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Abstract— Using semi-tensor product of matrices and the
matrix expression of logic, formulas for calculating Boolean
derivatives are obtained. Using this form, the solvability of
Boolean algebraic equations and Boolean differential equations
is considered. Its application to fault detection of combinational
circuits is investigated. Then we define the Boolean integrals
as the inverse of the Boolean derivative in certain sense.
Three kinds of integrals are proposed. The inverse of a partial
derivative with respect to xi is called the ith primitive function.
The inverse of a differential form is called the indefinite integral.
A necessary and sufficient condition for the existence of the
indefinite integral is proved. Using the unique indefinite integral
(up to complement equivalence), definite integral is also defined.
Simply computable formulas are provided for solving each kind
of integrals.

I. INTRODUCTION

Right after G. Boole invented an algebra in 1847, which
is lately called the Boolean algebra, an effort rose, which
attempts to establish Boolean analogues of concepts and
results from Calculus. The first version of Boolean Dif-
ferential Calculus was proposed by Daniell in 1917 [14].
Some forty years later after Shannon proposed the switching
algebra in the evaluation of switching circuit designing,
it was discovered that the partial derivatives of Boolean
functions are particularly useful in switching theory [23],
[3]. Since then, the Boolean derivative has been developed
quickly, both in view of applications and for its own algebraic
interest [22], [5], [34], [27], [30], [15].

There are several definitions on Boolean derivative, we
adopt the common definition of Boolean derivative, which
can be found, for instance, in [33], [29]. A general definition
and basic properties and some applications can be found
in [29]. The fundamental requirements and satisfactory of
Boolean derivatives are discussed in[25].

Many applications of Boolean derivatives have been re-
ported. The applications include control of Boolean networks
[20], synthesis of discrete event systems [26], logical circuit
analysis [5], [19], asynchronous circuit design [28], image
edge detection [2], selection probabilities of stack filters [16],
cellular automata and finite state machine [21], [32], etc.
These evidence that Boolean derivative is a useful tool.

Recently, a new matrix product, called the semi-tensor
product, has been proposed and it has been successfully
applied to the analysis and control of Boolean networks
[13]. We also refer to [6], [7], [8], [9], [10], [11], [12] for
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its applications to the topological structure, controlability,
observability, stabilization, disturbance decoupling, etc. of
Boolean (control) networks.

The key point of this approach is to convert a logical
expression into an algebraic form, and then the known
methods for analyzing conventional static and/or dynamic
systems are applicable to logical (dynamic) systems. This
new technique is the crucial tool for the investigation in this
paper.

The first interesting topic is the calculation of Boolean
derivatives [35], [18]. Using semi-tensor product, [19] at-
tempts to provide the general formulas for calculating the
Boolean derivatives. Following [19], we provide a formula
for calculating the structure matrix of a Boolean derivative. It
is essentially equivalent to the fast implementation presented
by [1], which is coined the jth partial derivative transform,
using matrix multiplication [2]. But our vector form is
convenient in later use.

Then the Boolean algebraic and differential equations are
investigated. Algorithms are provided to solve the equations.
As an application, the fault detection of combinational cir-
cuits is investigated.

Another interesting topic is the counterpart of the Boolean
derivative, that is, the the Boolean integral. There are much
less literatures on Boolean integral. [31] provides some
interesting insights for Boolean integral. But it seems to the
author that there is no convergent definition yet.

Using the formula for calculating Boolean derivatives, we
formulate the Boolean integral, as the inverse of the Boolean
derivative. Three kinds of the inverses of Boolean derivatives
are defined. The inverse of a partial derivative, is called the
primitive function; the inverse of a differential form, called
the indefinite integral. Using the derivative algorithm, the
indefinite integral can be calculated easily. The uniqueness
of the indefinite integral (up to a complement equivalence) is
proved. Using this uniqueness, the evaluation of the indefinite
integral with an integral function over a given reagin, which
is called the definite integral, is defined. Easily computable
formulas are also provided for each kind of integrals.

The rest of this paper is organized as follows: Section 2
consists of some preliminaries which provide fundamental
tools for later investigation, including the semi-tensor prod-
uct of matrices, the matrix expression of logical equations,
and the Boolean product of Boolean matrices. Section 3
discusses the calculation of Boolean derivatives. Some easily
computable formulas are developed. Section 4 is devoted to
solving Boolean algebraic equations and Boolean differential
equations. After providing general algorithms for solving
them, the application to fault detection of combinational



circuits is investigated. The Boolean integral is proposed in
Section 5. Three kinds of Boolean integrals are built and
the related formulas are also provided to calculate them.
Some examples are presented to illustrate the concepts and
algorithms. Section 6 is a brief conclusion.

II. PRELIMINARIES

First, we introduce some notations.
• Mm×n: the set of m× n real matrices.
• 1m×n (0m×n): a matrix inMm×n with all entries equal

1 (correspondingly, 0).
If no ambiguity is possible, we simply use 1n for 1n×n
0 for 0n, or 0Tn , or 0m×n.

• D = {1, 0}.
• δkn is the k-th column of the identity matrix In.
• ∆n := {δ1n, · · · , δnn}. For compactness, ∆ := ∆2.
• Coli(A) (Rowi(A)) is the i-th column (i-th row) of a

matrix A, the set of all the columns (rows) of A is
denoted by Col(A) (Row(A)).

• A matrix L ∈ Mn×m is called a logical matrix if its
columns, Col(M) ⊂ ∆n.
The set of n×m logical matrices is denoted by Ln×m.

• Let L ∈ Ln×m. Then

L = [δi1n , δ
i2
n , · · · , δimn ].

For the sake of briefness, it is denoted as

L = δn[i1, i2, · · · , im].

• A matrix A = (ai,j) ∈ Mm×n is called a Boolean
matrix if its entries ai,j ∈ D. The set of m×n Boolean
matrices is denoted by Bm×n.

• Let A = (ai,j), B = (bi,j) ∈ Bm×n. Then ¬A =
(¬ai,j); and A ∧B = (ai,j ∧ bi,j), etc.

• A swap matrix W[n,m] ∈ Mmn×mn is designed to
swap two vector factors in their “product”. We refer
to [9] or [13] for its definition and properties, and to
the following (3) for its basic function.

Definition 2.1: [9], [13] Let M ∈ Mm×n and N ∈
Mp×q . The semi-tensor product of matrices, denoted by
M nN , is defined as

M nN :=
(
M ⊗ Is/n

) (
N ⊗ Is/p

)
, (1)

where s = lcm{n, p} is the least common multiple of n and
p, ⊗ is the Kronecher product of matrices.

Remark 2.2: Throughout this paper, unless else product
symbol is used, the matrix product is assumed to be semi-
tensor product, which contains the conventional matrix prod-
uct as its particular case when n = p. Hence, the symbol n
can be omitted. We do this in the sequel. Since all the product
properties of the conventional matrix product remain correct,
we can perform the semi-tensor product as conventional
product without worrying about the dimensions.

Definition 2.3: A k-ary logical function (or operator) is
a mapping f : Dk → D. It is commonly expressed as
f(x1, · · · , xk), where xi ∈ D, i = 1, · · · , k.

To use the matrix expression of logic, we identify 1 ∼ δ12
and 0 ∼ δ22 . Under this vector form, a logical function f :

TABLE I
STRUCTURE MATRICES OF OPERATORS

Operator Structure Matrix
¬ M¬ = δ2[2 1]
∧ M∧ = δ2[1 2 2 2]
∨ M∨ = δ2[1 1 1 2]
→ M→ = δ2[1 2 1 1]
↔ M↔ = δ2[1 2 2 1]

∨̄(or ⊕) M⊕ = δ2[2 1 1 2]

Dk → D becomes a function f : ∆k → ∆, (or equivalently,
f : ∆2k → ∆).

Theorem 2.4: [13] Let f : Dk → D. Then there exists
a unique logical matrix Mf ∈ L2×2k , called the structure
matrix of f , such that in vector form we have

f(x1, · · · , xk) = Mfx, (2)

where x = nki=1xi ∈ ∆2k .
For convenience, we give the structure matrices of some

commonly used logical operators in Table I.
Remark 2.5: Let Mf ∈ L2×2k be the structure matrix of

f : Dk → D. Then Row1(Mf ) is the truth table of f (in row
form) and Row2(Mf ) = ¬Row1(Mf ). We simply denote

mf := RowT
1 (Mf ).

Finally, we need a lemma, which is useful in the sequel.
Lemma 2.6: [13]
1) Let x ∈ Rm and y ∈ Rn be two column vectors. Then

W[m,n]xy = yx. (3)

2) Let x ∈ Rt and A is a given matrix. Then

xA = (It ⊗A)x. (4)

3) Let x = nki=1xi. Then

x2 = M2k

r x, (5)

where
Mn
r := diag[δ1n δ

2
n · · · δnn ].

A Boolean algebra on D is a quadruple (D,+B,×B,¬).
We refer to [24] for an elementary definition. For our
purpose, we only consider Galois algebra in which +B = ⊕
and ×B = ∧. We firstly define the Boolean product of
matrices under such algebra.

Definition 2.7: For a Boolean algebra B = (D,⊕,∧,¬),
we define

1) The Boolean product of A = (ai,j) ∈ Bm×n and B =
(bi,j) ∈ Bn×s is defined as

AnB B := (ci,j) ∈ Bm×s, (6)

where

ci,j = ai,1 ∧ b1,j ⊕ ai,2 ∧ b2,j ⊕ · · · ⊕ ai,n ∧ bn,j .

2) The Boolean semi-tensor product of A = (ai,j) ∈
Bm×n and B = (bi,j) ∈ Bp×q is defined as

AnB B =
(
A⊗ Is/n

)
nB

(
A⊗ Is/p

)
, (7)

where s = lcm(n, p).



Note that (6) is a particular case of (7).
The following properties are immediate consequence of

the definition.
Proposition 2.8: Assume A,B ∈ Bm×n, and C,D are of

arbitrary dimensions. Then
1) (Commutative Law)

A⊕B = B ⊕A. (8)

2) (Associative Law)

AnB (C nB D) = (AnB C) nB D. (9)

3) (Distributive Law)

(A⊕B) nB C = (AnB C)⊕ (B nB C). (10)

4)

[AnB B]
T

= BT nB AT . (11)
We give a simple example to depict it.
Example 2.9: Let

A =

[
1 1
0 1

]
, B =

[
1 1
1 0

]
, C =


1 0
0 1
1 1
1 0

 .

A⊕B =

[
0 0
1 1

]
, AnB C =


0 1
1 1
1 1
1 0

 ,

CT nB AT =

[
1 0 1 1
0 1 1 0

]
nB

[
1 0
1 1

]
=

[
1 1 1 1
1 1 1 0

]
= (AnB C)T .

III. BOOLEAN DERIVATIVES

The Boolean derivative in this paper is defined as [4]
Definition 3.1: Let f(x1, · · · , xn) : Dn → D be a logical

function.
1) The Boolean derivative of f with respect to xi is

defined as
∂f

∂xi
= f(x1, · · · , xi, · · · , xn)⊕ f(x1, · · · ,¬xi, · · · , xn).

(12)

2) The higher order derivative of f with respect to xi1 ,
· · · , xik is defined recursively as

∂kf

∂xi1 · · · ∂xik
=

∂

∂xi1

(
∂

∂xi2

(
· · ·
(
∂f

∂xik

)))
.

(13)
We cite some basic properties in the following.
Proposition 3.2: [33]
1) ∂f

∂xi
is independent of xi, and hence

∂2f

∂2xi
= 0.

2)

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
. (14)

3)

∂(f1 ⊕ f2)

∂xi
=
∂f1
∂xi
⊕ ∂f2
∂xi

. (15)

4)

∂(f1f2)

∂xi
=
∂f1
∂xi

f2 ⊕ f1
∂f2
∂xi
⊕ ∂f1
∂xi

∂f2
∂xi

. (16)

5) Denote f̄ := ¬f , and x̄ := ¬x, then

∂f̄

∂xi
=

∂f

∂xi
, and

∂f

∂x̄i
=

∂f

∂xi
. (17)

Using the vector form of logical expression as introduced
in Section 2, we can easily obtain the matrix expression of
∂
∂xi

, denoted by M∂if . Denote by Mf the structure matrix
of f and x := nni=1xi. Using (12), we have

∂f

∂xi
= M∂ifx = Mfx⊕Mfx1 · · · x̄i · · ·xn. (18)

Then using Lemma 2.6 to simplify the right hand side of
(18), it is easy to have that [19]

M∂if = M⊕Mf [I2n ⊗Mf (I2i−1 ⊗M¬)]M2n

r . (19)

Then the higher order derivatives can also be calculated
recursively [19].

In the following we shall give an explicit form of the
structure matrices of the derivatives. Consider the structure
matrix of g(x1, · · · , xn) := f(x1, · · · , x̄i, · · · , xn). Assume
the structure matrices of f and g are Mf and Mg respec-
tively. Using (4), we have

Mgx = Mfx1 · · ·M¬xi · · ·xn
= Mf (I2i−1 ⊗M¬)x.

That is,

Mg = Mf (I2i−1 ⊗M¬) . (20)

The following proposition is obvious.
Proposition 3.3: Assume f(x1, · · · , xn) and

g(x1, · · · , xn) have their truth tables as mf ,mg ∈ B2n
respectively, and σ is a binary logical operator. Then

mfσg = mfσmg. (21)
Using Remark 2.5 and Proposition 3.3, we have

mT
∂if = mT

f ⊕mT
f (I2i−1 ⊗M¬). (22)

Using the distributive law (10), we can calculate that

mT
∂if

= mT
f ⊕mT

f (I2i−1 ⊗M¬)

= mT
f nB I2i ⊕mT

f n⊕ (I2i−1 ⊗M¬)

= mT
f nB (I2i ⊕ (I2i−1 ⊗M¬))

= mT
f nB (I2i−1 ⊗ (I2 ⊕M¬))

= mT
f nB (I2i−1 ⊗ 12×2) .

We conclude that



Theorem 3.4: Let f(x1, · · · , xn) be a Boolean function
with structure matrix Mf . Then The structure matrix of ∂f

∂xi
,

denoted by M∂if , is

M∂if =

[
Row1(Mf ) nB Ξin
¬Row1(Mf ) nB Ξin

]
(23)

where
Ξin = I2i−1 ⊗ 12×2.

Hence, in vector form,

∂f

∂xi
= M∂ifx, (24)

where x = nni=1xi. Moreover,

m∂if =
[
Ξin
]T
mf . (25)

As we know that ∂f
∂xi

is independent of xi, so one may
be interested in an alternative expression as

∂f

∂xi
= M∂[i]fx1 · · ·xi−1x̂ixi+1 · · ·xn, (26)

where notation “x̂i” means xi is omitted.
To calculate M∂[i]f , we dividing M∂if into 2i equal blocks

as
M∂if = [C1 C2 · · · C2i ].

One sees easily that to get M∂[i]f from M∂if , we need only
to pick out all odd (or even) blocks. It can be done by right-
multiply (

I2i−1 ⊗
[

I2n−i

02n−i×2n−i

])
.

That is,

M∂[i]f =

[
Row1(Mf ) nB [Ψi

n]T

¬Row1(Mf ) nB [Ψi
n]T

]
(27)

where

Ψi
n =

(
I2i−1 ⊗

[
I2n−i 02n−i×2n−i

])
nB (I2i−1 ⊗ 12×2)

=Ii−1 ⊗ 1T2 ⊗ In−i.

Note that the transpose of the first row RowT
1 (Mf ) is the

truth table of f . We have the following
Corollary 3.5: Assume the truth table of a logical func-

tion f(x1, · · · , xn) is mf . Then the truth table of ∂f
∂xi

, in
condensed form, is

m∂[i]f = Ψi
nmf . (28)

Corollary 3.5 coincides with the result in [1], [2].
The following Corollaries 3.6 and 3.7, which are conve-

nient in numerical computation, are obvious.
Corollary 3.6: Divide mT

f into 2i blocks

mT
f = (c1,1 c1,2 c2,1 c2,2 · · · c2i−1,1 c2i−1,2).

Then mT
∂[i]f

can be calculated directly by

mT
∂[i]f

= (c1,1 ⊕ c1,2 c2,1 ⊕ c2,2 · · · c2i−1,1 ⊕ c2i−1,2).

(29)

Corollary 3.7: The truth table of ∂kf
∂xi1 ···∂xik

is (assume
i1 > i2 > · · · > ik):

m∂[ik,··· ,i1]f = Ψik
n−k+1Ψ

ik−1

n−k+2 · · ·Ψ
i1
nmf . (30)

Note that in (30) we require i1 > i2 > · · · > ik
because otherwise, the later positions need to be adjusted.
For instance, say, i1 < i2, then after differentiate with respect
to xi1 the position for i2 becomes i2 − 1. So we need this
order. Because of (14), we can assume this without loss of
generality.

We give an example to show how to calculate the deriva-
tives. To this end, we introduce the MacLaurin expansion of
a Boolean function.

Theorem 3.8: [3] A Boolean function f(x1, · · · , xn) has
its MacLaurin expansion as

f(x1, · · · , xn) =f(0)⊕
n⊕
i=1

∂f

∂xi

∣∣∣∣
0

∧ xi

⊕
⊕

1≤i1<i2≤n

∂2f

∂xi1∂xi2

∣∣∣∣
0

∧ xi1 ∧ xi2 ⊕ · · ·

⊕ ∂nf

∂x1∂x2 · · · ∂xn

∣∣∣∣
0

∧ x1 ∧ · · · ∧ xn.

(31)
Example 3.9: Assume f(x1, x2, x3, x4) = (x1∨̄x2) →

(x3 ∨ x4). Its truth table is*

mf = [1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1]T .

Using (28),
Ψ1

4 =
[
I4 I4

]
,

the truth table of ∂f
∂x1

is

m∂[1]f = Ψ1
4 nB mf = [0 0 0 1 0 0 0 1]T .

Similarly,

Ψ2
4 =

[
I3 I3 0 0
0 0 I3 I3

]
.

m∂[2]f = Ψ2
4 nB mf = [0 0 0 1 0 0 0 1]T .

Ψ3
4 =


I2 I2 0 0 0 0 0 0
0 0 I2 I2 0 0 0 0
0 0 0 0 I2 I2 0 0
0 0 0 0 0 0 I2 I2

 .
m∂[3]f = Ψ3

4 nB mf = [0 0 0 1 0 1 0 0]T .

Ψ4
4 =


1 1 0 0 · · · 0 0
0 0 1 1 · · · 0 0

. . .
0 0 0 0 · · · 1 1

 .
m∂[4]f = Ψ4

4 nB mf = [0 0 0 1 0 1 0 0]T .

*A toolbox for all the related computations is available at http://lsc.
amss.ac.cn/˜dcheng/

http://lsc.amss.ac.cn/~dcheng/
http://lsc.amss.ac.cn/~dcheng/


Using (30), we can also easily calculate that

m∂[1,2]f = [0 0 0 0]T ; m∂[1,3]f = [0 1 0 1]T ;

m∂[1,4]f = [0 1 0 1]T ; m∂[2,3]f = [0 1 0 1]T ;

m∂[2,4]f = [0 1 0 1]T ; m∂[3,4]f = [0 1 1 0]T ;

m∂[1,2,3]f = [0 0]T ; m∂[1,2,4]f = [0 0]T ;

m∂[1,3,4]f = [1 1]T ; m∂[2,3,4]f = [1 1]T ;
m∂[1,2,3,4]f = [0].

Note that evaluating the Boolean derivatives at 0 is equivalent
to taking last element of its corresponding true table. Hence
we havethe MacLaurin expansion of f(x) as

f(x1, x2, x3, x4)

=1⊕ x1 ⊕ x2 ⊕ x1 ∧ x3 ⊕ x1 ∧ x4 ⊕ x2 ∧ x3
⊕ x2 ∧ x4 ⊕ x1 ∧ x3 ∧ x4 ⊕ x2 ∧ x3 ∧ x4.

(32)

IV. APPLICATION TO SOME RELATED PROBLEMS

Firstly, we consider the solution of Boolean equations
which involves a known Boolean function f(x1, · · · , xn) and
its Boolean derivatives as

Gj

(
xi, f,

∂f

∂xi
, · · · , ∂kf

∂xi1 · · · ∂xik

)
= cj ,

j = 1, · · · , s, i = 1, · · · , n.
(33)

Using (27), solving the equations (33) is standard [13].
We describe it as an algorithm.

Algorithm 4.1: • Step 1: Convert each logical equation
into its algebraic form as

Mjx = cj , j = 1, · · · , s, (34)

where Mj ∈ L2×2n .
• Step 2: Multiply all equations in (34) together to build

a system as

Mx = c, (35)

where x = nni=1xi, c = nsi=1ci, and M ∈ L2s×2n is
constructed as

Coli(M) = nsj=1 Coli(Mj), i = 1, · · · , 2n. (36)

• Step 3: Find all the solutions δj2n , which satisfies
Colj(M) = c.

The fault detection of combinational circuits [17], [19] is
a typical example of this problem. Let f(x1, · · · , xn) be a
Boolean function describing a combinational circuit. the test
vector set for double stuck-at faults xi(s−a−α), xj(s−a−β)
is the set of solutions of

x̄αi x
β
j

∂f

∂xi
⊕ xαi x̄

β
j

∂f

∂xj
⊕ x̄αi x̄

β
j

∂2f

∂xi∂xj
= 1, (37)

where α, β ∈ D, and x1 := x, x0 := x̄.
We give an example to depict it.
Example 4.2: Assume a combinational circuit is described

as [19]

f(x1, · · · , x5)

=¬{¬[x2 ∨ (¬x1 ∧ ¬x3)] ∨ ¬(x1 ∨ x5)

∨¬(x4 ∨ x5) ∨ ¬[¬x3 ∨ (¬x2 ∧ ¬x4)]} .
(38)

We look for the test vector set for the double stuck at x3(s−
a− 1), and x4(s− a− 0).

That is, to solve the equation

x̄3x̄4
∂f

∂x3
⊕ x3x4

∂f

∂x4
⊕ x̄3x4

∂2f

∂x3∂x4
= 1, (39)

The structure matrix of f is

Mf = δ2[1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2

1 2 1 2 2 2 2 2 2 2 2 2 2 2 1 2].

Then, using Corollary 3.6, it is easy to obtain

M∂[3]f = δ2[1 1 1 2 2 2 2 2 1 2 1 2 2 2 1 2]
M∂[4]f = δ2[2 1 2 2 2 2 2 2 2 2 2 2 2 2 1 2]
M∂[3,4]f = δ2[2 1 2 2 2 2 1 2].

By direct computation, the matrix form of (39) is

Mx = 1,

where x = n5
i=1xi, and

M = δ2[2 1 2 2 2 1 1 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 1 2 2 2 2 2 1 2 1 2].

Thus, the solution is{
x = δi32|i = 2, 6, 7, 23, 29, 31

}
,

or, in scalar form

{(1, 1, 1, 1, 0), (1, 1, 0, 0, 1), (1, 1, 0, 0, 0),

(0, 1, 0, 0, 1), (0, 0, 0, 1, 1), (0, 0, 0, 0, 1)} .
Next, we consider the case that in equations (33), the

Boolean function f(x1, · · · , xn) is unknown and with a
set of the boundary conditions f(0) and some Boolean
derivatives of f at 0. Then we call this kind of equations the
Boolean differential equations (BDE). If a Boolean function
g(x1, · · · , xn) satisfied (33) and the boundary conditions, it
is called a solution of the BDE with boundary conditions.

Example 4.3: Consider the following Boolean differential
equation with boundary condition F (0) = 0

∂F
∂x3

= ¬x1 ∧ ¬x4
∂2F

∂x1∂x4
= ¬(x2 ∨ x3) ∨ (x2 ∧ x3)

∂2F
∂x2∂x4

= ¬x1
∂2F

∂x1∂x3
∨ ∂2F
∂x1∂x2

= 1.

(40)

In vector form we have
M∂[3]F = δ2[2 2 2 2 2 1 2 1]

M∂[1,4]F = δ2[1 2 2 1]

M∂[2,4]F = δ2[2 2 1 1]

Col(M∨M∂[1,3]F (I4 ⊗M∂[1,2]F )(I2 ⊗W[2])(I4 ⊗M2
r )) = {δ12}.



Assume the first row of MF is [a1 a2 · · · a16], then

a1 ⊕ a3 = 0 a2 ⊕ a4 = 0
a5 ⊕ a7 = 0 a6 ⊕ a8 = 0
a9 ⊕ a11 = 0 a10 ⊕ a12 = 1
a13 ⊕ a15 = 0 a14 ⊕ a16 = 1
a1 ⊕ a2 ⊕ a9 ⊕ a10 = 1 a3 ⊕ a4 ⊕ a11 ⊕ a12 = 0
a5 ⊕ a6 ⊕ a13 ⊕ a14 = 0 a7 ⊕ a8 ⊕ a15 ⊕ a16 = 1
a1 ⊕ a2 ⊕ a5 ⊕ a6 = 0 a3 ⊕ a4 ⊕ a7 ⊕ a8 = 0
a9 ⊕ a10 ⊕ a13 ⊕ a14 = 1 a11 ⊕ a12 ⊕ a15 ⊕ a16 = 1
a3 ⊕ a7 ⊕ a11 ⊕ a15 = 1 a4 ⊕ a8 ⊕ a12 ⊕ a16 = 0.

Since F (0) = 0, we know that a16 = 0, then the solution is

mT
F = Row1(MF )

= [a b a b
c a⊕ ¬b⊕ ¬c c a⊕ ¬b⊕ ¬c
¬b⊕ ¬c a⊕ ¬c ¬b⊕ ¬c a⊕ c
a⊕ ¬b 1 a⊕ ¬b 0 ]

where a, b and c can be arbitrary Boolean numbers

V. BOOLEAN INTEGRAL

As we mentioned in the introduction, there is no com-
monly used definition for Boolean integral. [31] provides a
framework for Boolean integral. Unfortunately, the Boolean
derivative used in [31] is different from the standard one, and
hence the integral is in-consistent with the aforementioned
Boolean derivative. Moreover, the computation problem has
not been solved yet there.

In the following we define the Boolean integrals in the
sense that they are precisely the inverse of the Boolean
derivatives.

A. Primitive Function

First, we define primitive function.
Definition 5.1: Given a Boolean function f(x1, · · · , xn).

F (x1, · · · , xi−1, z, xi, · · · , xn) is called the ith primitive
function of f(x) (or the ith partial integral of f(x)) , denoted
by∫

f(x1, · · · , xn)d[i] = F (x1, · · · , xi−1, z, xi, · · · , xn),

(41)

if
∂F

∂z
= f(x1, · · · , xn). (42)

In the light of Corollary 3.5, the problem becomes solving
the equation

Ψi
n+1mF = mf . (43)

We give an example to demonstrate this.
Example 5.2: Assume f(x1, x2, x3) = x3 ∧ (x1 ∨ (x2 ↔

x3)). Find ∫
f(x1, x2, x3)d[2].

It is easy to calculate that

mf = [1 0 1 0 1 0 0 0]

Assume

F (x1, z, x2, x3) =

∫
f(x1, x2, x3)d[2],

with its truth table as

mF = [a1 a2 · · · a16]T .

By (43), we can obtain

mF = [c1 c2 c3 c4 ¬c1 c2 ¬c3 c4 c5 c6 c7 c8 ¬c5 c6 c7 c8]T ,

where ci, i = 1, · · · , 8 can be arbitrary Boolean numbers.

B. Indefinite Integral
Definition 5.3: Given a logical function F (x1, · · · , xn).

Its deferential form, denoted by dF , is defined as

dF :=
∂F

∂x1
dx1 + · · ·+ ∂F

∂xn
dxn. (44)

Note that in (44) the symbol “ + ” is considered as only an
adjacent notation, but not an operator.

Definition 5.4: Given a set of functions

fi(x1, · · · , xi−1, x̂i, xi+1 · · · , xn), i = 1, · · · , n.

A function F (x1, · · · , xn) is called the indefinite integral of
the differential form

dh = f1dx1 + f2dx2 + · · ·+ fndxn

(or simply, integral of {f1, · · · , fn}), if
∂F

∂xi
= fi, i = 1, · · · , n. (45)

Note that according to equation (17) one sees that if F is
an indefinite integral of dh, then so is F̄ .

Next, we consider when the indefinite integral exists.
Theorem 5.5: Consider a differential form

dh = f1dx1 + f2dx2 + · · ·+ fndxn.

There exists at least a pair of complemented indefinite
integrals, if and only if

∂fi
∂xj

=
∂fj
∂xi

, 1 ≤ i < j ≤ n. (46)

Proof. Necessity is trivial. We prove the sufficiency. Using
{fi|i = 1, · · · , n}, we can calculate

∂fi
∂xj

=
∂fj
∂xi

, 1 ≤ i < j ≤ n.

Similarly, we have third order cross derivatives as

∂2fi
∂xj∂xk

=
∂2fj
∂xi∂xk

=
∂2fk
∂xi∂xj

,

and even higher order cross derivatives. Using the obtained
partial derivatives and following the form of MacLaurin
expansion we can construct

F (x1, · · · , xn) =c⊕
n⊕
i=1

fi|0 ∧ xi

⊕
⊕

1≤i1<i2≤n

∂fi1
∂xi2

∣∣∣∣
0

∧ xi1 ∧ xi2 ⊕ · · ·

⊕ ∂n−1f1
∂x2 · · · ∂xn

∣∣∣∣
0

∧ x1 ∧ x2 ∧ · · · ∧ xn.



Then it is ready to verify that

F (x) =

∫
dh.

�
The following result comes from the constructive proof of

Theorem 5.5.
Corollary 5.6: If

∫
dh exists, then it is unique (up to a

complement equivalence).
In the following when we consider the integral of a

differential form, we assume
A1 integrable condition (46) holds.
Hence as long as dh is integrable, we can write an

indefinite integral as∫
dh = F (x) + C,

where C ∈ D.
In later use, we would like to specify F . So we also use

the following notation:∫
dh = F (x), F (0) = 0;∫
d̄h = F̄ (x), F̄ (0) = 1.

Next, we consider how to calculate the indefinite integral.
In fact, the constructive proof already provides a method to
find the integral. We are looking another simple proof.

The following result is an immediate consequence of
Corollary 3.5.

Theorem 5.7: Each indefinite integral of a differential
form dh = f1dx1 + · · · + fndxn has a solution z of the
following linear Galois algebraic system as its truth table.

Ψn nB z = b, (47)

where

Ψn =


Ψ1
n

Ψ2
n
...

Ψn
n

 ∈ Bn·2n−1×2n ; and b =


mT
f[1]

mT
f[2]
...

mT
f[n]

 ∈ Bn·2n−1 .

It is worth noting that to get the default solution, we need
to set z2n = 0.

Example 5.8: Assume n = 2. Then we have

Ψ2 =


1 0 1 0
0 1 0 1
1 1 0 0
0 0 1 1


Case 1: Assume f1 = x2, f2 = ¬x1. Then we have m∂[1]f =

[1 0]T , m∂[2]f = [0 1]T . The equation (47) becomes
1 0 1 0
0 1 0 1
1 1 0 0
0 0 1 1

nB


z1
z2
z3
z4

 =


1
0
0
1



Equivalently, we have
z1 ⊕ z3 = 1

z2 ⊕ z4 = 0

z1 ⊕ z2 = 0

z3 ⊕ z4 = 1.

Setting z4 = 0, which corresponds to F (0) = 0, we have
z1 = 0

z2 = 0

z3 = 1

z4 = 0.

That is, mF = [0 0 1 0]T . Hence, F = (¬x1 ∧ x2). Writing
it into integral form, we have∫

x2dx1 + ¬x1dx2 = (¬x1) ∧ x2. (48)

We also have∫
x2d̄x1 + ¬x1d̄x2 = (¬x1) ∧ x2 ⊕ 1. (49)

Case 2: Assume f1 = x2, f2 = 1. Then we have m∂[1]f =

[1 0]T and m∂[2]f = [1 1]T . It is easy to check that there is
no solution. Hence the integral does not exist.

C. Definite Integral
When the indefinite integral of

∫
dh exists, it is a pair

(F, F̄ ). Then we have the following definition.
Definition 5.9: Assume there is a differential form dh as

dh = f1(x̂1, x2, · · · , xn)dx1+· · ·+fn(x1, · · · , xn−1, x̂n)dxn,

a subset S ⊂ Dn, and a logical function g(x).
Assume

∫
dh = F (x) (with F (0) = 0). Then we define∫

S

g(x)dh =
∑
x∈S

g(x) ∧ F (x). (50)

We also denote the integral with respect to F̄ and define∫
S

g(x)d̄h =
∑
x∈S

g(x) ∧ F̄ (x). (51)

S is called the integral domain and g(x) the integrand.
It is easy to show that the definite integral, defined in

Definition (5.9), satisfies some basic properties of the definite
integral. For instance, we have

1) If f(x) ≤ g(x),∫
S

f(x)dh ≤
∫
S

g(x)dh. (52)

2) If S1 ⊆ S2, ∫
S1

g(x)dh ≤
∫
S2

g(x)dh. (53)

3) ∫
S1∪S2

g(x)dh =

∫
S1

g(x)dh+

∫
S2

g(x)dh

−
∫
S1∩S2

g(x)dh.

(54)



Define
supp(f) = {x|f(x) 6= 0} .

Let F =
∫
dh. Then we have∫
S

g(x)dh = |supp(F ) ∩ supp(g) ∩ S| .

Example 5.10: Recall Example 5.8. We consider the def-
inite integrals using the corresponding indefinite integrals.
Case 1: Assume f1 = x2, f2 = ¬x1. Then the default
indefinite integral is F = x1 ∧ (¬x2). Assume S =
{(x1, x2)|x1 → x2 = 1}. Then

S = {(1, 1), (0, 1), (0, 0)}.

Let the integrand be g(x1, x2) = x1 ↔ x2. Then it is easy
to calculate that∫

S

(x1 ↔ x2)x2dx1 + ¬x1dx2 = 0;

and ∫
S

(x1 ↔ x2)x2d̄x1 + ¬x1d̄x2 = 2.

Case 2: Assume f1 = x2, f2 = 1. Then we have that∫
S

x2dx1 + dx2 = ∅.

VI. CONCLUSION

Using semi-tensor product of matrices and the matrix
expression of logic, the calculation of Boolean derivative
was investigated. A very simple formula was obtained, which
converts the calculation of derivative into a modulo-2 matrix-
vector product. Using it, three kinds of Boolean integrals
were proposed. First, find f from ∂f

∂xi
is called its ith prim-

itive function. Second, find f from a differential form dh =
h1(x̂1, x2, · · · , xn)dx1 + · · ·+ hn(x1, · · · , xn−1, x̂n)dxn is
called the indefinite integral of dh. A necessary and suffi-
cient condition was obtained for the existence of indefinite
integral. Using indefinite integral, the definite integral was
also properly defined. Simple formulas were also obtained
for the calculation of each integrals.
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