x2x3.

It is easy to check that

mf = Row1(Mf ) = [0 1 0 0 0 0 0 0]

is the truth table of f .

Then, by (13), the polynomial expression of f is

f(x1, x2, x3) = x11x
1
2x

0
3 = x1x2(x3 + 1) = x1x2 + x1x2x3.

Walsh spectral expression is also a very useful expression of Boolean functions, and there are also

some graph expressions. But they are beyond the scape of this paper, thus we do not discuss them here.

3 Conversion Between Truth Table and Polynomial Expression

Note that in vector form,

xi ∼

(
x1i
x0i

)
=

(
xi

xi + 1

)
,

and for an n×m matrix A, A(Im ⊗B) = A⊗B. Then by the matrix form (15) of Boolean function f ,

we have

f(x) = mf

(
x1

x1 + 1

)(
x2

x2 + 1

)
· · ·

(
xn

xn + 1

)

= mf

[
0 1

1 1

](
1

x1

)
· · ·

[
0 1

1 1

](
1

xn

)

= mf


[

0 1

1 1

]
⊗ · · · ⊗

[
0 1

1 1

]
︸ ︷︷ ︸

n


(

1

x1

)(
1

x2

)
· · ·

(
1

xn

)

:= mfPnξn,
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where

Pn =


[

0 1

1 1

]
⊗ · · · ⊗

[
0 1

1 1

]
︸ ︷︷ ︸

n

 , (16)

and

ξn =

(
1

x1

)(
1

x2

)
· · ·

(
1

xn

)
= (1, xn, xn−1, xn−1xn, xn−2, · · · , x1x2 · · ·xn)T (17)

is a basis of the polynomials on GFn(2). Then mfPnξn is already a polynomial.

Alternatively, the standard polynomial expression (14) of a Boolean function f can be written as

f(x) = βηn (18)

where

ηn = (1, x1, · · · , xn, x1x2, · · · , xn−1xn, · · · , x1x2 · · ·xn)T

arranged as a natural alphabetic and power increasing order. To convert mfPnξn into the standard

polynomial expression, we just need to reorder the entries in ξn.

Lemma 3.1 Let µi1,i2,··· ,ir , i1 < i2 · · · < it be the positions where xi1xi2 · · ·xit appear in ξn. Then

µi1,i2,··· ,ir =

r∑
j=1

2n−ij + 1. (19)

Proof. By direct computation, we know that for any j, the position where xn−j appears for the first time

is µn−j=2j + 1. And then xn−jxn−k appears at 2k after xn−k, thus its position is 2j + 2k + 1.

Then for any xn−i1xn−i2 · · ·xn−it , we can locate xn−i1 , xn−i1xn−i2 , · · · , xn−i1xn−i2 · · ·xn−it one after

another in a sequence, and in that way the conclusion follows. 2

Using Lemma 3.1, we construct Φn as follows

Φn = δ2n [1, φ1, φ2, · · · , φn], (20)

where φr = (µ1,2,··· ,r, µ2,··· ,r+1, · · · , µn−r+1,n−r+2,··· ,n), r = 1, 2, · · · , n. Then one can check easily that

ξn = Φnηn.

Note that Φ−1n = ΦTn , the following theorem is obvious.

Theorem 3.2 Assume mf is the truth table of a Boolean function f , and the corresponding standard

polynomial expression is (18). Then we have

β = mfPnΦn

mf = βΦTnP
−1
n .

(21)

We give an example to depict this.
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Example 3.3 Recall Example 2.7. The truth table of f is

mf = [0 1 0 0 0 0 0 0].

By straightforward computation we have

P3 =

[
0 1

1 1

]
⊗

[
0 1

1 1

]
⊗

[
0 1

1 1

]
=



0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 1

0 0 0 0 0 1 0 1

0 0 0 0 1 1 1 1

0 0 0 1 0 0 0 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

1 1 1 1 1 1 1 1


.

Then

f(x) = mfP3

(
1

x1

)(
1

x2

)(
1

x3

)
= [0 0 0 0 0 0 1 1](1, x3, x2, x2x3, x1, x1x3, x1x2, x1x2x3)T

= x1x2 + x1x2x3.

It is the same as the polynomial expression obtained in Example 2.7.

4 Linearity of Boolean Functions

In this section, we consider the linearity of Boolean functions. Since Boolean functions can be expressed

in polynomial form, the Boolean functions with only linear terms are called the linear Boolean functions.

The linear structure is a generalized linearity. It was pointed out in introduction that the existence of

linear structures is a weakness in cryptography. We first give the rigorous definition of linear structure.

Definition 4.1 Let f : Dn → D ba a Boolean function.

1. a ∈ Dn is called an invariant linear structure (ILS) of f , if f(x+ a) + f(x) = 0.

2. a ∈ Dn is called a variant linear structure (VLS) of f , if f(x+ a) + f(x) = 1.

3. Denote by

E0 := {a ∈ Dn | f(x+ a) + f(x) = 0}
E1 := {a ∈ Dn | f(x+ a) + f(x) = 1}
E := E0 ∪ E1.

(22)

Then E is called the linear structure subspace of f .

4. If E 6= {0}, f is called a Boolean function with linear structure (BFLS). For a BFLS, if E0 6= {0},
it is said to be of type I, otherwise, it is said to be of type II.
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Though there have already been many efficient algorithms to check wether a Boolean function have

linear structure[13], we can give a precise formula to calculate E0 and E1. Let f : Dn → D be a Boolean

function with its structure matrix Mf ∈ L2×2n . Denote by a = nni=1ai, x = nni=1xi. Then it is easy to

see that (a1, · · · , an) ∈ E0, if and only if

MfM⊕a1x1M⊕a2x2 · · ·M⊕anxn = Mfx1x2 · · ·xn. (23)

A straightforward computation shows that (23) is equivalent to

MfM⊕ nn−1i=1 (I22i ⊗M⊕) nn−1i=1

(
I2i ⊗W[2,2i]

)
ax = Mfx. (24)

Define

Ψf := MfM⊕ nn−1i=1 (I22i ⊗M⊕) nn−1i=1

(
I2i ⊗W[2,2i]

)
,

where M⊕ nn−1i=1 (I22i ⊗M⊕) nn−1i=1

(
I2i ⊗W[2,2i]

)
is a constant matrix depends only on n. Split Ψf into

2n blocks as

Ψf = [ψ1 ψ2 · · · ψ2n ],

where ψk = Blkk(Ψf ), k = 1, 2, · · · , 2n. Then the following result is straightforward verifiable.

Proposition 4.2 Let α = nni=1ai = δi2n . Then (a1, · · · , an) ∈ E0, iff ψi = Mf . (a1, · · · , an) ∈ E1, if

and only if ψi = M¬Mf .

Example 4.3 Recall Example 2.7. From the polynomial form

f(x) = x1x2 + x1x2x3,

one sees easily that it is not linear Boolean function. Next, we will check whether it has a linear structure.

Since

Mf = δ2[2 1 2 2 2 2 2 2],

and

M¬Mf = δ2[1 2 1 1 1 1 1 1],

then
Ψf = δ2[2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 1

2 2 2 2 1 2 2 2 2 2 2 2 2 1 2 2

2 2 1 2 2 2 2 2 2 2 2 1 2 2 2 2

1 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2].

Since only ψ8 = Mf , we know that E0 = {0} and E1 = ∅, f has no linear structure.

5 Conclusion

Using semi-tensor product of matrices, Boolean functions can be expressed in matrix form. This paper
showed that it is more convenient to convert a Boolean functions truth table into its polynomial expression
using the semi-tensor product approach. The formula to find the linear structure is also given in the matrix
form. The semi-tensor product approach is a new method to represent Boolean functions, this paper only
investigates a few usages of this approach. We believe that more properties of Boolean functions can be
revealed using this approach in the future.
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