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Abstract—It was shown in [2] that the vector space of finite
noncooperative games can be decomposed into three orthogonal
subspaces: the pure potential games (P), non-strategic games
(N ), and pure harmonic games (H). This paper considers the
detailed description of these three subspaces by providing their
bases. We first provide the basis of potential games GP = P⊕N
and the basis of N . Then the bases of P and H are also
obtained. These bases make the decomposition numerically easier.
Meanwhile, they provide a convenient tool for investigating the
properties of the corresponding subspaces. As an application,
we consider the dynamics of (networked) evolutionary games
(NEGs). Three problems are considered: (1) the dynamic equiv-
alence of evolutionary games; (2) the dynamics of near potential
games; (3) the decomposition of NEGs.

Index Terms—Potential game, Harmonic game, Non-strategic
game, Decomposition, Semi-tensor product of matrices.

I. PRELIMINARIES

The potential game was firstly introduced by Rosenthal [18].
It not only plays an important role in game-theoretic analysis
but also becomes a powerful tool in several control problems.
We refer to [15] for the concept and general properties of
potential games. Some of its applications to control problems
are: (i) consensus of multi-agent systems [12]; (ii) optimization
of distributed coverage of graphs [23], [25]; (iii) congestion
control [22]; (iv) control of power networks [11], just to name
a few.

Partly because of the importance of the potential games,
people are interested in the topological structure of the set
of finite noncooperative games, as well as their neighboring
games. To this end, a vector space structure has been posed
to the set of finite noncooperative games. This was firstly pre-
sented by Candogan, Menache, et al in their novel paper [2]. In
this follow-up work, we consider the structure of decomposed
subspaces.

For statement ease, we first introduce some notations:
1) Mm×n: the set of m× n real matrices.
2) Col(M) (Row(M)): the set of columns (rows) of M .

Coli(M) (Rowi(M)): the i-th column (row) of M .
3) Dk := {1, 2, · · · , k} , k ≥ 2.
4) δin: the i-th column of the identity matrix In.
5) ∆n :=

{
δin|i = 1, · · · , n

}
.
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6) 1` = (1, 1, · · · , 1︸ ︷︷ ︸
`

)T .

7) 0p×q: a p× q matrix with zero entries.
8) A matrix L ∈ Mm×n is called a logical matrix if the

columns of L are of the form of δkm. That is, Col(L) ⊂
∆m. Denote by Lm×n the set of m×n logical matrices.

9) If L ∈ Ln×r, by definition it can be expressed as
L = [δi1n , δ

i2
n , · · · , δirn ]. For the sake of compactness,

it is briefly denoted as L = δn[i1, i2, · · · , ir].
10) Span{A1, · · · , As}: The subspace spanned by
{Col(Ai) | i = 1, · · · , s}.

11) U ] V : direct sum of two vector spaces, i.e., U ∩ V =
{0}.

12) U⊕V : orthogonal sum of two vector spaces, i.e., u ⊥ v,
∀u ∈ U, v ∈ V .

It is well known that a noncooperative strategic form finite
game can be described as a triple (N,S, c), where

1) N = {1, 2, · · · , n} is the set of players;
2) Si = Dki is the set of strategies of player i, i =

1, · · · , n; S =
∏n
i=1 Si is called the set of strategy

profiles;
3) c = {c1, c2, · · · , cn}, where ci : S → R is the payoff

function of player i.
The semi-tensor product of matrices is defined as fol-

lows [4], [5]:
Definition 1.1: Let M ∈ Mm×n, N ∈ Mp×q , and t =

lcm{n, p} be the least common multiple of n and p. The semi-
tensor product (STP) of M and N is defined as

M nN :=
(
M ⊗ It/n

) (
N ⊗ It/p

)
∈Mmt/n×qt/p, (1)

where ⊗ is the Kronecker product.
The STP of matrices is a generalization of conventional

matrix product, and all the computational properties of con-
ventional matrix product remain available. Throughout this
paper, the default matrix product is STP, so the product of
two arbitrary matrices is well defined, and the symbol n is
mostly omitted.

To use matrix expression to games, we identify

j ∼ δjki , j = 1, · · · , ki,

then the set of strategies Si ∼ ∆ki , i = 1, · · · , n. It follows
that the payoff functions can be expressed as

ci(x1, · · · , xn) = V ci nnj=1 xj , i = 1, · · · , n, (2)

where V ci ∈ Rk is a row vector called the structure vector
of ci, (k =

∏n
i=1 ki). Define the structure vector of the given

game G by

V cG = (V c1 , V
c
2 , · · · , V cn ) ∈ Rnk. (3)
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Then it is clear that the set of strategic form finite games with
|N | = n, and |Si| = ki, i = 1, · · · , n, denoted by G[n;k1,··· ,kn],
has a natural vector space structure as

G[n;k1,··· ,kn] ∼ Rnk. (4)

Note that for a given game G ∈ G[n;k1,··· ,kn], its structure
vector V cG completely determines G. So the vector space
structure (4) is very natural and reasonable.

The vector space structure of G[n;k1,··· ,kn] was firstly pro-
posed in [2], our statement is a little bit different from theirs.
Moreover, [2] proposes three vector subspaces of G[n;k1,··· ,kn]:
(i) the pure potential subspace P; (ii) the non-strategic sub-
space N ; and (iii) the pure harmonic subspaces H, such that
G[n;k1,··· ,kn] is decomposed as an orthogomal sum of P , N ,
and H:

G[n;k1,··· ,kn] = ︸ ︷︷ ︸
Potential games

P ⊕
Harmonic games︷ ︸︸ ︷
N ⊕ H . (5)

It is also demonstrated in (5) that the pure potential subspace
plus the non-strategic subspace is the subspace of potential
games, denoted as GP = P ⊕ N ; and the pure harmonic
subspace plus the non-strategic subspace is the subspace of
harmonic games, denoted as GH = H⊕N .

The main technical tool used in [2] is the Helmholtz
decomposition theorem, a classical result from algebraic topol-
ogy [20]. Then the three subspaces are defined as follows [2]

P :=
{
u ∈ Rkn | u = Πu, and Du ∈ im δ0

}
;

H :=
{
u ∈ Rkn | u = Πu, and Du ∈ ker δ∗0

}
;

N :=
{
u ∈ Rkn | u ∈ kerD

}
,

(6)

where δ0, Π, D are certain combinatorial operators. [2] is very
well written and it can be understood without any knowledge
of algebraic topology. But it may still not straightforward to
engineering-background readers.

In this paper we define these subspaces in a linear algebraic
framework, which shows their physical meanings clearly. Our
approach also constructs the bases of P , N , and H respec-
tively. They are used to decompose any G ∈ G[n;k1,··· ,kn]
numerically, and provide a tool for investigating the properties
of subspaces. To show the usefulness of the algebraic frame-
work, we consider evolutionary games. Three problems are
investigated: First, the dynamic equivalence of evolutionary
games is introduced. Then, we show that when a game is near
a subspace, it may dynamically equivalent to a game in the
subspace. Then the game has the same properties of the games
in the subspaces. Particularly, the near potential games are
investigated. It is shown that when a near potential game and
its nearest potential game are dynamically equivalent, the near
potential game can also converge to a pure Nash equilibrium,
using asynchronous myopic best response adjustment, etc.
Finally, the decomposition of an NEG is considered: We
show that the decomposition of an NEG can be obtained by
summarizing the decompositions of pairwise network games.

The rest of this paper is built up as follows: In Section
2 we discuss the potential subspace GP , its basis is provided.
Section 3 considers the non-strategic subspace N . It is defined
alternatively and its basis is also revealed. The pure potential

subspace P and the pure harmonic subspace are discussed in
Sections 4 and 5 respectively, and their bases are also obtained.
Section 6 is devoted to the orthogonal decomposition of
G[n;k1,··· ,kn]. Section 7 considers the dynamic of evolutionary
games (EGs). The dynamic equivalence of EGs is introduced
first. The properties of near potential games are then discussed.
and finally, the decomposition of NEGs is investigated.

II. SUBSPACE OF POTENTIAL GAMES

We first review some results in [6] with a mild and straight-
forward generalization. We need some notations:
• Let |Si| = ki, i = 1, · · · , n. Then

k[p,q] :=

{∏q
j=p kj , q ≥ p

1, q < p.

• Ei := Ik[1,i−1]⊗1ki⊗Ik[i+1,n] ∈Mk×k/ki , i = 1, · · · , n.
Note that 1k ∈ Rk is a column vector with all entries
equal 1; Is ∈Ms×s is the identity matrix and I1 := 1.

Construct a linear equation, called the potential equation, as
−E1 E2 0 · · · 0
−E1 0 E3 · · · 0

...
−E1 0 0 · · · En



ξ1
ξ2
...
ξn

 =


(V c2 − V c1 )T

(V c3 − V c1 )T

...
(V cn − V c1 )T

 , (7)

where ξi ∈ Rk/ki . Then we have the following result:
Theorem 2.1 ([6]): A finite game G ∈ G[n;k1,··· ,kn] is a

potential game, if and only if the potential equation (7) has
solution. Moreover, if ξ is a solution then the potential function
can be expressed as

P (x1, · · · , xn) = V P nnj=1 xj , (8)

where V P , the structure vector of the potential function, is

V P = V c1 − ξT1 ET1 .

Denote

E :=


−E1 E2 0 · · · 0
−E1 0 E3 · · · 0

...
−E1 0 0 · · · En

 . (9)

Theorem 2.1 tells us that G is potential if and only if
(V c2 − V c1 )T

(V c3 − V c1 )T

...
(V cn − V c1 )T

 ∈ Span(E). (10)

Observing that in (10) we have freedom to arbitrarily choose
V c1 , (10) can be rewritten as

(V c1 )T

(V c2 − V c1 )T

(V c3 − V c1 )T

...
(V cn − V c1 )T

 ∈ Span(Ee), (11)
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where
Ee =

[
Ik 0
0 E

]
.

Equivalently, we have
Ik 0 · · · 0
−Ik Ik · · · 0

...
. . .

−Ik 0 · · · Ik




(V c1 )T

(V c2 )T

(V c3 )T

...
(V cn )T

 ∈ Span(Ee). (12)

That is

V TG ∈ Span(EP ), (13)

where

EP :=


Ik 0 · · · 0
−Ik Ik · · · 0

...
. . .

−Ik 0 · · · Ik


−1

Ee

=


Ik 0 0 0 · · · 0
Ik −E1 E2 0 · · · 0
Ik −E1 0 E3 · · · 0
...

...
. . .

Ik −E1 0 0 · · · En

 .
(14)

As discussed in [6], deleting any one column of E the
remaining columns form a basis of Span(E). Comparing EP
with E, we may delete the last column of En and denote the
remaining part of En by E0

n, and define

E0
P :=


Ik 0 0 0 · · · 0
Ik −E1 E2 0 · · · 0
Ik −E1 0 E3 · · · 0
...

...
. . .

Ik −E1 0 0 · · · E0
n

 .
Then we have

Span(EP ) = Span(E0
P ).

Moreover, it is easy to see that the columns of E0
P are linearly

independent.
Summarizing the above argument, we have the following

result:
Theorem 2.2: The subspace of potential games is

GP = Span(EP ), (15)

which has Col(E0
P ) as its basis.

According to the construction of E0
P it is clear that

Corollary 2.3: 1) The dimension of the subspace of po-
tential games of G[n;k1,··· ,kn] is

dim (GP ) = k +

n∑
j=1

k

kj
− 1. (16)

2) The dimension of the subspace H is

dim (H) = (n− 1)k −
n∑
j=1

k

kj
+ 1. (17)

Remark 2.4: Equations (16) and (17) coincide with the
result in [2].

III. NON-STRATEGIC SUBSPACE

Definition 3.1: Let G, G̃ ∈ G[n;k1,··· ,kn]. G and G̃ are said
to be strategically equivalent, if for any i ∈ N , any xi, yi ∈
Si, and any x−i ∈ S−i, (where S−i =

∏
j 6=i Sj), we have

ci(xi, x
−i)− ci(yi, x−i) = c̃i(xi, x

−i)− c̃i(yi, x−i). (18)

Note that the physical meaning of this definition is very
clear: In G, no matter what policy a player will take for
his strategy selection, the same strategy will be selected by
his corresponding player in G̃, as long as the same policy is
implemented.

Lemma 3.2: Two games G, G̃ ∈ G[n;k1,··· ,kn] are strategi-
cally equivalent, if and only if for each x−i ∈ S−i there exists
di(x

−i) such that

ci(xi, x
−i)− c̃i(xi, x−i) = di(x

−i),
∀xi ∈ Si, ∀x−i ∈ S−i, i = 1, · · · , n. (19)

Proof: (Necessity) Assume (19) fails. Then there exist
an i and an x−i ∈ S−i, such that ci(xi, x−i) − c̃i(xi, x−i)
depends on xi. That is, there exist ai, bi ∈ Si such that

ci(ai, x
−i)− c̃i(ai, x−i) 6= ci(bi, x

−i)− c̃i(bi, x−i).

Then

ci(ai, x
−i)− ci(bi, x−i) 6= c̃i(ai, x

−i)− c̃i(bi, x−i),

which violates (19).
(Sufficiency) From (19) we have

ci(xi, x
−i) = c̃i(xi, x

−i) + di(x
−i), ∀xi ∈ Si.

Plugging it into left-hand side of (18) yields the equality.
Next, denote the structure vectors of ci, c̃i, and di by V ci ,

Ṽ ci , and V di respectively, we express (19) into a matrix form
as

V ci nnj=1 xj − Ṽ ci nnj=1 xj = V di nnj 6=i xj
= V di

(
Ik[1,i−1] ⊗ 1Tki ⊗ Ik[i+1,n]

)
nnj=1 xj .

Finally, we have

BiN (V di )T = (V ci − Ṽ ci )T , (20)

where

BiN := Ik[1,i−1] ⊗ 1ki ⊗ Ik[i+1,n]

= Ei, i = 1, · · · , n.
(21)

We conclude that
Theorem 3.3: G and G̃ are strategically equivalent if and

only if (
V cG − V cG̃

)T ∈ Span (BN ) , (22)

where

BN =


E1 0 · · · 0
0 E2 · · · 0
...

. . .
0 0 · · · En

 . (23)

Definition 3.4: The subspace

N := Span(BN )
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is called the non-strategic subspace.
From Theorem 3.3 one sees easily that G and G̃ are

strategically equivalent if and only if there exists an η ∈ N ,
such that (

V c
G̃

)T
= (V cG)

T
+ η. (24)

Since Ei has k/ki columns, which are linearly independent,
i = 1, · · · , n, we conclude that

Corollary 3.5: 1) The dimension of N is

dim (N ) =

n∑
i=1

k

ki
. (25)

2) The dimension of P is

dim (P) = k − 1. (26)

Remark 3.6: Equations (25) and (26) also coincide with the
result in [2].

Define

ẼP :=


Ik E1 0 0 · · · 0
Ik 0 E2 0 · · · 0
Ik 0 0 E3 · · · 0
...

...
. . .

Ik 0 0 0 · · · En

 . (27)

Comparing (27) with (14), it is ready to verify that

GP = Span
(
ẼP

)
= Span (EP ) . (28)

Deleting the last column of ẼP , (equivalently, replacing the
En in ẼP by E0

n), the remaining matrix is denoted as

Ẽ0
P :=


Ik E1 0 0 · · · 0
Ik 0 E2 0 · · · 0
Ik 0 0 E3 · · · 0
...

...
. . .

Ik 0 0 0 · · · E0
n

 . (29)

Then it is clear that Col
(
Ẽ0
P

)
is a basis of GP .

Observing (27) again, it follows immediately that
Corollary 3.7: The subspace N is a linear subspace of GP .

That is,
N ⊂ GP .

For a G ∈ G[n;k1,··· ,kn], if its payoff vector (V cG)T ∈ N then
G is called a non-strategic game. According to the construction
of BN , the following is obvious.

Theorem 3.8: If G is a non-strategic game, then for each
given x−i ∈ S−i

ci(xi, x
−i) = const., ∀xi ∈ Si. (30)

Example 3.9: Given a finite game with N = {1, 2}, S1 =
{1, 2}, S2 = {1, 2, 3}. G is a non-strategic game, if and only
if

(V cG)T ∈ N .

Equivalently,

(V ci )T ∈ Span(Ei), i = 1, 2.

Since

E1 =

[
1
1

]
⊗ I3 =


1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1

 .

Then

V c1 = a[1 0 0 1 0 0] + b[0 1 0 0 1 0] + c[0 0 1 0 0 1]
= [a b c a b c].

Similarly, we have

E2 = I2 ⊗

1
1
1

 =


1 0
1 0
1 0
0 1
0 1
0 1

 .

Then
V c2 = d[1 1 1 0 0 0] + e[0 0 0 1 1 1]

= [d d d e e e].

Putting them into a payoff bi-matrix, we have

TABLE I
PAYOFF BI-MATRIX OF EXAMPLE 3.9

P1\P2 1 2 3
1 a, d b, d c, d
2 a, e b, e c, e

From Table I one sees easily that
(i) dim(N ) = 5, which verifies (25);

(ii) As long as x2 ∈ S2 (x1 ∈ S1) is fixed, the payoff of P1

(P2) is constant, no matter what strategy is chosen.

IV. PURE POTENTIAL SUBSPACE P
Using (28) we have

GP = Span(ẼP )

= Span


Ik − 1

k1
E1E

T
1 E1 0 0 · · · 0

Ik − 1
k2
E2E

T
2 0 E2 0 · · · 0

Ik − 1
k3
E3E

T
3 0 0 E3 · · · 0

...
. . .

Ik − 1
kn
EnE

T
n 0 0 0 · · · En

 .
(31)

Define an auxiliary space as

V := Span (BP ) ,

where

BP =


Ik − 1

k1
E1E

T
1

Ik − 1
k2
E2E

T
2

...
Ik − 1

kn
EnE

T
n

 ∈Mnk×k. (32)

Then it is obvious that

BTPBN = 0.
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Hence we have GP = V ⊕N . That is,

P = V = Span (BP ) . (33)

Since dim(P) = k − 1, to find the basis of P one column
of V needs to be removed. Note that(

Ik −
1

ki
EiE

T
i

)
1k

= (Ik[1,i−1]1k[1,i−1])

[(
Iki −

1

ki
1ki×ki

)
1ki

]
(Ik[i+1,n]1k[i+1,n])

=0, i = 1, · · · , n.
It follows that

V 1nk = 0.

Deleting any one column of BP , say, the last column, and
denoting the remaining matrix by B0

P , then we know that

P = Span (BP ) = Span
(
B0
P

)
,

where B0
P is a basis of P .

V. PURE HARMONIC SUBSPACE H
Observing (28) again, and denoting

ψn := ẼTP ,

it is clear that
H = G⊥P = ker(ψn).

First, assume n = 2. Then we have

ψ2 =

 Ik Ik
ET1 0
0 ET2

 .
Setting

xi1,i2 :=

[(
δ1k1 − δ

i1
k1

) (
δ1k2 − δ

i2
k2

)(
δi1k1 − δ

1
k1

) (
δ1k2 − δ

i2
k2

)]
i1 = 2, 3, · · · , k1; i2 = 2, 3, · · · , k2.

(34)

Then it is easy to see that

xi1,i2 ∈ ker(ψ2), i1 = 2, 3, · · · , k1; i2 = 2, 3, · · · , k2,

and {xi1,i2 | i1 = 2, 3, · · · , k1; i2 = 2, 3, · · · , k2} are linearly
independent. Hence, taking the dimension dim(H2) = (k1 −
1)(k2 − 1) into consideration, they form a basis of H2.

Next we would like to construct H inductively with respect
to n. So we consider n = µ, and k = k[1,µ] =

∏µ
i=1 ki. It is

easy to have the following recursive form of ψs as

ψs =

(
ψs−1 ⊗ Iks β

0k[1,s−1]×(s−1)k[1,s] Ik[1,s−1] ⊗ 1Tks

)
, (35)

where
β = [Ik×k, 0k× k

k1

, · · · , 0k× k
ks−1

]T .

It is ready to verify the following claims by straightforward
computations:

Lemma 5.1: If x ∈ ker(ψs−1), then[
x⊗ δisks
0k[1,s]

]
∈ ker(ψs), is = 1, · · · , ks; (36)

and

(δ1k1 − δ
i1
k1

)δ1k2δ
1
k3
· · · δ1ks−1

δi1k1(δ1k2 − δ
i2
k2

)δ1k3 · · · δ
1
ks−1

δi1k1δ
i2
k2

(δ1k3 − δ
i3
k3

) · · · δ1ks−1

...
δi1k1δ

i2
k2
δi3k3 · · · (δ

1
ks−1
− δis−1

ks−1
)

δi1k1δ
i2
k2
· · · δis−1

ks−1
− δ1k1δ

1
k2
· · · δ1ks−1


⊗ (δ1ks − δ

is
ks

) ∈ ker(ψs)

ij = 1, · · · , kj ; j = 1, 2, · · · , s.
(37)

According to Lemma 5.1 and starting from (34), we can
construct a set of vectors, which are in ker(ψn) as

J1 :=


 (δ1k1 − δ

i1
k1

)(δ1k2 − δ
i2
k2

)δi3k3 · · · δ
in
kn

−(δ1k1 − δ
i1
k1

)(δ1k2 − δ
i2
k2

)δi3k3 · · · δ
in
kn

0(n−2)k


i1 6= 1, i2 6= 1

 ;

J2 :=




(δ1k1 − δ

i1
k1

)δ1k2(δ1k3 − δ
i3
k3

)δi4k4 · · · δ
in
kn

δi1k1(δ1k2 − δ
i2
k2

)(δ1k3 − δ
i3
k3

)δi4k4 · · · δ
in
kn

−(δ1k1δ
1
k2
− δi1k1δ

i2
k2

)(δ1k3 − δ
i3
k3

)δi4k4 · · · δ
in
kn

0(n−3)k


(i1, i2) 6= 1T2 ; i3 6= 1

 ;

...

Js :=



(δ1k1 − δ
i1
k1

)δ1k2δ
1
k3
· · · δ1ks(δ1ks+1

− δis+1

ks+1
)δ
is+2

ks+2
· · · δinkn

δi1k1(δ1k2 − δ
i2
k2

)δ1k3 · · · δ
1
ks

(δ1ks+1
− δis+1

ks+1
)δ
is+2

ks+2
· · · δinkn

δi1k1δ
i2
k2

(δ1k3 − δ
i3
k3

) · · · δ1ks(δ1ks+1
− δis+1

ks+1
)δ
is+2

ks+2
· · · δinkn

...
δi1k1δ

i2
k2
δi3k3 · · · (δ

1
ks
− δisks)(δ1ks+1

− δis+1

ks+1
) · · · δinkn

−(δ1k1 · · · δ
1
ks
− δi1k1 · · · δ

is
ks

)(δ1ks+1
− δis+1

ks+1
)δ
is+2

ks+2
· · · δinkn

0(n−1−s)k


(i1, · · · , is) 6= 1Tis ; is+1 6= 1


;

...

Jn−1 :=



(δ1k1 − δ
i1
k1

)δ1k2δ
1
k3
δ1k4 · · · δ

1
kn−1

(δ1kn − δ
in
kn

)

δi1k1(δ1k2 − δ
i2
k2

)δ1k3δ
1
k4
· · · δ1kn−1

(δ1kn − δ
in
kn

)

δi1k1δ
i2
k2

(δ1k3 − δ
i3
k3

)δ1k4 · · · δ
1
kn−1

(δ1kn − δ
in
kn

)
...

δi1k1δ
i2
k2
δi3k3δ

i4
k4
· · · (δ1kn−1

− δin−1

kn−1
)(δ1kn − δ

in
kn

)

−(δ1k1δ
1
k2
· · · δ1kn−1

− δi1k1δ
i2
k2
· · · δin−1

kn−1
)(δ1kn − δ

in
kn

)


(i1, · · · , in−1) 6= 1Tn−1; in 6= 1


.

Define

BH := [J1, J2, · · · , Jn−1] . (38)

Then we can show BH is the basis of H:
Theorem 5.2: BH has full column rank and

H = Span (BH) . (39)

To prove Theorem 5.2, we first give the following lemma.
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Lemma 5.3: Given positive integers p, q, r > 1. Then the
vectors (δ1p − δ

ip
p )(δ1q − δ

iq
q )δiss , 1 < ip ≤ p, 1 < iq ≤ q,

1 ≤ is ≤ s, are linearly independent.
Proof: Let∑

1<ip≤p,1<iq≤q,1≤is≤s

aip,iq,is(δ1p − δipp )(δ1q − δiqq )δiss = 0,

where for all 1 < ip ≤ p, 1 < iq ≤ q, 1 ≤ is ≤ s, aip,iq,is are
real numbers.

Note that for all 1 ≤ j ≤ pq, all distinct 1 ≤ j1, j2 ≤ s, if
the l-th entry of δjpqδ

j1
s does not equal 0, then the l-th entry

of δjpqδ
j2
s must equal 0. Hence for all 1 ≤ is ≤ s,∑

1<ip≤p,1<iq≤q

aip,iq,is(δ1p − δipp )(δ1q − δiqq ) =

∑
1<ip≤p,1<iq≤q

aip,iq,is(δ1pδ
1
q − δ1pδiqq − δipp δ1q + δipp δ

iq
q ) = 0.

It is obviously that δ1pδ
1
q , δ

1
pδ
iq
q , δ

ip
p δ1q , δ

ip
p δ

iq
q , 1 < ip ≤ p,

1 < iq ≤ q, are exactly all columns of Ipq , hence linearly
independent. Then for all 1 < ip ≤ p, all 1 < iq ≤ q, all
1 ≤ is ≤ s, aip,iq,is = 0.

Using Lemma 5.3, we prove Theorem 5.2.
Proof of Theorem 5.2: In J1 only when i1 = 1 or

i2 = 1 we get zero vectors. From Lemma 5.3, J1 are linearly
independent vectors. The cardinality of J1 is

|J1| =
k

k1k2
(k1 − 1)(k2 − 1).

In J2 only when (i1, i2) = (1, 1) or i3 = 1 we have the
third block is zero. And when the third block is zero, the first
two blocks must be zero. From Lemma 5.3, the third block
of J2 are linearly independent vectors. Then J2 are linearly
independent vectors, and J1, J2 are also linearly independent
vectors.

The cardinality of J2

|J2| =
k

k1k2k3
(k1k2 − 1)(k3 − 1).

In general, for all s = 1, . . . , n− 1,

|Js| = k
k1k2···ks+1

(k1k2 · · · ks − 1)(ks+1 − 1),

from Lemma 5.3, the s-th block of Js−1 are linearly indepen-
dent vectors, then Js−1 are linearly independent vectors, and
J1, J2, . . . , Js−1 are also linearly independent vectors.

Hence J1, J2, . . . , Jn−1 are
∑n−1
s=1 |Js| linearly independent

vectors.
Since

n−1∑
i=1

|Js| = (n− 1)k −
n∑
i=1

k

ki
+ 1,

which is the dimension of H, we conclude that H =
Span(BH).

VI. ORTHOGONAL DECOMPOSITION OF G[n;k1,··· ,kn]
This section considers the numerical computation of decom-

position (5).

A. Cascading Decomposition

The following lemma is well known from linear algebra:
Lemma 6.1: Let S ⊂ V be a subspace of V , with Col (Bs)

as its basis. Then for any w ∈ V ,

πS(w) = Bs(B
T
s Bs)

−1BTs w ∈ S, (40)

is the projection of w on S. Moreover, w = [w − PS(w)] ⊕
Ps(w) is the orthogonal decomposition of w.

In previous section, the bases of P , N , and H are obtained
as B0

P , BN , and BH respectively. Using Lemma 6.1, for any
w ∈ G[n;k1,··· ,kn], its projections πP(w), πN (w), and πH(w)
can be obtained easily.

In fact, to get an orthogonal decomposition V = S1⊕S2⊕
· · ·⊕Sk, we need only a set of cascading bases: Bi, the basis
of S1 ⊕ S2 ⊕ · · · ⊕ Si, i = 1, · · · , k− 1. Hence, to get all the
decomposed components of G ∈ G[n;k1,··· ,kn], we need only
the basis of GP (which is Ẽ0

P ) and the basis of N (which is
BN ). That is,

Theorem 6.2: Assume the structure vector of G ∈
G[n;k1,··· ,kn] is

V cG = [V c1 , V
c
2 , · · · , V cn ].

Then
1) its GP projection is:

πGP (G) = Ẽ0
P

(
(Ẽ0

P )T Ẽ0
P

)−1
(Ẽ0

P )T (V cG)
T

; (41)

2) its N projection is:

πN (G) = BN
(
BTNBN

)−1
BTN (V cG)

T
; (42)

3) its H projection is:

πH(G) = (V cG)
T − πGP (G); (43)

4) its P projection is:

πP(G) = πGP (G)− πN (G); (44)

5) its GH projection is:

πGH (G) = πN (G) + πH(G). (45)

B. Parallel Decomposition

Construct a matrix

B :=
[
B0
P , BN , BH

]
, (46)

and set

d1 = dim (P) = k − 1,

d2 = dim (N ) =
n∑
j=1

k/kj ,

d3 = dim (H) = (n− 1)k −
n∑
j=1

k/kj + 1.

Then the following result is obvious:
Proposition 6.3: Letx1x2

x3

 := B−1 (V cG)
T
, (47)
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where xi ∈ Rdi , i = 1, 2, 3. Then

πP(G) = B

x10
0

 ;πN (G) = B

 0
x2
0

 ;πH(G) = B

 0
0
x3

 ;

πGP (G) = B

x1x2
0

 ;πGH (G) = B

 0
x2
x3

 .
C. Decomposition with Weights

If the inner product of Rnk is defined by

〈X,Y 〉 := XTQY, (48)

where Q ∈Mnk×nk is a positive definite matrix, the formula
(40) becomes

πS(w) = Bs(B
T
s QBs)

−1BTs Qw ∈ S. (49)

Therefore (41) becomes

V TGP = Ẽ0
P

(
(Ẽ0

P )TQẼ0
P

)−1
(Ẽ0

P )TQ (V cG)
T

; (50)

formula (42) becomes

V TN = BN
(
BTNQBN

)−1
BTNQ (V cG)

T
. (51)

Formulas (43)-(45) remain available.
In [2] the inner product is defined as in (48) with

Q = diag

k1, · · · , k1︸ ︷︷ ︸
k

, k2, · · · , k2︸ ︷︷ ︸
k

, · · · , kn, · · · , kn︸ ︷︷ ︸
k

 .

In this case, it is easy to verify that we can keep Gp, P
and N as before, i.e., with Ẽ0

P , B0
P , and BN as their bases

respectively. But to assure Q-orthogonal, the basis of the
harmonic subspace, denoted as HQ, should be

BHQ
= Q−1BH .

Hence, the harmonic subspace HQ, defined in [2], is not the
same as H, defined in this paper.

D. Some Examples

This subsection presents some examples.
Example 6.4: 1) Consider a game G ∈ G[2;2,2]. Its

payoffs are as in Table II.

TABLE II
PAYOFF BI-MATRIX FOR 1 OF EXAMPLE 6.4

P1\P2 1 2
1 a1, b1 a2, b2
2 a3, b3 a4, b4

Then we have

V cG = [a1, a2, a3, a4, b1, b2, b3, b4].

E1 = 12 ⊗ I2; E2 = I2 ⊗ 12.

Ẽ0
P =

[
I4 E1 0
I4 0 E0

2

]
=



1 0 0 0 1 0 0
0 1 0 0 0 1 0
0 0 1 0 1 0 0
0 0 0 1 0 1 0
1 0 0 0 0 0 1
0 1 0 0 0 0 1
0 0 1 0 0 0 0
0 0 0 1 0 0 0


.

BN =

[
E1 0
0 E2

]
=



1 0 0 0
0 1 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1


.

Consider the Battle of Sex, where a1 = 2, a2 = 0,
a3 = 0, a4 = 1, b1 = 1, b2 = 0, b3 = 0, b4 = 2 [10].
Using formulas (41)-(45), we have

πH(G) = [0, 0, 0, 0, 0, 0, 0, 0];

πN (G) = [1, 0.5, 1, 0.5, 0.5, 0.5, 1, 1];

πP(G) = [1,−0.5,−1, 0.5, 0.5,−0.5,−1, 1];

πGP (G) = [2, 0, 0, 1, 1, 0, 0, 2];

πGH (G) = [1, 0.5, 1, 0.5, 0.5, 0.5, 1, 1].

It is clear that this is a potential game.
2) Consider the Rock-Scissors-Paper game G ∈ G[2;3,3],

which has the payoff bi-matrix as in Table III.

TABLE III
PAYOFF BI-MATRIX FOR (2) OF EXAMPLE 6.4

P1\P2 R S P
R 0, 0 1,−1 −1, 1
S −1, 1 0, 0 1,−1
P 1,−1 −1, 1 0, 0

Then we have

V cG = [0, 1,−1,−1, 0, 1, 1,−1, 0,

0,−1, 1, 1, 0,−1,−1, 1, 0];

E1 = 13 ⊗ I3 =

I3I3
I3

 ;

E2 = I3 ⊗ 13 =

13 0 0
0 13 0
0 0 13

 .
It follows that

BN =


I3 0 0 0
I3 0 0 0
I3 0 0 0
0 13 0 0
0 0 13 0
0 0 0 13

 ; B0
N =


I3 0 0
I3 0 0
I3 0 0
0 13 0
0 0 13

0 0 0

 .

Ẽ0
P =

[(
I9
I9

)
B0
N

]
.
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Using formulas (41)-(45), we have

πGP (G) = πN (G) = πP(G) = 0;

πH(G) = πGH (G) = [0, 1,−1,−1, 0, 1, 1,−1, 0,

0,−1, 1, 1, 0,−1,−1, 1, 0].

This is a pure harmonic game.
The following example is from [9].
Example 6.5: Consider a finite game G ∈ G[2;3,2]. S1 =
{1(U), 2(M), 3(D)} and S2 = {1(L), 2(R)} are the strategies
of player 1 and 2 respectively. Its payoff is as Table IV.

TABLE IV
PAYOFF BI-MATRIX OF EXAMPLE 6.5.

P1\P2 L = 1 R = 2
U = 1 1, 3 −3, 0
M = 2 −2, 0 1, 3
D = 3 0, 1 0, 1

Then we have

VG = [1,−3,−2, 1, 0, 0, 3, 0, 0, 3, 1, 1].

Using formulas (23), (32), (38), the bases of pure potential
subspace P , non-strategic subspace N , and the harmonic
subspace H are calculated as

B0
P =



0.67 0.00 −0.33 0.00 0.00
0.00 0.67 0.00 −0.33 −0.33
−0.33 0.00 0.67 0.00 0.00
0.00 −0.33 0.00 0.67 0.67
−0.33 0.00 −0.33 0.00 0.00
0.00 −0.33 0.00 −0.33 −0.33
0.50 −0.50 0.00 0.00 0.00
−0.50 0.50 0.00 0.00 0.00
0.00 0.00 0.50 −0.50 −0.50
0.00 0.00 −0.50 0.50 0.50
0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00



;

BN =



1 0 0 0 0
0 1 0 0 0
1 0 0 0 0
0 1 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 1



;BH =



1 1
−1 −1
−1 0
1 0
0 −1
0 1
−1 −1
1 1
1 0
−1 0
0 1
0 −1



.

According to Proposition 6.3, we can conclude the following
decomposition

(V cG)T = B0
Px1 +BNx2 +BHx3

where the coefficients can be calculated by (47) as

x1 = [0.58,−2.75,−2.17, 1.00,−0.17]T ,

x2 = [−0.33,−0.67, 1.50, 1.50, 1.00]T ,

x3 = [0.08, 0.08]T .

Hence,

πP(G) = [1.17,−2.17,−1.58, 1.58, 0.42, 0.58

1.67,−1.67,−1.58, 1.58,−0.08,−0.08],

πN (G) = [−0.33,−0.67,−0.33,−0.67,−0.33,−0.67

1.50, 1.50, 1.50, 1.50, 1.00, 1.00],

πH(G) = [0.17,−0.17,−0.08, 0.08,−0.08, 0.08

− 0.17, 0.17, 0.08,−0.08, 0.08, 0.08].

We can get the same results using Theorem 6.2.

VII. APPLICATION TO EVOLUTIONARY GAMES

A. Evolutionary Games

Assume a noncooperative finite game in strategic form is
repeated infinitely. Then each player can update his strategy
by using the game historical knowledge. Assume the strategy
updating rule (SUR) can be expressed as

xi(t+ 1) = fi (xj(s), cj(s) | j ∈ N, s = 0, 1, · · · , t) ,
i = 1, · · · , n.

(52)

There are some commonly used SURs, including (i) Uncon-
ditional imitation [16]; (ii) Fermi rule [19], [21]; (iii) Myopic
best response adjustment (MBRA) [24]. These three SURs are
mostly useful for networked evolutionary games, because they
have an advantage that only the previous moment information
is used to update the strategies. That is, using such SURs (52)
becomes [7], [8]

xi(t+ 1) = fi(x1(t)), · · · , xn(t)), i = 1, · · · , n. (53)

(53) (or (52)) is called the profile dynamics of an evolutionary
game.

For our purpose, we introduce MBRA in detail: Assume

S∗i :=
{
z∗ | ci

(
xi = z∗, x−i = x−i(t)

)
= max

z∈Si

ci
(
xi = z, x−i = x−i(t)

) }
:= {z∗1 , · · · , z∗r}.

(54)

We may use the following 2 options:
(i) Deterministic MBRA (D-MBRA): Choose one corre-

sponding to a priority. For instance, (as a default)

xi(t+ 1) = min{z∗j ∈ S∗i }. (55)

This method leads to a deterministic multi-valued logical
dynamics.

(ii) Stochastic MBRA (S-MBRA): Choose any z∗j ∈ S∗i with
equal probability. That is,

xi(t+ 1) = z∗j (t), with probability piµ = 1
r ,

µ = 1, · · · , r.
(56)

This method leads to a probabilistic multi-valued logical
dynamics.

Then the SUR can determine the profile dynamics of
evolutionary games.

We use an example to illustrate it. The following example
is from [3]:
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TABLE V
PAYOFF MATRIX OF EXAMPLE 7.1

c\s 11 12 13 21 22 23 31 32 33
c1 90 −12 48 −12 1 24 48 24 1
c2 90 −12 48 −12 −1 24 48 24 −1

Example 7.1: A game G ∈ G[2;3,3], where S1 = S2 =
{1, 2, 3}: 1: work; 2: shirk at office; 3: shirk at home. The
payoffs are described in the payoff matrix (Table V).

Using MBRA, we can get the best responding strategies,
which are shown in Table VI. (Since we have |S∗1 | = |S∗2 | = 1,
D-MBRA and S-MBRA lead to the same result.)

TABLE VI
RESPONDING STRATEGIES OF EXAMPLE 7.1

s(t+1)\s(t) 11 12 13 21 22 23 31 32 33
f1 1 3 1 1 3 1 1 3 1
f2 1 1 1 3 3 3 1 1 1

That is,

xi(t+ 1) = fi(x1(t), x2(t)) = Mix(t), i = 1, 2, (57)

where x(t) = n2
i=1xi(t), Mi, i = 1, 2 are the structure

matrices of fi, which are

M1 = δ3[1, 3, 1, 1, 3, 1, 1, 3, 1];

M2 = δ3[1, 1, 1, 3, 3, 3, 1, 1, 1].
(58)

B. Convergence of Near Potential Games

It is well known that a potential game has many nice
dynamical properties. For instance, we are particularly inter-
ested in the following convergence property: If at each time
a single player is chosen at random for updating his strategy,
the MBRA, called the asynchronous MBRA, will lead to a
pure Nash equilibrium. The near potential games were firstly
investigated in detail in [3]. Their basic idea is: “Intuitively,
dynamics in potential games and dynamics in games that are
‘close’ (in terms of the payoffs of the players) to potential
games should be related”. Their main result is: a near potential
game will converge to an ε equilibrium, where ε is estimated
by the distance between the game with it closest potential
game.

Definition 7.2: Two evolutionary games are said to be dy-
namically equivalent if they have the same strategy profile
dynamics.

The following proposition is straightforward verifiable.
Proposition 7.3: If two games are strategically equivalent

then they are dynamically equivalent.
Proposition 7.4: If a game G and its closest potential game

πP (G) are dynamically equivalent, then the asynchronous
MBRA will lead G to a pure Nash equilibrium.

Remark 7.5: There are many SURs which lead a potential
game to a pure Nash equilibrium. Then it is obvious that they
will also lead a game G to a pure Nash equilibrium provided G
is dynamically equivalent to its closest potential game πP (G).
For instance, it is easy to prove that for a cascading potential

game:
x1(t+ 1) = f1(x1(t), x2(t), · · · , xn(t))

x2(t+ 1) = f2(x1(t+ 1), x2(t), · · · , xn(t))
...
xn(t+ 1) = f1(x1(t+ 1), · · · , xn−1(t+ 1), xn(t))

MBRA will lead it to a pure Nash equilibrium.
Most of the learning algorithms for potential games guar-

antee convergence to a pure Nash equilibrium. Say, Fictitious
Play [14], Log-linear learning [1] and its relaxed version [13],
etc. They also guarantee the convergence of a near potential
game G to a pure Nash equilibrium, provided G and πP (G)
are dynamically equivalent.

Example 7.6: Recall Example 7.1. Using the same calcu-
lating matrices as in the second part of Example 6.4, we can
calculate that

VπP (G) = [89.7778,−11.8889, 48.1111,−11.8889,

0.4444, 24.4444, 48.1111, 24.4444, 0.4444,

90.2222,−12.1111, 47.8889,−12.1111,−0.4444,

23.5556, 47.8889, 23.5556,−0.4444].

It is easy to verify that for this πP (G) the profile dynamics
is the same as (57)-(58). According to Proposition 7.4, G will
also converge to a pure Nash equilibrium using asynchronous
MBRA (or any other SURs mentioned in Remark 7.5).

Note that [3] shows that G will converge to an ε-equilibrium
and we prove that it will converge to a pure Nash equilibrium.

In general, it is expected that when a game is close enough
to its certain projection, it has the same dynamic behaviors
as the games in the subspaces as long as it is dynamically
equivalent to its projection.

C. Decomposition of Networked Evolutionary Games

Definition 7.7 ([8], [7]): A networked evolutionary game
(NEG), denoted by G = ((N,E), G,Π), consists of three
factors:

(i) a network graph: (N,E);
(ii) a fundamental network game (FNG): G with two play-

ers. Players i and j play this game provided (i, j) ∈ E.
(iii) a local information based strategy updating rule (SUR):

xi(t+ 1) = fi(xj(t), cj(t) | j ∈ U(i)), i = 1, · · · , n.
(59)

We use

Us(i) := {k | there is a path connecting
i and k, which has length ≤ s} .

Then (59) can be expressed as

xi(t+ 1) = fi(xj(t) | j ∈ U2(i)), i = 1, · · · , n. (60)

It was proved that
Theorem 7.8 ([6]): A networked evolutionary game G =

((N,E), G,Π) is potential, if the fundamental network game
G is potential. Moreover, let e = (i, j) ∈ E be an edge with
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potential function of the game between i and j being Pe. Then
the overall network potential is:

PG =
∑
e∈E

Pe. (61)

Proposition 7.9: G ∈ N if and only if G is potential and
its potential function is zero (or equivalently, is constant).

Proof: (Necessity) Since N ⊂ GP , G is potential.
Moreover, by definition

(V cG)T ∈ Span (BN ) . (62)

Using (23), (62) is equivalent to that there exist ξi ∈ Rk/ki ,
i = 1, · · · , n such that

V ci = ξTi E
T
i . (63)

Then
ci(x1, · · · , xn) = V ci nnj=1 xj

= ξTi
(
Ik[1,i−1] ⊗ 1Tki ⊗ Ik[i+1,n]

)
nnj=1 xj

= ξTi nj 6=i xj , i = 1, · · · , n.
Hence, ci is independent of xi. It follows that the potential
function P (xi, · · · , xn) is also independent of xi. Since i is
arbitrary, P (xi, · · · , xn) = const.

(Sufficiency) Assume G has a zero potential function. Then
ci is independent of xi, ∀ i. It follows that there exists ξi ∈
Rk/ki such that

ci(x1, · · · , xn) = ξTi nj 6=i xj
= ξTi

(
Ik[1,i−1] ⊗ 1Tki ⊗ Ik[i+1,n]

)
nnj=1 xj

= ξTi E
T
i nnj=1 xj

= V ci nnj=1 xj , i = 1, · · · , n.
That is,

(V ci )T = Eiξi, i = 1, · · · , n.

Hence,
BNξ = (V cG)T ,

which means G ∈ N .
Proposition 7.10: Consider a networked evolutionary game

G = ((N,E), G,Π). If G ∈ N , then G ∈ N , i.e., it is also
non-strategic.

Proof: Since G has constant potential function, using
(61), the potential function of G is also constant. According
to Proposition 7.9, G ∈ N .

Consider an NEG G = ((N,E), G,Π). Let Ge, e = (i, j) ∈
E be the fundamental game performed over edge e. Define a
natural inclusion mapping: ψ : Ge ↪→ G as:

c`(x1, · · · , xn) :=

{
c`(xi, xj), ` ∈ {i, j}
0, Otherwise.

Then it is easy to prove the following:
Lemma 7.11: Figure 1 is commutative. That is,

ψ ◦ π(Ge) = π ◦ ψ(Ge), e ∈ E, (64)

where
π ∈ {πP , πN , πH , πGP , πGH} .

Proof: We prove Lemma 7.11 for π = πN only. The
proof for other π′s is similar. Without loss of generality, set
e = (1, 2).

Ge π(Ge)

G π(G)

π

π

ψ ψ

Fig. 1. Commutative Mappings

In Ge, all players share the same set of strategies. The
number of strategies is denoted by k.

For Ge, regarding x1, · · · , xn as vector forms, then

c1(x1, · · · , xn) = c1(x1, x2) = V̄ c1 x1x2

= V̄ c1 x1x2(1Tkn−2x3 n · · ·n xn)

= V̄ c1 (Ik2 ⊗ 1Tkn−2)x1 n · · ·n xn,

:= V c1 x1 n · · ·n xn,

c2(x1, · · · , xn) = c2(x1, x2) = V̄ c2 x1x2

= V̄ c2 x1x2(1Tkn−2x3 n · · ·n xn)

= V̄ c2 (Ik2 ⊗ 1Tkn−2)x1 n · · ·n xn,

:= V c2 x1 n · · ·n xn,

ci(x1, · · · , xn) = 01×knx1 n · · ·n xn, 2 < i ≤ n,
(65)

where V̄ c1 , V̄
c
2 ∈ Rk2 , V c1 , V

c
2 ∈ Rkn .

From (42), the orthogonal projection operator onto N is
1
kE

T
1 E1 0 · · · 0
0 1

kE
T
2 E2 · · · 0

...
...

. . .
...

0 0 · · · 1
kE

T
nEn

 := ΠN .

Then

ψ ◦ π(Ge)

=

Ik2 ⊗ 1kn−2

Ik2 ⊗ 1kn−2

0(n−2)kn×(n−2)k2


[ 1

k (1k×k ⊗ Ik)
1
k (Ik ⊗ 1k×k)

] [
(V̄ c1 )T

(V̄ c2 )T

]
0(n−2)k2×1


=

[Ik2 ⊗ 1kn−2

Ik2 ⊗ 1kn−2

] [
1
k (1k×k ⊗ Ik)(V̄ c1 )T
1
k (Ik ⊗ 1k×k)(V̄ c2 )T

]
0(n−2)kn×1


=

 1
k (1k×k ⊗ Ik ⊗ 1kn−2)(V̄ c1 )T
1
k (Ik ⊗ 1k×k ⊗ 1kn−2)(V̄ c1 )T

0(n−2)kn×1


=

 1
k (1k×k ⊗ Ik ⊗ Ikn−2)(Ik2 ⊗ 1kn−2)(V̄ c1 )T
1
k (Ik ⊗ 1k×k ⊗ Ikn−2)(Ik2 ⊗ 1kn−2)(V̄ c1 )T

0(n−2)kn×1


=ΠN

 (V c1 )T

(V c2 )T

0(n−2)kn×1


=π ◦ ψ(Ge).

(66)
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In the light of Lemma 7.11 the following decomposition of
NEGs is obvious.

Proposition 7.12: Consider a networked evolutionary game
G = ((N,E), G,Π). It has the orthogonal decomposition as

G = ︸ ︷︷ ︸
Potential games

P ⊕
Harmonic games︷ ︸︸ ︷
N ⊕ H , (67)

where P =
∑
e∈E
Pe, N =

∑
e∈E
N e, H =

∑
e∈E
He, GP =∑

e∈E
GeP , and GH =

∑
e∈E
GeH , and Pe, N e, He, GeP , and GeH

are the corresponding subspaces of the game G over edge
e ∈ E.

We give an example to illustrate this.
Example 7.13: Consider a game G = ((N,E), G,Π),

where (i) the network graph is shown in Fig. 2; (ii) G is
the Benoit-Krishna Game [17]. Recall that the Benoit-Krishna
Game has

S0 = {1(D) : Deny, 2(W ) : Waffle, 3(C) : Confess}.

The payoff bi-matrix is shown in Table VII; (iii) for this
problem Π is ignored.

TABLE VII
PAYOFF TABLE (BENOIT-KRISHNA)

P1\P2 D = 1 W = 2 C = 3
D = 1 10, 10 −1,−12 −1, 15
W = 2 −12,−1 8, 8 −1, −1
C = 3 15,−1 8, 1 0, 0

1

2 3

4

Fig. 2. Network Graph of Example 7.13

We use two ways to calculate the decomposition of G.
1) Edge by Edge Calculation (Calculate the decomposition

of G over pair of players on each e ∈ E, then sum up.)
Note that the Benoit-Krishna Game G ∈ G[2;3,3] is in the
same space as the Rock-Scissors-Paper game in Example
6.4, Same BP (B0

P ) and BN can be used to calculate
the decomposition. The payoff vector of G is:

V cG = [10,−1,−1,−12, 8,−1, 15, 8, 0,

10,−12, 15,−1, 8,−1,−1, 1, 0].

Similar to the calculation for Rock-Scissors-Paper game,
we can have
πH(G) = [0.389, 3.722,−4.111,−4.111,−0.778, 4.889,

3.722,−2.944,−0.778,−0.389,−3.722, 4.111,

4.111, 0.778,−4.889,−3.722, 2.944, 0.778];

πN (G) = [4.333, 5,−0.667, 4.333, 5,−0.667, 4.333, 5,

− 0.667, 4.333, 4.333, 4.333, 2, 2, 2, 0, 0, 0];

πP(G) = [5.278,−9.722, 3.778,−12.222, 3.778,−5.222,

6.944, 5.944, 1.444, 6.056,−12.611, 6.556,

− 7.111, 5.222, 1.889, 2.722,−1.944,−0.778];

πGP (G) = [9.611,−4.722, 3.111,−7.889, 8.778,−5.889,

11.278, 10.944, 0.778, 10.389,−8.278, 10.889,

− 5.111, 7.222, 3.889, 2.722,−1.944,−0.778];

πGH (G) = [4.722, 8.722,−4.778, 0.222, 4.222, 4.222,

8.056, 2.056,−1.444, 3.944, 0.611, 8.444,

6.111, 2.778,−2.889,−3.722, 2.944, 0.778].

Now split πH(G) into two equal parts as

πH(G) =
[
V 1
H, V

2
H
]
,

where V 1
H and V 2

H are the projections of the payoffs V c1
of players 1 and V c2 of players 2 respectively.
Now consider the game G over edge (1, 2). We have the
projection of V c1 and V c2 on H as

H1
1 (x1, x2) = V 1

Hx1x2 = V 1
H
(
I9 ⊗ 1T9

)
n4
i=1 xi;

H1
2 (x1, x2) = V 2

Hx1x2 = V 2
H
(
I9 ⊗ 1T9

)
n4
i=1 xi.

Similarly, for the game G over (1, 3), we have

H2
1 (x1, x3) = V 1

Hx1x3

= V 1
H
(
I3 ⊗ 1T3 ⊗ I3 ⊗ 1T3

)
n4
i=1 xi;

H2
3 (x1, x3) = V 2

Hx1x3

= V 2
H
(
I3 ⊗ 1T3 ⊗ I3 ⊗ 1T3

)
n4
i=1 xi.

For the game G over (1, 4), we have

H3
1 (x1, x4) = V 1

Hx1x4 = V 1
H
(
I3 ⊗ 1T9 ⊗ I3

)
n4
i=1 xi;

H3
4 (x1, x4) = V 2

Hx1x4 = V 2
H
(
I3 ⊗ 1T9 ⊗ I3

)
n4
i=1 xi.

Overall, the projection of G on the pure harmonic
subspace H is

VH = [H1, H2, H3, H4],

where

H1 = H1
1 +H2

1 +H3
1 ; H2 = H1

2 ; H3 = H2
3 ; H4 = H3

4 .

Finally, the numerical result is:

πH(G) = [1.167, 4.5,−3.333, 4.5, 7.833, · · · ,
2.944, 0.778,−3.722, 2.944, 0.778] ∈ R324.

(68)

Similar calculations yield the projections on N , P , GP ,
and GH as

πN (G) = [13, 13.667, 8, 13.667, 14.333, · · · ,
0, 0, 0, 0, 0] ∈ R324.

(69)

πP(G) = [15.833, 0.833, 14.333, 0.833,−14.167, · · · ,
− 1.944,−0.778, 2.722,−1.944,−0.778] ∈ R324.

(70)

πGP (G) = [28.833, 14.5, 22.333, 14.5, 0.167, · · ·
− 1.944,−0.778, 2.722,−1.944,−0.778] ∈ R324.

(71)
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πGH (G) = [14.167, 18.167, 4.667, 18.167, 22.167, · · ·
2.944, 0.778,−3.722, 2.944, 0.778] ∈ R324.

(72)

2) Global Calculation (Consider the networked game as
an integrated game and calculated the projections of G
directly.) First, it is easy to calculate the payoff structure
vector of the overall game. It is

V cG = [30, 19, 19, 19, 8, · · · , 1, 0,−1, 1, 0] ∈ R324.

Using
E1 = 13 ⊗ I27
E2 = I3 ⊗ 13 ⊗ I9
E3 = I9 ⊗ 13 ⊗ I3
E4 = I27 ⊗ 13,

Then it is easy to calculate BN and B0
P . Finally, using

formulas (41)-(45), the projections can be calculated. It
is easy to show that the projections obtained in this way
are exactly the same as (68)-(72).

VIII. CONCLUSION

In this paper we investigated the decomposition and the
decomposed subspaces of non-cooperative strategic form finite
games, G[n;k1,··· ,kn]. First, G[n;k1,··· ,kn] was given a vector s-
pace structure as Rnk in a very natural way. Then the subspace
of potential games, GP , and the non-strategic subspace, N ,
defined in a straightforward way, are investigated and their
subspace bases were obtained. Using them, the bases of the
pure potential subspace P and the pure harmonic subspace
H were obtained. Then the orthogonal decomposition was
investigated and straightforward numerical formulas were p-
resented. The mild difference between the decompositions in
this paper and in [2] was explained. Finally, the decomposition
results were applied to investigating evolutionary games. Two
results were obtained: (i) the convergence of near-potential
games to a pure Nash equilibrium was revealed; (ii) the de-
composition of networked evolutionary games were obtained
via the decomposition of their fundamental network game.
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