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Stability of switched nonlinear systems via

extensions of LaSalle’s invariance principle

WANG JinHuan† & CHENG DaiZhan

Institute of Systems Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China

This paper studies the extension of LaSalle’s invariance principle for switched nonlinear systems. Un-
like most existing results in which each switching mode in the system needs to be asymptotically stable,
this paper allows the switching modes to be only stable. Under certain ergodicity assumptions of the
switching signals, two extensions of LaSalle’s invariance principle for global asymptotic stability of
switched nonlinear systems are obtained using the method of common joint Lyapunov function.
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1 Introduction

In recent years, the problem of stability and stabi-

lization of switched systems has attracted consid-

erable attention from the control community[1−3].

They arise in many engineer applications, such

as robot manipulators[4], power systems[5], multi-

agent models[6−8], etc. The stability of a switched

system can be ensured by a common Lyapunov

function (CLF) of all switching modes under arbi-

trary switching law[9,10]. Finding a common Lya-

punov function is still an interesting and challeng-

ing problem. There is a large amount of literature

concerning it. We refer to refs. [2, 11–13] and the

references therein for more discussions.

The method of multiple Lyapunov functions is

also a useful tool for stability analysis of switched

systems. In comparison with common Lyapunov

function, it allows each switching mode to have its

own Lyapunov function[14]. However, as a compen-

sation, some additional conditions are necessary to

ensure that the value of each Lyapunov function

on its corresponding mode will decrease.

In practical applications, many switched systems

do not share a common Lyapunov function, yet

they still may be asymptotically stable under some

properly chosen switching laws. Searching certain

admissible classes of switching laws is necessary for

this kind of problem[15]. Roughly speaking, stabil-

ity can be ensured if the switching is sufficiently

slow. Ref. [15] introduced several concepts to re-

strict admissible switching signals.

When the derivative of a candidate Lyapunov

function with respect to each mode is only non-

positive, the function is called a weak Lyapunov

function[16]. In order to solve the stability problem

in such a case, various extensions of LaSalle’s in-

variance principle for switched systems have been
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investigated. By imposing some restrictions on the

admissible trajectories, global asympotic stability

results using multiple weak Lyapunov functions are

obtained for switched linear systems[15]. Then, it is

extended to switched nonlinear systems[17]. A more

traditional style extension of LaSalle’s invariance

principle is proposed in ref. [16]. Its statement

is closer in spirit to the classical one. However,

it only shows that the solution is attracted to a

weakly invariant set M , and the asymptotical sta-

bility cannot be obtained unless M = {0}. Under

certain restrictions, another extension of LaSalle’s

invariance principle for switched nonlinear systems

and criteria for asymptotic stability are obtained

in ref. [18].

To the best of our knowledge, all of these exten-

sions of LaSalle’s invariance principle require each

switching mode to be asymptotically stable. Nat-

urally, if we do not impose certain restrictions on

the switching signals, each switching mode must be

asymptotically stable. Otherwise, when the system

stays on a non-asymptotically-stable mode forever,

the overall system will not be asymptotically sta-

ble.

In this paper, we consider the following switched

nonlinear system:

ẋ = fσ(t)(x), x ∈ R
n, (1.1)

where σ : [0,+∞) → Λ = {1, 2, · · · , N} is a piece-

wise constant function and continuous from the

right, called a switching signal (or switching law).

Each fi(x) is a smooth vector field of R
n such that

fi(0) = 0, i ∈ Λ. Lyapunov function approach is a

fundamental and powerful tool for stability analy-

sis. It is well known that if there exists a common

Lyapunov function, i.e., a positive definite C1 func-

tion V (x) > 0, radially unbounded, such that

V̇ |i = ∇V (x)fi(x) < 0, x 6= 0, i = 1, · · · , N,

then the switched system is globally asymptotically

stable. If we ask for globally uniformly asymptoti-

cal stability (GUAS), then the existence of a com-

mon Lyapunov function becomes necessary and

sufficient[9,10].

Different from other results, in this paper, each

mode does not need to be asymptotically stable.

Under certain ergodicity assumption on the switch-

ing signals, we propose two extensions of LaSalle’s

invariant principle, which are relatively easy to

check. In our previous work[7], it was shown that if

the switched system is linear, the results are useful

for consensus of multi-agent systems.

2 Preliminaries

To begin with, we give some rigorous definitions

for stabilities.

Definition 2.1. The equilibrium point x = 0

of (1.1) is

1) stable if for each ǫ > 0, there is a δ = δ(ǫ) > 0

such that

||x(0)|| < δ ⇒ ||x(t)|| < ǫ, ∀ t > 0;

2) asymptotically stable if it is stable and given

a η > 0, for each ǫ > 0 there exists T > 0 such that

||x(0)|| < η ⇒ ||x(t)|| < ǫ, ∀ t > T ; (2.1)

3) globally asymptotically stable if (2.1) holds

for all η > 0.

It is said that the above stabilities hold “uniformly”

if they hold for all switching law σ.

Consider a nonlinear system

ẋ = f(x), x ∈ R
n. (2.2)

By the well-known LaSalle’s invariance princi-

ple[19], if there exists a continuously differen-

tial, positive definite, radially unbounded function

V (x) : R
n → R such that V̇ (x) 6 0 for all x ∈ R

n,

then every solution of (2.2) converges to the largest

invariant set M contained in Z = {x ∈ R
n | V̇ (x)

= 0}. Moreover, if M = {0}, then the origin of

(2.2) is globally asymptotically stable.

Unfortunately, the classical LaSalle’s invariance

principle cannot be applied to switched systems di-

rectly. For switched systems, there are also some

extended results of LaSalle’s invariance principle as

we have mentioned in section 1. Among them, cer-

tain restrictions on the switching signals are nec-

essary. A switched system is said to have a non-

vanishing dwell time, if there exists a positive time

period τ0 > 0, such that the switching instances

{τk | k = 1, 2, · · · } satisfy

inf
k

(τk+1 − τk) > τ0. (2.3)

Through this paper, we assume

WANG JinHuan et al. Sci China Ser F-Inf Sci | Jan. 2009 | vol. 52 | no. 1 | 84-90 85



A1. Admissible switching signals have a dwell

time τ0 > 0.

We need to recall another concept: weakly in-

variant set.

Definition 2.2[16]. A compact set M is weakly

invariant with respect to (1.1), if for each point

x ∈ M , there exists a λ ∈ Λ, a solution ϕ(t) of the

vector field fλ(x) and a real number b > 0 such

that ϕ(0) = x and ϕ(t) ∈ M for either t ∈ [−b, 0]

or t ∈ [0, b].

Now for system (1.1), assume V (t) is the can-

didate Lyapunov function concerned; we denote

Zi = {x | V̇ (x)|fi
= 0}, ∀ i ∈ Λ.

With some mild modification, we state Theorem

1 of ref. [16] as

Proposition 2.1[16]. Assume system (1.1) has

a CWLF,

Z =
⋃

i∈Λ

Zi,

and M is the largest weakly invariant set contained

in Z. Then, every solution ϕ(t, x0) is attracted to

M .

This result is the starting point of our following

discussion.

Since we only require each mode to be stable,

in addition to assumption A1, we need to assume

certain ergodicity property for switching signals.

A2. For any T > 0 and any λ ∈ Λ, there exists

t > T such that

σ(t) = λ. (2.4)

A stronger assumption is

A2′. There exists a T > 0, such that for any

t0 > 0,

{t | σ(t) = λ}
⋂

[t0, t0 + T ] 6= ∅,∀ λ ∈ Λ. (2.5)

Remark.

1) Assumptions A1 and A2 imply that each mode

will be active infinite times and the total time

length for each mode λ being active is infinity, i.e.,

|{t | σ(t) = λ}| = ∞, ∀ λ ∈ Λ,

where | · | denotes the Lebesgue measure. We call

such a switching “ergodic switching”.

2) A2′ may be called “finite time ergodic switch-

ing”. It is easy to see that A2′ implies A2.

3) If both A1 and A2′ hold, then there exists

T > 0 (replacing original T of A2′ by T + τ0) such

that

|{t | σ(t) = λ}
⋂

[t0, t0 + T ]| > τ0, ∀ λ ∈ Λ, t0 > 0.

(2.6)

Next, we recall a new Lyapunov-like function,

called the joint Lyapunov function. The following

definition is mimic to the linear case[7].

Definition 2.3. Consider system (1.1).

1) If there exists a positive definite C1 function

V (x) > 0, radially unbounded, such that

V̇ (x)|fi
= ∇V (x)fi(x) := Qi(x) 6 0,

x 6= 0, Qi(0) = 0, i ∈ Λ, (2.7)

then V (x) is called a common weak Lyapunov func-

tion (CWLF) of system (1.1).

2) A common weak Lyapunov function of system

(1.1) is called a common joint Lyapunov function

(CJLF) if

N
∑

i=1

Qi(x) < 0, x 6= 0. (2.8)

The geometric meaning of (2.8) is that at any point

x, at least on one mode, the Lyapunov function is

strictly decreasing.

According to the definition, we obtain the fol-

lowing property at once.

Proposition 2.2. For system (1.1), assume

there exists a CWLF V (x) > 0, then V is a CJLF

if and only if
⋂

i∈Λ

Zi = {0}, (2.9)

where Zi = {x | Qi(x) = 0} is the kernel of

Qi, i ∈ Λ.

Proof. (⇒) Obviously, 0 ∈ Zi, i ∈ Λ. If there

exists 0 6= η ∈
⋂

i∈Λ Zi, then Qi(η) = 0, ∀ i ∈ Λ

which implies
∑

i∈Λ Qi(η) = 0, a contradiction.

(⇐) If V (x) is not a CJLF, then there exists

ξ 6= 0 such that
∑

i∈Λ Qi(ξ) = 0. Since every Qi(x)

is negative semi-definite, then Qi(ξ) = 0, ∀ i ∈ Λ,

that is, ξ ∈ Zi, ∀ i ∈ Λ, which is a contradiction

to (2.9). QED

Unfortunately, under the assumptions of A1 and

A2 (or A2′), even for a switched linear system,

the existence of a CJLF is not enough to ensure
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the global asymptotical stability. Ref. [7] gave a

counter example.

Therefore, in addition to A1, A2 (A2′) and the

existence of CJLF, in the next two sections, we will

give some additional conditions to ensure that the

system is globally asymptotically stable.

3 LaSalle’s invariance principle for dis-
connected Z \ {0}

Now, we present our first LaSalle type of stability

result.

Theorem 3.1. Consider system (1.1). As-

sume

1) A1, A2 hold;

2) there exists a CJLF;

3) Z \ {0} is disconnected, where Z =
⋃

i∈Λ Zi

and Zi is the kernel of Qi, i ∈ Λ.

Then, system (1.1) is globally asymptotically

stable.

Proof. By the common weak Lyapunov func-

tion, system (1.1) is stable. Then, we only need to

prove the convergence.

For any x0, construct a nonempty compact set

W = {x ∈ R
n | V (x) 6 V (x0)}.

Since
⋃

i∈Λ Zi\{0} is disconnected, without loss of

generality, we assume it is composed of two con-

nected components, denoted by

ZI =
⋃

i∈I

Zi\{0}, ZJ =
⋃

j∈J

Zj\{0},

where I ∪ J = Λ and I ∩ J = ∅.
Define NI = {x ∈ W | d(x,ZI) < ǫ0}, NJ =

{x ∈ W | d(x,ZJ ) < ǫ0}, and N c
I = W \ NI , N

c
J =

W \ NJ , where ǫ0 > 0 can be chosen properly.

Then, under subspace topology NI , NJ are open

sets containing 0 and N c
I , N c

J are compact sets.

For any ǫ > 0, let Wǫ = {x ∈ W | ||x|| < ǫ}.
We can choose ǫ0 > 0 small enough such that

NI∩NJ ⊂ Wǫ and N̄I \Wǫ and N̄J \Wǫ are disjoint.

Let d = d(N̄I \ Wǫ, N̄J \ Wǫ) > 0.

Note that when i ∈ I mode is active, V̇ (x)|fi
<

0, ∀ x ∈ N c
I , then there exists a δI > 0 such that

maxx∈Nc
I
, i∈I V̇ (x)|fi

= −δI < 0. Similarly, there

exists a δJ > 0 such that maxx∈Nc
J

, i∈J V̇ (x)|fj
=

−δJ < 0 and maxx∈Nc
I
∩Nc

J
, i∈Λ V̇ (x)|fi

= −δ < 0

with δ = max{δI , δJ}.

We claim that there exists T > 0 such that

x(t) ∈ NI ∩ NJ ⊂ Wǫ, ∀ t > T, (3.1)

where x(t) is any solution of system (1.1).

We prove it case by case as follows:

(i) If x(t) ∈ (NI

⋃

NJ)c, then no matter which

mode is active, V (x) decreases strictly, because

V̇ (x)|fi
6 −δ, ∀ i ∈ Λ. Then, we have

V (x(t + △t)) 6 V (x(t)) − δ△t. (3.2)

(3.2) remains true as long as x(t) stays in (NI

⋃

NJ)c. Then, V (x(t + △t)) → −∞ as △t →
∞. Therefore, we assume x(t) will not stay in

(NI

⋃

NJ)c forever.

(ii) If x ∈ NI

⋃

NJ , V (x) remains non-

increasing. Since the switching set is ergodic, sys-

tem (1.1) cannot dwell on any one mode forever.

If x(t) enters NI (same for NJ) only finite times,

then after a T0 > 0, the trajectory will stay in N c
I

forever. Then,

V (x(t)) < V (x(T0)) − δIτ, (3.3)

where

τ = |{T0 < s < t | σ(s) ∈ I}| .

Since as t → ∞, τ → ∞, we have V (x(t)) →
−∞, t → ∞, a contradiction.

(iii) Assume x(t) travels between NI \ Wǫ and

NJ \ Wǫ infinite times. Since fi(x) is continu-

ous, there exists bi > 0 such that as mode i is

active, ‖ẋ(t)‖ = ‖fi(x)‖ 6 bi, x ∈ (NI

⋃

NJ)c.

Take 0 < b = maxi∈Λ bi, then the time x(t) travels

between NI \ Wǫ and NJ \ Wǫ satisfies |△t| >
d

b
.

Denote W0 = W c
ǫ ∩ N c

I ∩ N c
J . Then, there exists

an infinite time sequence t1, t2, · · · at which x(t)

goes through the following regions: NI

t1→ W0
t2→

NJ

t3→ W0
t4→ NI

t5→ W0
t6→ · · · , with x(t) ∈ W0 for

t ∈ [t2k−1, t2k] and t2k − t2k−1 >
d

b
. By (3.2)

V (x(t2k)) 6 V (x(t2k−1)) − δ
d

b
6 V (x(t2k−3)) − 2δ

d

b

6 · · · 6 V (x(t1)) − kδ
d

b
→ −∞, k → ∞

is a contradiction.

Therefore, after a finite time, the trajectory of

x(t) will stay in NI

⋂

NJ forever, which means (3.1)

holds. The conclusion follows. QED

Taking Proposition 2.2 into consideration, con-

dition 2 can be replaced by CWLF, because CWLF

plus condition 3 implies CJLF.
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Also note that when N = 2, we have Z1

⋂

Z2 =

{0}, so condition 3 is automatically satisfied. This

observation leads to

Corollary 3.1. Theorem 3.1 remains true if

the last condition is replaced by N = 2.

Taking Proposition 2.1 into consideration, we

have the following stronger result.

Corollary 3.2. Let M be the largest weakly

invariant set contained in Z. Then, Theorem 3.1

remains true if in the last condition Z \ {0} is re-

placed by M \ {0}.

4 LaSalle’s invariance principle for a
class of f

i

In this section, we impose certain constrains on

system (1.1). We need some preparations first.

Lemma 4.1. Consider system (1.1). Assume

every switching mode is stable. Denote Ki =

ker(fi) = {x | fi(x) = 0}, K =
⋂

i∈Λ Ki, and let

y ∈ K. Assume the switching signal satisfies A1

and A2′, then for any R > 0, there exists r > 0,

such that if x0 ∈ Br(y), then

ϕ(t, x0) ∈ BR(y), 0 6 t 6 T, (4.1)

where ϕ(t, x0) is the solution of system (1.1) with

ϕ(0, x0) = x0 and T is the same as in A2′.

Proof. Since every switching mode is stable,

y ∈ K is a stable equilibrium of every subsystem.

Then, for any R > 0, we can find ri > 0(i ∈ Λ),

associated with every subsystem of (1.1), such that

as long as ‖x0 − y‖ < ri, ‖ϕ(t, x0) − y‖ < R, t > 0.

Now, suppose the switching moments over [0, T ]

are ti, i = 1, 2, · · · , s. Denote xi = ϕ(ti, x0), i =

1, 2, · · · , s. Since every switching mode is stable,

for any R > 0, there exists 0 < Rs < R such that

‖xs − y‖ < Rs implies ‖ϕ(t, xs)− y‖ < R, ts 6 t 6

T . For Rs > 0, there exists 0 < Rs−1 < Rs such

that ‖xs−1 − y‖ < Rs−1 implies ‖ϕ(t, xs−1) − y‖ <

Rs, ts−1 6 t 6 ts. Continuing this argument, then

for R1 > 0, there exists 0 < r < R1 such that

‖x0−y‖ < r implies ‖ϕ(t, x0)−y‖ < R1, 0 6 t 6 t1.

From the above procedure, it follows that as long

as x0 ∈ Br(y), (4.1) holds.

Lemma 4.2. ker(fi) ⊂ ker(Qi), ∀ i ∈ Λ.

Proof. For any x0 ∈ ker(fi), we have fi(x0) =

0. Then, Qi(x0) = V̇ (x0)|fi
= ∇V (x0)fi(x0) = 0.

The conclusion follows. QED

Denote by M the largest weakly invariant set

contained in Z =
⋃

i∈Λ Zi, and let

Vi = M ∩ Zi, i ∈ Λ.

It is easy to see that ker(fi) itself is a weakly invari-

ant set contained in Zi ⊂ Z, hence ker(fi) ⊂ Vi.

Next, we give one more assumption.

A3. ker(fi) = Vi, i ∈ Λ.

The next proposition was obtained in ref. [16],

which gives a property of the ω-limit set.

Proposition 4.1[16]. Let ϕ(t, x0) be a solu-

tion of system (1.1) with dwell time τ0. Ω(x0) is

its ω-limit set. Then, Ω(x0) is a weakly invariant

set contained in Z.

Now, we are ready to state our second main re-

sult.

Theorem 4.1. Consider system (1.1). As-

sume A1, A2′, and A3 hold and there exists a

CJLF. Then system (1.1) is globally asymptotically

stable.

Proof. Let x(t) = ϕ(t, x0) be any solution

of system (1.1) with ϕ(0, x0) = x0. Since V (x)

is monotonically not increasing and bounded, we

have

lim
t→∞

V (x(t)) = V0.

If V0 = 0, we are done. Thus, we assume V0 > 0

and will draw a contradiction.

Since x(t) is bounded, there exists an infinite se-

quence {tk} such that

xk := x(tk) → y, t → ∞,

and limk→∞ V (x(tk)) = V (y) = V0. Now, since

y is a ω-limit point, by Proposition 4.1, we have

y ∈ M ⊂ Z and by the assumption V0 > 0, y 6= 0.

Split Λ into two disjoint subsets, I ⊂ Λ and

J = Λ \ I, satisfying

y ∈ Zi,∀ i ∈ I, y /∈ Zj,∀ j ∈ J.

Since y ∈ M , thus I 6= ∅ and y ∈ Vi,∀ i ∈ I.

According to Proposition 2.2, J 6= ∅.

Denote

d = min
j∈J

d(y, Zj) > 0, (4.2)
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we can choose 0 < R < d/2 and define a ball

BR(y) = {x | ||x − y|| < R}. Then, we have

d(x,Zj) > R, ∀ x ∈ BR(y), j ∈ J. (4.3)

For any x ∈ B̄R(y), the closure of BR(y), when

mode j ∈ J, is active,

V̇ (x(t))|fj
< 0.

Since B̄R(y) is compact, there exists an α > 0 such

that maxx∈B̄R(y),j∈J V̇ (x(t))|fj
= −α < 0.

Now, assume 0 < R1 < R is small enough such

that as x0 ∈ BR1
(y), x(t) ∈ BR(y),∀ t ∈ [t0, t0+τ0].

Then, when x0 ∈ BR1
(y) and t0 is the moment

when mode j ∈ J becomes active, we have

V (x(t0 + τ0)) < V (x0) − ατ0. (4.4)

On the other hand, using Lemma 4.1 associated

with assumption A3, we can find 0 < r < R1 such

that when x0 ∈ Br(y) and only modes i ∈ I are

active, we have

ϕ(t, x0) ∈ BR1
(y), 0 6 t 6 T. (4.5)

Since y belongs to the ω-limit set, there exists

N > 0 such that xk ∈ Br(y) for all k > N . Recall-

ing assumption A2′, the finite time ergodic prop-

erty, on every interval [tk, tk+T ], all the modes will

be active at least once. Let t′k ∈ [tk, tk + T ] be the

moment when a j ∈ J mode is triggered. Then by

(4.5), ϕ(t′k, xk) ∈ BR1
(y). According to (4.4), we

obtain

V (x(t′k + τ0)) < V (x(t′k)) − ατ0, ∀ k > N.

Then,

V (x(t′N+l + τ0)) 6 V (x(t′N+l)) − ατ0

6 V (x(t′N+l−1)) − 2ατ0

6 · · · 6 V (x(t′N+1) − lατ0

→ −∞, l → ∞,

which is a contradiction. QED

In general, it is not straightforward to verify A3.

We thus give a sufficient condition here.

Proposition 4.2. If ker(fi) = Zi, i ∈ Λ, then

A3 is satisfied.

Proof. If ker(fi) = Zi, then Vi ⊂ ker(fi). The

conclusion follows.

Remark. In general, for switched nonlinear

systems, it is not easy to obtain the global asymp-

totic stability result. Sometimes, we only need the

local stability. If the Lyapunov function is defined

on a neighborhood of the origin which is a com-

pact set, then the conclusions of Theorem 3.1 and

Theorem 4.1 hold locally.

Before ending this paper, we give an example to

illustrate the effectiveness of our theorems.

Example 4.1. Consider the following swit-

ched system:

ẋ = fσ(t)(x), x ∈ R
4, (4.6)

where σ(t) ∈ Λ = {1, 2, 3},

f1(x) =













−x5
1

x3
1x2 − x3

2

0

−2x3
4 − x2

3x4













,

f2(x) =













0

0

−x3
3

2x2
3 − 3x4













,

f3(x) =













0

−2x3
2 + x2x

2
3

−x3
3

0













.

Choosing V (x) = 1
2

∑4

i=1 x2
i , we have

Q1(x) := V̇ (x)|f1

= − (x3
1 −

1

2
x2

2)
2 −

3

4
x4

2 − 2x4
4 − x2

3x
2
4 6 0,

Q2(x) := V̇ (x)|f2

= − (x2
3 − x4)

2 − 2x2
4 6 0,

Q3(x) := V̇ (x)|f3

= − 2(x2
2 −

1

4
x2

3)
2 −

7

8
x4

3 6 0.

Obviously,
∑3

i=1 Qi(x) < 0,∀ x 6= 0. Thus, V is a

CJLF. In a addition,

ker(f1) = Z1 = {x | x1 = x2 = x4 = 0},

ker(f2) = Z2 = {x | x3 = x4 = 0},

ker(f3) = Z3 = {x | x2 = x3 = 0}.

One can see easily that
⋃

i∈Λ Zi \ {0} is discon-

nected. According to Theorem 3.1 (or 4.1), we

conclude that system (4.6) is globally asymptoti-

cally stable if the switching signals satisfy A1 and

A2 (or A2′).
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5 Conclusion

In this paper, we investigated the stability of

switched nonlinear systems. By introducing com-

mon joint Lyapunov function, two extensions of the

LaSalle’s invariance principle were obtained. Un-

like traditional extensions, our results do not re-

quire individual switching modes to be asymptot-

ically stable, while certain ergodicity restrictions

are imposed on the switching signals. It has been

shown that in a practical dynamic process, such as

joint connection of multi-agent systems[6,8], ergod-

icity assumption is reasonable.
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