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Input-State Approach to Boolean Networks
Daizhan Cheng, Fellow, IEEE

Abstract—This paper investigates the structure of Boolean net-
works via input-state structure. Using the algebraic form proposed
by the author, the logic-based input-state dynamics of Boolean
networks, called the Boolean control networks, is converted into
an algebraic discrete-time dynamic system. Then the structure
of cycles of Boolean control systems is obtained as compounded
cycles. Using the obtained input-state description, the structure of
Boolean networks is investigated, and their attractors are revealed
as nested compounded cycles, called rolling gears. This structure
explains why small cycles mainly decide the behaviors of cellular
networks. Some illustrative examples are presented.

Index Terms—Algebraic form, input-state structure, invariant
subspace, network transition matrix.

I. INTRODUCTION

I NPUT–OUTPUT structure is essential in systems and con-
trol theory. How about the cellular networks? It was pointed

out by [11] that “Gene-regulatory networks are defined by trans
and cis logic. Both of these types of regulatory networks
have input and output.” Ignoring outputs, this paper focuses on
input-state structure only.

A Boolean network could be a description of genetic circuits,
an explanation of self-organization in organisms, and the struc-
ture causing order in the evolution, which leads to life [12]. In
Boolean network model, gene expression is quantized to only
two levels: “T”(True) and “F”(False), or “1” and “0,” respec-
tively, denoted by , (or ). We refer to [7]
for logical notations, concepts, and operators used in this paper,
and refer to [2] for some related works in neural networks.

Denote the nodes of a network graph by .
Each node is functionally related to the expression states of
some other nodes. If is affected directly by , there is a
directed edge from to , and it is said that is in the neigh-
borhood of . It can also be understood as the intracellular
signal transduction from th cellular to th cellular. Throughout
this paper, we consider only the networks that have fixed graph
topologies. The actions between genes are described by logical
rules, which are described by a logical dynamic equation [6]

...
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Fig. 1. Graph of network.

where , , are logical functions (also called
-ary logical operators[1]).
We use an example to illustrate the graph and dynamics of a

network. It will be used again in the sequel.
Example 1.1: The graph of a Boolean network is depicted in

Fig. 1.
Its dynamic model is assumed to be

(2)

If the number of nodes in a Boolean network is , then it is
obvious that the state space considers of statues, which is
a finite set described as . So as a dynamic process on ,
there must be at least a fixed point or a cycle, and eventually
a trajectory starting from any initial state must enter a cycle (a
fixed point can be considered as a cycle of length one). So a
cycle is also called an attractor. For convenience, we briefly
denote by the set of attractors. For a state , the smallest
number of steps to enter is called its transient period, denoted
by . That is, let be the trajectory starting from
(i.e., ). Then

For overall network, the transient period is defined as

One of the most important issues in investigating a Boolean
network is to find its cycles and transient period. These topics
have been studied widely, e.g., in [6] and [10]. But there was no
reported technique, which solves the problem systematically so
far.

To investigate the structure of a Boolean network, Cheng and
Qi [5] proposed a way to convert system (1) into a standard
discrete-time dynamic system. The key tool for this approach
is the matrix expression of logic, based on semitensor product
of matrices. We give a very brief introduction here and refer to
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[3] and [4] for details. Investigating the structure of a network
via its dynamics can also been found in [8], [13], and [16].

Definition 1.2:
1) Let be a row vector of dimension , and be a column

vector with dimension . Then we split into equal-size
blocks as , which are rows. Define the
semitensor product (STP), denoted by , as

(3)

2) Let and . If either is a factor of
, say , denoted as , or is a factor of ,

say , denoted as , then we define the STP
of and , denoted by , as the following:
consists of blocks as and each block is

where is th row of and is the th column of .
STP of matrices is a generalization of the conventional matrix

product, so the notation can be omitted. Moreover, all the
basic properties of the conventional matrix product remain true
for this extension.

Set

where is the th column of identity matrix . In the frame-
work of STP, the logical variables are expressed as a vector in

by identifying with and with . Then the
region is replaced by

In this way, for a logical operator, we can always find a matrix,
called its structure matrix, and the action of a logical operator
on logical variables becomes a (semitensor) product of the struc-
ture matrix with its arguments’ vectors. For instance, consider
conjunction “ ” [7], then its structure matrix is

Hence, (in vector form) we have

In general, we have the following proposition.
Proposition 1.3: Let be a logical function (operator) of

, and

(4)

Then we can find a matrix, called the structure matrix of and
denoted by , such that

(5)

Note that may appear in (4) many times, but in (5), is
multilinear with respect to .

Using this vector expression, Cheng and Qi [5] convert a log-
ical equation of a Boolean network into a discrete time linear
system, called its algebraic form as . Ana-
lyzing the structure of , precise formulas have been obtained
to reveal the structure of the network.

This paper considers the Boolean control networks, which
have input-state structure. We first propose a framework for
Boolean control networks, and the structure of attractors of the
networks is investigated. The input-state approach is then ap-
plied to the analysis of the structure of general Boolean net-
works and a structure of nested compounded cycles is obtained.
We call such a structure “rolling gears” structure and will dis-
cuss some interesting properties of this kind of structures. We
guess it could be used to reveal the hidden order in lives.

This paper is organized as follows. Section II reviews the con-
verting technique from logical dynamic equation to algebraic
one. An example is used to depict it. In Section III, a frame-
work of Boolean control networks is proposed and the structure
of attractors of input-state type of networks is investigated. In
Section IV, the input-state approach is implemented to analyze
the structure of general Boolean networks and the structure of
nested compounded cycles, called “rolling gears,” is revealed.
Section V contains two illustrative examples. Section VI is a
brief conclusion.

II. FROM LOGICAL EQUATION TO ALGEBRAIC EQUATION

In this section, we briefly review the technique, developed in
[5], which provides a systematic tool to treat Boolean networks.
Assume a logical variable is expressed in a vector form. That
is, . (We will use scalar form and vector
form alternatively without explanation, and use for both.
From the text, it is very easy to figure out what form is used
there.) Consider system (1). Since , , are logical
functions, according to Proposition 1.3, we can convert (1) into
an algebraic dynamic form as

...
(6)

where , , are the structure matrices of . Define

(7)

Multiplying together yields

(8)

Using the properties of STP of matrices, (8) can be converted
into an algebraic form as

(9)

where is called the network transition matrix of (1).
The following result reveals all the attractors from .
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Theorem 2.1: Consider system (1) with its network transition
matrix .

1) The number of length cycles is inductively deter-
mined by

(10)

where is the set of proper factors of .
2) The elements on cycles of length , denoted by , is

(11)

where is the set of diagonal nonzero columns of .
Note that , iff , , and . For

instance, , , etc.
Denote

Then, we have the following theorem.
Theorem 2.2: For system (1), the transient period

(12)

The following theorem provides an easy way to construct the
regions of attraction.

Theorem 2.3: Given an , denote the columns of ,
which equal to , by , . Then the set of
parent points of is

(13)

We use an example to illustrate these results.
Example 2.4: Consider Example 1.1. Equation (2) can be

converted into algebraic form as

(14)

Let . Then

(15)

Starting from the second row of (15), the front constant coeffi-
cient matrix in the previous row is replaced in the next row by
“ ” to save space.

Note that now in the left-hand side of (15) there is no .
To get we have to add it. We can use a dummy operator [5]

which satisfies

Hence, (15) can be converted further as

(16)

From (16), we have

(17)

Note that . It is easy to calculate . We express it
into a condensed form as

where the th component means the th column of is .
It is easy to calculate that only when , or , , and

and . Theorem 2.1 yields that
there are two fixed points, which are

and

and a cycle of length 2, which is

We can also check that and , so the transient
period is .

III. BOOLEAN CONTROL NETWORKS

A Boolean control network is defined as

...

(18)

where , , are inputs (or controls), which are
logical variables satisfying certain logical rule, called the input
network, described as

...
(19)
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In an algebraic form, a Boolean control network can be ex-
pressed as

(20)

where is the control-depending network transi-
tion matrix.

Example 3.1: Consider Example 1.1 again. It is very natural
to take as input. Ignoring , which is considered as an
output, the system can be rewritten as

(21)

and the control network is

Converting this system into an algebraic form, we have

(22)

where can be easily calculated as

and , where or .
Now both and are fixed points of the control network.

Using Theorem 2.1, it is easy to figure out that for , there
is a fixed point for the system, which is ,
and there is also a cycle of length 2, which is .
While , there is only a fixed point .

In general, we consider the structure of the Boolean control
system (18), where the controls are varying, according to its own
logical evolution rule (19).

Denote by the input space, by the state
space, and let be the input-state (product) space.
Let . It is easy to prove that there exist unique
and , such that . Now assume there is a cycle of
length in the input-state space . Say, it is

First, one sees easily that since ,
contains, say, folds of a cycle of length , say, . Hence

. Now let us see what condition the in the cycle
should satisfy. Define a network transition matrix as

(23)

Starting from , we have component of the cycle
as

...

(24)

We conclude that is a fixed point of the equation (with
being the smallest one)

(25)

Conversely, if is a fixed point of (25) and is a point
on a cycle of control space , then it is obvious that we have
the cycle (24).

Summarizing above arguments yields the following theorem.
Theorem 3.2: Consider the Boolean control network (20). A

set is a cycle of the control system with length
, iff for any point , there exists an as

a factor of , such that
is a cycle in the control space, and is a fixed point

of (25) (with being the smallest one).
Theorem 3.2 shows how to find all the cycles in the input-state

space. First, we can find the cycles in the input space. Pick a
cycle in the input space, say , then for each point ,
we can construct an auxiliary system

(26)

Now, say is a cycle in , and
is a cycle of (26). Then, a cycle

, , can be constructed by

...

(27)

We call this the compounded cycle of and , denoted
by .

Note that from a cycle in the input space , we can choose
any point as the starting point . Then, in (26), we have dif-
ferent , which produces different . It is reasonable to guess
that the final is independent of the choice of

. Otherwise, the picture will be incorrect. In the following,
we will prove this is true.

Definition 3.3: Let be a cycle
in the input-state space, and be a cycle in the input space.
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Splitting , we said that is attached to at
, if , and

1) , with ;
2) is a fixed point of (25) with .
Remark 3.4: According to Theorem 3.2, each cycle in

the input-state space must be attached precisely to one cycle in
the input space. In fact, the following argument shows that
attaches at at moment (and the attaching point of

is ) and will attach it at at moment
(with the attaching point of being ) and so on.
So and are moving as two assembled gears.

Proposition 3.5: The sets of the cycles in the input-state
space, attached to any point of a given cycle , are the same.

Proof: Let be the cycle we
are concerned with. Let be the set of cycles
attached to , respectively. First, we show that

Let , i.e., it is a cycle attached
to at . Using the elements of a control cycle, we can define

Then, we construct system matrices as

...

Correspondingly, we then construct auxiliary systems as

(28)

Since , then satisfies

(29)

Note that . To see that ,
we have to show that satisfies

(30)

This is true because

Similarly, we can show that

Note that, precisely speaking, (30) can only assure that there is
a cycle of length attached to the cycle at , where
is a factor of . But since the above definition of is on
a rotating style, starting from a point , the same
argument shows . So .

Fig. 2. Circles of a control system.

Example 3.6: Revisit Example 3.1. Now we may change the
control to

We have an obvious control cycle: . Then, we can
easily calculate (using condensed form)

Then, we consider auxiliary system

(31)

where

The routine calculation shows the following: nontrivial power of
is 1 and . So there are two fixed points, which

are and .
The overall cycles are depicted in Fig. 2, where the dash lines
show the duplicated cycles. Overall, we have a cycle in the input
space and two compounded cycles of length 2 in the input-state
space. Fig. 2 shows the cycles of this control network.

Finally, we consider the transient period of compounded cy-
cles. Assume , , are the cycles in control space.
For a fixed , which has length , we can construct and
find the smallest such that

then it is clear that if a point will eventually enter the cycles at-
tached to this cycle, then after (compounded) steps the second
component will enter the rotating cycle. Note that is a com-
pounded mapping, consisting of steps. Taking the first part

into consideration, it is easily seen that the transient pe-
riod for cycles attached to , denoted by , satisfies

(32)

where .
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Define

Then, the following is obvious.
Proposition 3.7: The transient period of the control network

satisfies

(33)

IV. CASCADED BOOLEAN NETWORKS

The input-state structure proposed in the previous section is
very useful in analyzing the structure of Boolean networks with
the cascading structure.

Definition 4.1: Consider system (1), where .
A subspace is called an invariant subspace, if

implies , .
From Section III, one sees easily that the control space is

an invariant subspace of the control-state (product) space. Con-
versely, an invariant subspace can also be considered as a control
space.

To testify if a subspace is a control invariant subspace, we
can use either network graph or network equation. We use the
following two examples to illustrate this.

Let be a subset of the nodes of a network.
means that is the subspace

of the states of the subnetwork with nodes and
edges between them, inherited from original graph.

Example 4.2: Consider Fig. 3. One sees easily that
and are two invariant sub-

spaces. We have the nested invariant subspaces as

Note that is not an invariant subspace,
because it will be affected by . (If you are familiar with graph
theory, it is easy to see that a subspace is invariant iff the sub-
graph has in-degree zero.)

The structure of nested invariant subspaces can also be
discovered from network equations. Consider the following
example.

Fig. 3. Invariant subspaces.

Fig. 4. Structure of cycles in a cascaded Boolean network.

Example 4.3: Consider the system shown in (34) at the
bottom of the page. Then we have at least two nested in-
variant subspaces: and

, and

We consider a cycle, say, . As we discussed in
Section III, it must be attached to a cycle, say, .
Similarly, must attach to a cycle, say, . Now in
Fig. 4, we assume that two cycles are attached to

, are attached to , and are
attached to . We call such connected cycles chaired gears.

Chaired gears have the following properties.
• Each chair of gears, such as , has mul-

tiplicative perimeters (precisely, the numbers of states in

...

...

...

(34)
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TABLE I
TRUTH TABLE OF (35)

cycles), i.e., the perimeter of is a multiplier of the
perimeter of , and the perimeter of is a multiplier
of the perimeter of .

• In each chair, the smaller gears affect the larger gears, and
the larger gears do not affect the smaller gears.

• Smallest gears look like steering gears, which steer the
other gears to run.

Kauffman claimed that [12] in a cellular network the tiny at-
tractors decide the vast order. The “rolling gears” structure ex-
plained why small cycles decide the order of the whole network.
We guess that the structure of “rolling gears” may be used to ex-
plain the “hidden order” in lives.

Finally, one may ask: Why should there be an invariant sub-
space? In fact, if a large or huge network has small cycles, then
the small cycles with the elements in their region of attraction
form small invariant subspaces. If there are no such small cycles,
the system is in chaos [12]. So an ordered large scale network
should have the structure of nested invariant subspaces.

V. TWO ILLUSTRATIVE EXAMPLES

First example is from [14]. It is used for two purposes: 1)
showing the standard algorithm; and 2) demonstrating that the
“small cycles” have decisive importance for the structure of the
overall network.

Example 5.1: Consider a system with five nodes, as

(35)

where the logical functions , , are determined by
the truth table (Table I).

Then, the matrix form of system (35) is

(36)
To get the structure matrix, note that the first row of the struc-

ture matrix of is exactly the same as its values in truth table.

To convert the matrix form back to logical form, al-
gebra is more convenient. Using algebra, system (35)
can be expressed as

(37)
It is easy to see that the structure matrix of times is

and plus “ ” is

Let . Then

Now there is a normal routine to figure out . In fact

Then, one can check that the nontrivial powers are 1 and 2, and

We conclude that there are four fixed points and one cycle of
length 2. Using Theorem 2.1, one sees easily that the fixed points
are

and the cycle of length 2 is

The smallest repeating is , so the transient period
.

Finally, we use Theorem 2.3 to get the whole picture of the
state space.

• Starting from , we calculate its parent states,
its grand parent states, and so on. We have (in the fol-
lowing, is used to show that is already on the cycle,
so we remove it from the retrieving chain)

•

•
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Fig. 5. State-transition diagram.

•

• Next, we consider two points on a cycle: and
. For

•

The following state transition diagram from [14] verifies our
conclusion.

What is significant in this example is the following observa-
tion. There is a smallest “cycle”: fixed point . From Fig. 5, one

Fig. 6. Gene and protein signaling activity patterns.

sees easily that for and the topological structures
of the state–space graphs are completely different.

Next, we analyze a system, which is used to simulate gene
and protein signaling activity patterns [9].

Example 5.2: The network depicted in Fig. 6 and Table II is
presented in [9] to simulate gene and protein signaling activity
patterns within a small model Boolean network. For notational
brevity, we use for “Erk,” for “cyclin D1,” for “p27,”

for “cyclin E,” for “E2F,” for “pRb,” for “S phase
genes,” for “growth factors,” for cell “shape(spreading),”
and for “X.” We refer to [9] for the biological meanings of
the notations.

Then, the logical equation is expressed as

(38)

As for the control network, we have

(39)

In a matrix form, we have an algebraic equation as

(40)

As in [9], we first set the control network as

(41)

Case 1: , identity, i.e.,
and equal to constantly.
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TABLE II
LOGICAL RELATIONS

Fig. 7. Chaired circles. (a) Circles in � � � � � spaces. (b) Circles in � � � �� � � � � spaces.

Plugging them into (39) yields the system

In calculation, a control can be treated as a logical operator, so
the routine for calculating the network transition matrix remains
available. Then, it is easy to get the following result:

• the only attractor is a fixed point ;
• and the transient period is .
Case 2: and . In this case, we

have the same conclusion.
Case 3: , then we always have

, . The conclusion is as follows:
• the only attractor is a fixed point ;
• and the transient period is . (Taking

into consideration, should be 7.)
Next, we assume that the control network is

(42)

Then, we have two sequences of nested invariant subspaces. We
consider them separately. Consider the first chair, which is

In , we have an obvious cycle: . For , a
routine computation shows that there is only a cycle of length
2, which is

is a matrix. We omit it here. But we can
calculate that and . Similarly, for ,
we have the same cycle. and .

Finally, let . Then, has only one fixed point
. We conclude that overall in space we have only

one cycle ; and in the whole space, we have only
one product cycle

They are depicted in Fig. 7(a), where is the overall input-
state space.

Next, we consider the second chair, which is

First, there is a trivial cycle in space as: .
Then, in space, it is easy to calculate that
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So

which has a unique fixed point . We conclude that in
space we have only one cycle: .

Finally, we consider the space .
Calculating , it is easy to find that the
only cycle is a fixed point: . We conclude that there
is only one cycle of length 2 in the overall product space, which
is . Circles in nested
subspaces are depicted in Fig. 7(b).

VI. CONCLUSION

In this paper, we first reviewed the main results of [5]: how
to convert a logical form of Boolean equation into an algebraic
form. Then, we proposed a framework for control Boolean net-
works. The structure of the cycles in the input-state space was
obtained. Using the input-state technique, we investigated the
general structure of Boolean networks. Then, as the network has
a cascade structure, a structure of chaired cycles, called rolling
gears, has been revealed. It was shown that the rolling gears
structure is the explanation that tiny attractors decide the order
of networks.1
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