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Abstract

This paper considers the problem of stabilization of single-input planar switched systems. We assume the switching law
is observable, a formula is presented, which provides a necessary and su2cient condition for the system to be quadratically
stabilizable. A set of linear inequalities are given to describe the set of all quadratic Lyapunov functions. The solvability and
the control design technique are clearly described in a straightforward computation algorithm.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In the last decade, the switched systems have been
investigated by a number of researchers [2,4,8,15].
This problem is not only theoretically interesting but
also practically important. Such control systems ap-
pear in robot manipulators [5], tra2c management
[16], etc. Many human behaviors, the animals to over-
come obstacles, or the mutual actions between preys
and predators can be described as a switching pattern
between its various models. Power systems provide
another useful example [14,17]. While the switching
follows certain stochastic process, adaptive stabiliza-
tion of switched systems is investigated [6,18].
One way to solve the problem is to Bnd a quadratic

Lyapunov function. In some literatures it is called the
quadratic stabilization [13]. For a switched system
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with several linear models, it means to Bnd a com-
mon quadratic Lyapunov function for a set of matrices.
Finding a common quadratic Lyapunov function is
still an open problem, even though several progresses
have been done [1,7,9–12]. Recently, we propose a
new approach technique to Bnd a common quadratic
Lyapunov function [3].
Even though quadratic Lyapunov function is not

necessary for exponential stability [4], it is still a pow-
erful tool in considering stability and stabilization of
switched systems.
A switched control system can be described as [15]

ẋ = A�(x; t)x + B�(x; t)u�(x; t); x∈Rn; u∈Rm; (1.1)

where �(x; t) :Rn × [0;∞) → � is an arbitrary map-
ping unless elsewhere speciBed. In this paper, we as-
sume � = {1; 2; : : : ; N}. But some of the results can
be extended to inBnity case.
In this paper we consider the quadratic stabilization

of the switched system (1.1). That is, we are looking
for a state feedback control and a quadratic Lyapunov
function, xTMx, with M ¿ 0, such that the feedback
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switching models share xTMx as a common quadratic
Lyapunov function.
The paper is organized as follows: Section 2 con-

siders the planar switched systems. A necessary and
su2cient condition is presented. Section 3 expresses
the necessary and su2cient condition as the solution
of a set of linear inequalities. The construction of con-
trols is also precisely described. Section 4 is a brief
summary.

2. Quadratic stabilization of planar switched
systems

First, we give a deBnition to formulate the problem
concerned in this section clearly.

De�nition 2.1. System (1.1) is said to be quadrati-
cally stabilizable with observable �(x; t), if there ex-
ists a common quadratic Lyapunov function, xTMx,
with M ¿ 0, a set of state feedback controls u� =K�x
such that A� + B�K�; � = 1; : : : ; N share a common
quadratic Lyapunov function, xTMx.

We need some preparations. First of all, a necessary
condition for system (1.1) to be stabilizable is that
every model is stabilizable. So a reasonable assump-
tion is

A1. All the models are stabilizable.

The following lemma shows that without loss of
generality we can replace A1 by

A2. All the models are controllable.

Lemma 2.2. If a single-input planar linear system
(A; b) is stabilizable but not controllable, then for
any positive-de5nite matrix, M , there exists a suit-
able state feedback such that xTMx is a quadratic
Lyapunov function of the closed-loop system.

The proof of Lemma 2.2 is in the Appendix. All the
proofs of lemmas or theorems, etc., if not right after
them, are collected in the Appendix.
Now if a switching model, (A�; b�), is stabilizable

but not controllable, we can ignore it. After Bnding
a common quadratic Lyapunov function for all con-
trollable models, the stabilizable but not controllable
models can use it as their quadratic Lyapunov func-
tion. A2 is assumed hereafter.

The following lemma claims that the transformation
of a single-input system to its canonical form is unique.
It is simple but essential for the later approach and
computer coding.

Lemma 2.3. Let (A; b) be a single-input linear sys-
tem. There exists a unique state transformation ma-
trix, T , which converts the system into the Brunovsky
canonical form as

T−1AT =




0 1 0 · · · 0

0 0 1 · · · 0

· · ·
a1 a2 a3 · · · an


 ;

T−1b=




0

0

...

1


 : (2.1)

Moreover, the parameters ai are


a1
a2
an


= (b Ab · · · An−1b)−1Anb;

and the unique state transformation matrix, T =
(T1; T2; : : : ; Tn), can be inductively determined column
by column as

Tn = b;

Tk−1 = ATk − akb; k = n; n− 1; : : : ; 2:

Lemma 2.4. Given a positive de5nite matrix

M =

(
m1 m2

m2 m3

)
¿ 0:

There exists a feedback u=Kx= (k1; k2)x, such that
the closed-loop system of the canonical single-input
planar system

Ã= A+ bK =

(
0 1

a21 a22

)

+

(
0

1

)
(k1 k2) :=

(
0 1

� �

)
(2.2)

hasM as its quadratic Lyapunov function, i<m2 ¿ 0.
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Based on the previous lemma, we give the following
deBnition:

De�nition 2.5. A matrix

M =

(
m1 m2

m2 m3

)
¿ 0

is said to be canonical-friend (to the canonical con-
trollable form), if m2 ¿ 0.

Lemma 2.6. Given a nonsingular matrix

T =

(
t11 t12

t21 t22

)
:

There exists a canonical-friend matrix M ¿ 0, such
that TTMT is also canonical-friend, i< the following
quadratic equation:

t21t22x2 + (t12t21 + t11t22)x + t11t12 ¿ 0 (2.3)

has a positive solution x¿ 0.

Note that for a given state transformation matrix,
T , the solution of (2.3) consists of one or two open
intervals. It might be empty. We denote the set of
solutions as IT .
Consider the single-input planar switched system

(1.1) and assume�=(1; : : : ; N ) be a Bnite set. For each
switching model we denote the state transformation
matrix, which converts it to the canonical controllable
form, by Ci, i = 1; : : : ; N . That is, let

zi = Cix; i = 1; : : : ; N:

Then the ith model ẋ=Aix+biu, when expressed into
zi coordinates, is a Brunovsky canonical form (2.1).
According to Lemma 2.3, Ci, i=1; : : : ; N are uniquely
determined.
Set Ti = C1C−1

i+1; i = 1; : : : ; N − 1. Ti is the state
transformation matrix from zi+1 to z1. That is,

z1 = C1x = C1C−1
i+1zi+1 = Tizi+1:

Next, we classify Ti = (tij; k) into three categories:

Sp = {i∈� | ti21ti22 ¿ 0}; Sn = {i∈� | ti21ti22 ¡ 0};
Sz = {i∈� | ti21ti22 = 0}:

Then �= Sp ∪ Sn ∪ Sz. Next, for i∈ Sz, we deBne

ci = ti12t
i
21 + ti11t

i
22;

di = ti11t
i
12; i∈ Sz: (2.4)

For the other cases, we deBne

ai =
ti11
ti21

;

bi =
ti12
ti22

; i∈ Sp ∪ Sn: (2.5)

For each i∈ Sz, we deBne a linear form as

Li = cix + di; i∈ Sz; (2.6)

and for each i∈ Sp or i∈ Sn, we deBne a quadratic
form as

Qi = x2 + (ai + bi)x + aibi; i∈ Sp ∪ Sn: (2.7)

According to the Lemma 2.6, we may solve x from

Qi(x)¡ 0; i∈ Sn;

Qi(x)¿ 0; i∈ Sp;

Li(x)¿ 0; i∈ Sz:

Note that Qi in (2.7) can be factorized, the roots are
{−ai;−bi}. So we can simply deBne the solution set
as follows:
If i∈ Sp, we deBne an open set consists of two

semi-lines as

Ii = (−∞;min(−ai;−bi)) ∪ (max(−ai;−bi);∞):

If i∈ Sn, we deBne an open set as

Ii = (min(−ai;−bi);max(−ai;−bi)):

If i∈ Sz, since Ti is non-singular, it follows that ci �=
0. Hence we can deBne an open set as

Ii =

{
(−di=ci;∞); ci ¿ 0;

(−∞;−di=ci); ci ¡ 0:

As an immediate consequence of Lemma 2.6, we
have the following simple conclusion:
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Theorem 2.7. (1) A su=cient condition for the
switched system (1.1) to be quadratically stabilizable
is

I =
N−1⋂
k=1

Ik �=?: (2.8)

(2) If all i∈ Sp; i=1; : : : ; N − 1, then the switched
system (1.1) is always stabilizable.
(3) If all i∈ Sn; i = 1; : : : ; N − 1, (2.8) is also

necessary.

Theorem 2.7 provides a very convenient condition
for the existence of a common quadratic Lyapunov
function. We may expect that it is also necessary.
When N =2 Lemma 2.6 says that it is. But in general
it is not. We have the following counter-example:

Example 2.8. Consider a system

ẋ = A�(x; t)x + b�(x; t)u�(x; t); (2.9)

where �(x; t) :R2 × [0;∞) → {1; 2; 3; 4}, with four
switching models as

A1 =

(
−4 −2

9 5

)
; b1 =

(
−1

2

)
;

A2 =

(
2 − 1

3

−3 0

)
; b2 =

(
5

−6

)
;

A3 =

(
−7 −6

9:5 8

)
; b3 =

(
6

−7

)
;

A4 =

(
−12 −11

13 12

)
; b4 =

(
−7

8

)
:

We investigate whether it is quadratically stabilizable.
Suppose z1; z2; z3, and z4 are the canonical coordinates
of models 1,2,3,4, respectively. That is, under zi model
i has Brunovsky canonical form. Let

zi = Cix; i = 1; 2; 3; 4:

Using Lemma 2.3, we can get Ci as (note that Ci is
T−1 of Lemma 2.3)

C1 =

(
2 1

1 1

)
; C2 =

(−2 −12
3

1 2
3

)
;

C3 =

(
11
6 1

11
3 1

)
; C4 =

(
22
3 2 1

3

−12
3 −11

3

)
:

Then the state transformation matrices between z1 and
zi; i=2; 3; 4, determined by Ti =C1C−1

i+1; =1; 2; 3, are
obtained as

T1 =

(
1 4

−1 −1

)
; T2 =

(
−4 5

2 −1

)
;

T3 =

(
−3 −6

1 1

)
:

Now for T1, since t21t22 =1; 1∈ Sp, and a1 = t11=t21 =
−1, b1=t21=t22=−4; so I1=(−∞; 1)∪(4;∞). For T2,
since t21t22 =−2; 2∈ Sn, and a2 = t11=t21 =−2; b2 =
t21=t22 = −5; so I2 = (2; 5). For T3, since t21t22 = 1,
3∈ Sp, and a3 = t11=t21 = −3, b3 = t21=t22 = −6; so
I3 = (−∞; 3)∪ (6;∞). We conclude that I = I1 ∩ I2 ∩
I3 =?. But we may choose the controls as u = Kix
with

K1 = (−11:2143 − 8:2143);

K2 = (−36 − 23:3333);

K3 = (−18 − 13:5);

K4 = (58 46)

and let the quadratic Lyapunov function xTMx be con-
structed by

M =

(
31:75 26:25

26:25 21:75

)
¿ 0:

Then it is ready to verify that

M (A1 + b1K1) + (A1 + b1K1)TM

=

(
−246:8929 −205:3929

−205:3929 −170:8929

)
¡ 0;

M (A2 + b2K2) + (A2 + b2K2)TM

=

(
−120:5000 −79:5000

−79:5000 −52:5000

)
¡ 0;

M (A3 + b3K3) + (A3 + b3K3)TM

=

(
−188:7500 −143:2500

−143:2500 −108:7500

)
¡ 0;

M (A4 + b4K4) + (A4 + b4K4)TM

=103
(
−1:5005 −1:1955

−1:1955 −0:9525

)
¡ 0:
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Hence system (2.13) does not satisfy the condition of
Theorem 2.7. But it is quadratically stabilizable with
arbitrary but known switching rule.

Wewill go back to this simple condition of Theorem
2.7 again, and also will re-visit Example 2.8 to see
how to design the controls. Next, we investigate the
necessary and su2cient condition for system (1.1) to
be quadratically stabilizable. Carefully go through the
proof of Lemma 2.6 and the followed argument, we
can Bnd the following result:

Theorem 2.9. Let �=(1; : : : ; N ). Then system (1.1)
is quadratically stabilizable, i< there exists a positive
x such that

max
i∈Sn

Qi(x)¡ 0;

min
i∈Sp

Qi(x)¿max
i∈Sn

Qi(x);

Li(x)¿ 0; I ∈ Sz: (2.10)

Proof. Assume there is a quadratic Lyapunov func-
tion in z1 coordinates, which is expressed as

M1 =

(
1 m2

m2 m3

)
:

According to Lemma 2.4, m2 ¿ 0. It is easy to see
from the proof of Lemma 2.6 that M1 is a common
quadratic Lyapunov function for the other models, iO
Hi(1; m2; m3)¿ 0, i = 1; 2; : : : ; N − 1, which leads to

m3 + (ai + bi)m2 + aibi ¿ 0; i∈ Sp;

m3 + (ai + bi)m2 + aibi ¡ 0; i∈ Sn;

cim2 + di ¿ 0; i∈ Sz: (2.11)

Since m3 ¿m2
2 we may rewrite the Brst two equations

as

e + m2
2 + (ai + bi)m2 + aibi ¿ 0; i∈ Sp;

e + m2
2 + (ai + bi)m2 + aibi ¡ 0; i∈ Sn; (2.12)

where e¿ 0. The necessity of (2.10) is obvious. As
for the su2ciency, assume there is a solution x such
that mini∈Sp Qi(x)¿ 0, then we can choosem2=x and
m3=x2+'. As '¿ 0 small enough, (2.11) is satisBed.
Otherwise, denote w=mini∈Sp Qi(x)6 0. We choose

m2 = x and

m3 = x2 + 1
2 (min

i∈Sp
Qi(x)−max

i∈Sn
Qi(x))− w: (2.13)

It is easy to see that for such a choice (2.11) holds.
The matrix, therefore, constructed as

M =

(
1 m2

m2 m3

)

meets the requirement.

Next, we go back to Theorem 2.7. In fact, it was
proved in Theorem 2.7 that if all i∈ Sp, or all i∈ Sn,
i = 1; : : : ; N − 1, then (2.8) is also necessary. Since
I is simply computable, it is a very convenient con-
dition. Example 2.8 shows that it isn’t necessary in
general. But when N6 3 we can prove the following
proposition:

Corollary 2.10. If N6 3, (2.8) is also necessity.

3. Design of the controls

This section provides the numerical details for solv-
ing the problem of stabilizing single-input planar sys-
tems. First we claim that (2.10) is equivalent to a set
of linear inequalities.
Consider the Brst inequality in (2.10). It is ready to

see that this inequality is equivalent to

min{aj; bj}¡x¡max{aj; bj}; j∈ Sn:

For the second inequality, it is equivalent to that each
Qi, i∈ Sp is greater than each Qj, j∈ Sn. Hence, it is
equivalent to

(ai + bi − aj − bj)x + aibi − ajbj ¿ 0;

i∈ Sp; j∈ Sn:

Since we are looking for a positive solution, then we
have

Corollary 3.1. System (1.1) is quadratically stabi-
lizable, i< the following set of linear inequalities have
a solution:

min{ai; bj}¡x¡max{aj; bj}; j∈ Sn;

(ai + bi − aj − bj)x + aibi − ajbj ¿ 0;
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i∈ Sp; j∈ Sn;

cix + di ¿ 0; i∈ Sz;

x¿ 0: (3.1)

Recall the proof of Lemma 2.4, a stabilizing control
is easily constructible. We state it formally as

Proposition 3.2. Let (A; b) be a canonical planar sys-
tem, i.e.,

ẋ =

(
0 1

a21 a22

)
+

(
0

1

)
u; (3.2)

and

M =

(
m1 m2

m2 m3

)
¿ 0

be canonical-friend (i.e., m2 ¿ 0). To make xTMx a
quadratic Lyapunov function of the closed-loop sys-
tem, a feedback control can be chosen as

u= kx =
(
(�− a21)

(
�m3 − m1

m2
− a22

))
x;

(3.3)

where �¡ 0 can be any negative real number.

Remark. Of course (3.3) is only a possible choice.
But we always choose (3.3) as our control in later use.
Because from the proof of Lemma 2.4 we know that
the (�; �) chosen in this way makes the determination
of Q to reach the maximum. In some sense, it makes
Q most negative.

Next, we give a step-by-step algorithm for solving
the quadratic stabilization problem of the single-input
planar systems:

Algorithm 3.3.
Step 1. Using Lemma 2.3 to Bnd the state transfor-

mation matrices Ci; i = 1; : : : ; N; zi = Cix, such that
in coordinate frame zi the ith switching model is in
Brunovskey canonical form.
Step 2. DeBne another set of state transformation

matrices: Ti = C1C−1
i+1; i = 1; : : : ; N − 1, such that

z1 = Tizi+1; i = 1; : : : ; N − 1:

Step 3. Calculate ai, bi by (2.5) if i∈ Sp∪Sn; ci; di

by (2.4) if i∈ Sz.
Step 4. Construct the system of inequalities (3.1).

Find any one solution, x= x0. (If there is no solution,
the quadratic stabilization problem has no solution.)
Step 5. Using inequalities (2.12), setting m2 = x0,

to Bnd a positive solution e¿ 0. Set m3 = m2
2 + e.

Construct a positive deBnite matrix

M1 =

(
1 m2

m2 m3

)
¿ 0;

which is a common quadratic Lyapunov function for
all switching models with certain feedback controls.
(Note that if Step 4 has a solution then there exist
solutions for the inequalities of (2.12).)
Step 6. Convert M1 to each canonical coordinate

frames as

Mi+1 = TT
i M1Ti; i = 1; : : : ; N − 1: (3.4)

Convert model (Ai; bi) into its canonical coordinate
chart as

Ãi = C−1
i ACi; b̃i = (0; 1)T; i = 1; : : : ; N: (3.5)

Using formula (3.3) to construct the feedback con-
trols: ki, i = 1; : : : ; N .
Step 7. Back to the original coordinate frame x. The

controls should be

Ki = (ki)Ci; i = 1; : : : ; N: (3.6)

The common quadratic Lyapunov function for all
closed-loop switching models is

M = CT
1M1C1: (3.7)

Example 3.4. Re-visit Example 2.8, we will follow
Algorithm 3.3 to construct the controls.
Steps 1–3 have already been done in Example 2.8.

So we can start from Step 4 to construct the inequali-
ties.
Since 2∈ Sn, a2=−2 and b2=−5, the corresponding

inequality is

2 = min{−a2;−b2}¡x¡max{−a2;−b2}= 5:

Now we consider i=1∈ Sp and j=2∈ Sn, since a1 =
−1 and b1 =−4, the corresponding inequality is

(a1 + b1 − a2 − b2)x + a1b1 − a2b2 = 2x − 6¿ 0:
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Finally we consider i = 3∈ Sp and j = 2∈ Sn, since
a3 =−3 and b3 =−6, the corresponding inequality is

(a3 + b3 − a2 − b2)x + a3b3 − a2b2 =−2x + 8¿ 0:

Now we have whole system of the inequalities (3.1)
as

2¡x¡ 5;

2x − 6¿ 0;

−2x + 8¿ 0;

x¿ 0:

The solution is 3¡x¡ 4. We know any solution
x can be used to construct a common quadratic Lya-
punov function.
For instance, we may choose x0=3:5 and go to Step

5. Then (2.12) becomes

e + 12:5 + (−1− 4)× 3:5 + 4¿ 0;

e + 12:5 + (−3− 6)× 3:5 + 18¿ 0;

e + 12:5 + (−2− 5)× 3:5 + 10¡ 0;

e¿ 0:

The solution is 1¡e¡ 2. Any solution e can be
used to construct a common quadratic Lyapunov func-
tion. We may naturally choose e = 1:5. Then setting
m2 = x0, m3 = x20 + e, we have

M1 =

(
1 3:5

3:5 14

)
:

Now for Steps 6 and 7, convert (A1; b1) to z1 coor-
dinates, we have Ã1 = C1AC−1

1 , which is

Ã1 =

(
0 1

2 1

)
; b̃1 =

(
0

1

)
:

Using (3.3), say we choose �=−1¡ 0, then

k̃1 =
(
(�− a21)

(
�m3 − m1

m2
− a22

))

=
(
(−1− 2)

(−1(14)− 1
3:5

− 1
))

= (−3 − 52
7 ):

Then in the original coordinate frame x we have

K1 = k̃1C1 = (−11:2857 − 8:2857):

Next, for (A2; b2) to z2 coordinates, we have

Ã2 =

(
0 1

1 2

)
; b̃2 =

(
0

1

)
:

To get the feedback control law, we need to convert
M1 into z2 frame, which is

M2 = TT
1 M1T1 =

(
8:0000 0:5000

0:5000 2:0000

)
:

Then we can get the feedback law as

k̃2 = (−2:0000 − 22:0000);

K2 = (−18:0000 − 11:3333):

For (A3; b3) to z3 coordinates, we have

Ã3 =

(
0 1

−1 1

)
; b̃3 =

(
0

1

)
;

M3 = TT
2 M1T2 =

(
16:0000 1:0000

1:0000 4:0000

)
:

The feedback law as

k̃3 = (0 − 21:0000);

K3 = (−28:0000 − 21:0000):

Finally, for (A4; b4) to z4 coordinates, we have

Ã4 =

(
0 1

1 0

)
; b̃4 =

(
0

1

)
;

M4 = TT
3 M1T3 =

(
2:0000 0:5000

0:5000 8:0000

)
:

The feedback law as

k̃4 = (−2:0000 − 20:0000);

K4 = (28:0000 22:0000):

To check whether the result is correct, we do the fol-
lowing veriBcation:
Get the quadratic form back to the original coordi-

nates x

M0 = CT
1M1C1 =

(
32:0000 26:5000

26:5000 22:0000

)
:
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We can check whether it is really a common
quadratic Lyapunov function of the four diOerent
models.

M0(A1 + B1K1) + (A1 + B1K1)TM0

=

(−253:0000 −211:0000

−211:0000 −176:0000

)
¡ 0;

M0(A2 + B2K2) + (A2 + B2K2)TM0

=

(−67:0000 −44:0000

−44:0000 −29:0000

)
¡ 0;

M0(A3 + B3K3) + (A3 + B3K3)TM0

=

(−308:5000 −233:0000

−233:0000 −176:0000

)
¡ 0;

M0(A4 + B4K4) + (A4 + B4K4)TM0

=

(−751:0000 −596:0000

−596:0000 −473:0000

)
¡ 0:

The veriBcation is completed successfully.

One of the advantages in this approach is that
it provides not only one solution as in most of the
control design problems. It provides all the possible
quadratic Lyapunov functions. There is no exception
at all.

4. Conclusion

The stabilization problem of switched systems
was discussed in the paper. A necessary and su2-
cient condition for the stabilizability of a single-input
planar switched system with observable switching
law was obtained. The condition provides a set of
linear inequalities. Solving them we get the de-
signed common quadratic Lyapunov function. Then
a formula was obtained to design the stabilizing
control.
The general problem of the stabilization for a

switched system of dimension greater than two re-
mains for further study.

Appendix

Proof of Lemma 2.2. Without loss of generality, we
can assume b= (0; 1). Then the system becomes

ẋ = Ax + bu=

(
a11 0

a21 a22

)
+

(
0

1

)
u:

Since it is stabilizable, a11 ¡ 0. Without loss of gen-
erality, we can assume a11=−1. Then the closed-loop
matrix, Ã= A+ bK , is

Ã=

(
−1 0

� �

)
;

where � and � can be chosen arbitrary.
Assume

M =

(
1 m2

m2 m3

)
¿ 0:

We have only to prove that we can choose � and � such
thatMÃ+(Ã)TM ¡ 0. A straightforward computation
shows

Q :=MÃ+ (Ã)TM

=

(
2(�m2 − 1) �m3 + (� − 1)m2

�m3 + (� − 1)m2 2�m3

)
:

Now since m3 ¿ 0, to get Q¡ 0 we have only to
choose � and �¡ 0 such that det(Q)¿ 0. det(Q) is
calculated as det(Q) = −(�m3 − �m2)2 + 2�m2m3 +
2�m2

2 − m2
2 − 4�m3. Choosing �= �m2=m3 yields

det(Q) =−4�(m3 − m2
2)− m2

2 =−4� det(M)− m2
2:

Choosing

�¡− m2
2

4 det(M)
¡ 0

yields det(Q)¿ 0, which completes the proof.

Proof of Lemma 2.3. We have only to prove the
uniqueness of T . From (2.1) it is easy to get the
following equation:

AT1 = a1b;

AT2 = T1 + a2b;

· · ·
ATn−1 = Tn−2 + an−1b;

Ab= Tn−1 + anb:
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Then a straightforward computation shows the re-
quired formulas.

Proof of Lemma 2.4. Without loss of generality, we
assume m1 = 1. Then for M ¿ 0 to be the quadratic
Lyapunov function of Ã, iO,

MÃ+ ÃTM =

(
1 m2

m2 m3

)(
0 1

� �

)

+

(
0 �

1 �

)(
1 m2

m2 m3

)
¡ 0;

(A.1)

which leads to

Q :=

(
2�m2 1 + �m3 + �m2

1 + �m3 + �m2 2(m2 + �m3)

)

¡ 0: (A.2)

Note that � is the trace of matrix of the closed-loop
system, hence �¡ 0 is a necessary condition for the
closed-loop system to be stable. It is assumed in the
following discussion.
It is obvious that m2 = 0 is not allowed. In fact,

�m2 ¡ 0 is necessary. Then we have
Case 1: m2 ¡ 0 and �¿ 0: Now for (A.2) to hold,

it is necessary and su2cient to have the determinant
of the left-hand side of (A.2), denoted by D(�; �), to
be positive. After a simple computation, we have

D(�; �) =−(�m2 − �m3)2 − 2(�m2 + �m3)

+ 4�m2
2 − 1:

Then setting

@D(�; �)
@�

=−2m2(�m2 − �m3)− 2m2 = 0;

yields

�m2 = �m3 − 1:

So the maximum D(�; �) is

Dmax =−1− 2(2�m3 − 1) + 4�m2
2 − 1

=−4�(m3 − m2
2) =−4� det(M)¡ 0:

Hence m2 ¿ 0 is necessary for the matrix Q in (A.2)
to be negative deBnite, which proves the necessity.

Case 2: m2 ¿ 0 and �¡ 0: In this case we can
simply choose any �¡ 0 and let

� =
�m3 − 1

m2
: (A.3)

Then

D(�; �) =−4�(m3 − m2
2)¿ 0:

The su2ciency is proved.

Proof of Lemma 2.6. (Su2ciency) Consider a
matrix

M =

(
m1 m2

m2 m3

)
¿ 0

with m2 ¿ 0. Calculating M̃ = TTMT shows that

H (m1; m2; m3) := m̃12

=t21t22m3 + (t12t21 + t11t22)m2 + t11t12m1:

From (2.3),H (1; x; x2)¿ 0. By continuity, there exists
'¿ 0 small enough, such that H (1; x; x2 + ')¿ 0. Set
m1 = 1, m2 = x and m3 = x2 + ', the matrix M meets
our requirement.
(Necessity) Without loss of generality, we can as-

sume there exists

M =

(
1 m2

m2 m3

)
¿ 0

such that bothM and TTMT are canonical-friend. That
is: m2 ¿ 0 and H (1; m2; m3)¿ 0. Now, if t21t22 ¿ 0,
then it is trivial that (2.3) has a positive solution. As
t21t226 0, since m3 ¿m2

2

H (1; m2; m2
2)¿H (1; m2; m3)¿ 0: (A.4)

So m2 is a positive solution of (2.3).

Proof of Theorem 2.7. (1) Choose m2 ∈ I and m3 =
m2

2 + '. It is easy to see that when '¿ 0 small enough,
the corresponding matrix

M =

(
1 m2

m2 m3 + '

)

(in z1 coordinates) becomes the common quadratic
Lyapunov function (for suitably chosen controls).
(2) Choose m2 ¿ 0 large enough, then m2 ∈ I .
(3) From the proof of Lemma 2.6, inequality (A.4)

shows that m2 ∈ I . So I �=?.
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Proof of Corollary 2.10. When N = 2 it was proved
in Lemma 2.6. We have only to prove it for N=3. We
have T1 and T2. If both 1 and 2 are in Sp (or Sn), it
has been proved in the Theorem 2.7. Without loss of
generality we may assume 1∈ Sp and 2∈ Sn. To see
the necessity, we assume I1 ∩ I2 =?, it turns out that

a1¿ a2¿ b2¿ b1:

Here without loss of generality, we assume a1¿ b1
and a2¿ b2. Now it is obvious that

Q2(x)¿Q1(x); x∈ (b2; a2): (A.5)

A rigorous proof of (A.5) is tedious. But think about
the relative position of the two parabola of the same
shape, the conclusion is obvious.
Hence the second inequality in (2.10) failed.

Proof of Proposition 3.2. It is from the proof of
Lemma 2.4. In fact, (3.3) is from (A.3) with an
obvious modiBcation for m1 �= 1.
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