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a b s t r a c t

This paper considers the stabilization of planar switched linear control systems. First, a structure property
of not completely controllable pair (A, b) is revealed. Based on it, a simply verifiable, necessary and
sufficient condition for the planar switched linear control system to be feedback stabilizable, is presented
under the assumption that the switching law is designable. The proof provides a design technique for
stabilizer and switching law.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

Currently, research on switched systems has attracted more
and more attention from researchers. Switched systems can be
considered as the simplest hybrid systems. Among switched
systems, switched linear systems are the simplest. For a survey on
hybrid systems and switched system, we refer to [2,3,7,14] and a
recent book [20].

Although switched linear systems are considered as the
simplest hybrid systems, the simplicity in form does not decrease
their practical values. They appear in many engineering problems,
such as in automobile areas, in rocket control and biological
engineering etc,.

Stabilization of a switched linear system still remains a very
challenging problem. Concerning this problem, there are two
aspects. One is to stabilize a switched linear systemwithout control
channel, namely, to stabilize it by designing a suitable switching
sequence, or switching law. The other is to stabilize a switched
linear control system. For systems of this type, we have more
choice. That is, this type of system can be stabilized by designing a
switching law and constructing a controller.

Concerning stabilization of switched linear systems, there are
a lot of sources, here we name some as [4,6,8,12,13,17,18,21] etc.
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Topics on other aspects of the switched systems can be found in
[5,16,19,22] etc.

Consider a switched linear control system

ẋ = Aσ(t)x + bσ(t)u, x ∈ R2 (1.1)

where the function σ : [0,+∞) → {1, 2, . . . ,N} is of piece-wise
constant.

Using linear feedback u(t) = Fσx(t), a necessary and sufficient
condition for the stabilization of planar switched linear systems
was proposed in [4]. The problem considered there is the
quadratic stabilization for systems with arbitrary switching. As for
switched linear control systemswith designable switching law, the
following result is well known [10]:

Proposition 1. A sufficient condition for quadratic stabilizability is
there exist gain matrices Fi, i ∈ {1, . . . ,N}, such that the matrix pencil{

N∑
i=1

wi(Ai + BiFi)

∣∣∣∣∣wi ≥ 0,
N∑

i=1
wi = 1

}
(1.2)

contains a Hurwitz matrix. For the case of N = 2, the condition is also
necessary.

This paper provides a straightforward verifiable necessary and
sufficient condition for linear feedback stabilizability. In addition,
a detailed design technique for the controller and switching law is
provided.

Since the switching law is designable, throughout this paperwe
assume the following:
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A1 Each subsystem (Ak, bk) contains at least one unstable
uncontrollable eigenvalue.

If one of the subsystems is stabilizable then the problem
becomes trivial.

The paper is organized as follows: Section 2 reveals an
interesting structure property of a planar uncontrollable linear
system, which plays a key role in the following discussion.
Section 3 presents the necessary and sufficient condition. Section 4
is an illustrative example. Section 5 is the conclusion.

2. A system structure property

Under the assumption A1, it is obvious that all subsystems
are not controllable. In this section we prove a property of
uncontrollable pair (A, b). Suppose A ∈ R2×2 and 0 6= b ∈ R2, then
the pair (A, b) is completely controllable if, and only if

Rank{b, Ab} = 2. (2.1)

Now, we assume (A, b) is not completely controllable, which
implies that Rank{b, Ab} = 1 since b 6= 0. Therefore, b is an
eigenvector associated with some eigenvalue of the matrix A.
Suppose Ab = λb, then λ must be a real number since both A and b
are real.

Linear control theory tells us that there is a nonsingular matrix
T ∈ R2×2, such that the following equalities hold [9,11]:

T−1AT =

(
λ a
0 µ

)
, Ã, T−1b =

(
1
0

)
, b̃. (2.2)

Instead of discussing (A, b) directly, we examine (Ã, b̃). From
(2.2), it is obvious that µ is an uncontrollable real eigenvalue of
Ã. Moreover, λ = µ is possible.

Next, we point out that the eigenvectors, associated with the
uncontrollable eigenvalue µ of the matrix Ã + b̃c̃T , can be made
orthogonal to any prescribed vector, by choosing suitable control
matrix c̃T .

Proposition 2. Suppose Ã and b̃ are in form (2.2) and ṽ = (ṽ1, ṽ2) is
an arbitrary vector in the spaceR2. Then, a row vector c̃ = (c̃1, c̃2) can
be found such that the eigenvectors associatedwith the uncontrollable
eigenvalue of the matrix Ã + b̃c̃T is orthogonal to ṽ.

Proof. It is not difficult to write out the expression of the matrix
Ã + b̃c̃T as(

λ + c̃1 a + c̃2
0 µ

)
, (2.3)

whose eigenvalues areλ+c̃1 andµ. And one eigenvector associated
with the eigenvalue µ has the form:

(x̃1, x̃2)
T

= (−(a + c̃2),λ + c̃1 − µ)
T . (2.4)

Now we check if the following equality

−(a + c̃2)ṽ1 + (λ + c̃1 − µ)ṽ2 = 0 (2.5)

can be hold by suitably choosing c̃1 and c̃2. Obviously, if (ṽ1, ṽ2) =

(0, 0), then any (c̃2, c̃2) satisfies (2.5). For (ṽ1, ṽ2) 6= (0, 0), the
formula of (c̃1, c̃2) can be obtained explicitly. Suppose ṽ1 6= 0, then
the solution for Eq. (2.5) is

(c̃1, c̃2) =

(
c̃1,

ṽ2
ṽ1

c̃1 −
(µ − λ)ṽ2 + aṽ1

ṽ1

)
(2.6)

where c̃1 is free. While for ṽ2 6= 0, the solution is

(c̃1, c̃2) =

(
ṽ1
ṽ2

c̃2 +
ṽ1
ṽ2

a + (µ − λ), c̃2

)
(2.7)

where c̃2 is free. �
Remark 2.1. The formula (2.7) shows that when ṽ1 = 0, the
solution becomes (c̃1, c̃2) = (µ − λ, c̃2), which makes all the
diagonal elements of the matrix Ã equal to µ. Since c̃2 is free, we
can make the matrix Ã a multiple of the identity matrix I.

Remark 2.2. In the case of the first component of ṽ, ṽ1 = 0,
there holds b̃⊥ṽ, which means that the eigenvector associated
with µ is a multiple of b̃. This implies that the matrix Ã + b̃c̃T

assumes µ as its eigenvalue of multiplicity 2. Thus, if we want
the eigenvector associated with µ to be orthogonal to ṽ, the
controllable eigenvalue of Ã can only be controlled to be µ, which
is not a stable eigenvalue as we designed. For this reason, we need
to suppose b̃ not perpendicular to ṽ.

Remark 2.3. When ṽ1 6= 0, which means that b̃ is not
perpendicular to ṽ. Then (2.6) shows that c̃T can perform two
functions, one is to make the eigenvectors associated with µ
perpendicular to ṽ, the other is to make the another eigenvalue of
Ã + b̃c̃T arbitrarily negatively large.

Next we point out the validity of the proposition when the
concerned matrices are not in the canonical forms.

In fact,

T−1
(
A − µI + bc̃TT−1

)
Tx̃ =

(
Ã + b̃c̃T

)
x̃ = 0, (2.8)

from which we can see that the eigenvector associated with µ of
the matrix A + bcT is

x = T
(

−(a + c̃2)
λ + c̃1 − µ

)
(2.9)

where cT = c̃TT−1.
The above arguments establish the correspondence between

x, c and x̃, c̃, respectively.

Proposition 3. Let A ∈ R2×2 and b ∈ R2. Suppose

Rank{b, Ab} = 1, (2.10)

then for any vector v ∈ R2, there exists at least one row vector cT such
that the eigenvector associated with the uncontrollable eigenvalue of
the matrix A + bcT is orthogonal to v.

Corollary 1. Under the hypothesis of the above proposition, if v is any
vector that is not perpendicular to b, then there exists at least one row
vector cT such that the eigenvector associated with the uncontrollable
eigenvalue of thematrix A+bcT is orthogonal to v, and the controllable
eigenvalue of A + bcT is arbitrarily negatively large.

3. Stabilization via designed switching law and controls

In this section we present a necessary and sufficient condition
for the stabilizability of the planar switched linear control systems
(1.1).

In order to avoid the trival case, we assume A1. First, we need a
definition.

Definition 1. System (1.1) is said to be asymptotically stabilizable
if there exist a piecewise constant switching sequence σ(t) and
a piecewise control law uσ(t) such that the trajectories of (1.1)
asymptotically approach the origin from any initial state x0 ∈ R2.

We now present the main result of this section, and also the
main conclusion of the article.

Theorem 1. Consider the switched planar linear control system (1.1)
with N = 2. Assume (A1, b1) and (A2, b2) are both unstabilizable
systems. Then the switched system is asymptotically stabilizable if and
only if b1 and b2 are linearly independent.
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To prove this result, we need the following lemmas.

Lemma 3.1 ([15]). If a matrix A has distinct eigenvalues, it is simple.

Lemma 3.2 ([1,15]). Let A be a simple matrix with eigenvalues
λ1, . . .λn and associated eigenvectors X1, . . . , Xn. Then there are left
eigenvectors Y1, . . . , Yn, for which YT

j Xi = δi,j, 1 ≤ i, j ≤ n, and

A =

n∑
i=1

λiXiY
T
i . (3.1)

Lemma 3.3 ([1,15]). If a simple matrix A takes the representation
(3.1), then

eAt
=

n∑
i=1

eλitXiY
T
i . (3.2)

Now we are ready to prove our main theorem:

Proof. (Necessity) Assure b1 and b2 are linearly dependent. Then
after a suitable change of coordinates each subsystem can be
expressed as

ẋ =

(
λi ai
0 µi

)
+

(
ci
0

)
u, i = 1, 2 (3.3)

where ci 6= 0, i = 1, 2.
According to A1, no matter how to choose controls and/or

switching laws, the second component x2 can never converge to
zero.
(Sufficiency) Consider the subsystem

ẋ = A1x + b1u. (3.4)

Denote the set of the eigenvalues of the matrix A1 by {λ11,λ12}

and assume λ11 is controllable, while λ12 uncontrollable [11,9].
For any row vector cT1, denote the set of eigenvalues of the matrix
A1 + b1c

T
1 by {λ′

11,λ12}. So, we can select suitable cT1, such that λ′

11
is negatively sufficiently large. To be more specific, we make λ′

11
satisfy

λ′

11 < −|λ22| (3.5)

where λ22 is the uncontrollable eigenvalue of the matrix A2.
Denote the eigenvectors of the matrix A1 + b1c

T
1 as v′

11 and v12.
According to Lemma3.2, there are rowvectors uT

11 and uT
12 such that

Ã1 , A1 + b1c
T
1 = λ′

11v
′

11u
T
11 + λ12v12u

T
12 (3.6)

and

uT
11v12 = 0, uT

12v
′

11 = 0. (3.7)

Next we consider another subsystem

ẋ = A2x + b2u. (3.8)

Denote the spectrum of the matrix A2 by {λ21,λ22}, and suppose
λ21 is controllable, λ22 uncontrollable.

By the aforementioned propositions and remarks, there exists
a row vector cT2 such that v22, an eigenvector associated with the
eigenvalue λ22 of the matrix A2 + b2c

T
2, is perpendicular to uT

12,
i.e. uT

12v22 = 0.
The assumption A1 and the hypotheses of the theorem imply

that the rank condition Rank{b1, A1b1} = 1 holds, which means
b1 is an eigenvector associated with the controllable eigenvalue of
the matrix A1. Therefore, uT

12v
′

11 = 0 ⇔ uT
12b1 = 0. Consequently,

the linear independence of b1 and b2 implies uT
12b2 6= 0, that is, u12

is not perpendicular to b2. So, according to the Proposition 3 and
Corollary 1, the row vector cT2 can also be chosen in such a way that
the controllable eigenvalue λ′

21 of thematrix A2+b2c
T
2 is negatively

sufficiently large. In particular, it can satisfy λ′

21 < −|λ12|.
Similar to (3.6) and (3.7), we can find uT

21 and uT
22 such that

Ã2 , A2 + b2c
T
2 = λ′

21v
′

21u
T
21 + λ22v22u

T
22 (3.9)

and

uT
21v22 = 0, uT

22v
′

21 = 0 (3.10)

Now we examine the product e(A1+b1c
T
1)t2e(A2+b2c

T
2)t1 . Obviously,

matrices A1 + b1c
T
1 and A2 + b2c

T
2 satisfy Lemma 3.3. So{

e(A1+b1c
T
1)t2 = eλ′

11t2v′

11u
T
11 + eλ12t2v12u

T
12

e(A2+b2c
T
2)t1 = eλ′

21t1v′

21u
T
21 + eλ22t1v22u

T
22.

(3.11)

Therefore,

e(A1+b1c
T
1)t2e(A2+b2c

T
2)t1 = eλ′

11t2+λ′
21t1v′

11u
T
11v

′

21u
T
21

+ eλ′
21t1+λ12t2v12u

T
12v

′

21u
T
21 + eλ′

11t2+λ22t1v′

11u
T
11v22u

T
22. (3.12)

From the above equality we can see that the numbers lying
on the exponential positions are all negative, while the matrices
appearing in the above equality are all fixed. Therefore, for any
positive number α < 1, we can find a number M > 0 such that∥∥∥e(A1+b1c

T
1)Me(A2+b2c

T
2)M

∥∥∥ ≤ α, (3.13)

which allows us to construct a switching law σ(t) in the following
way

σ(t) =

{
2, when 2kM ≤ t < (2k + 1)M;

1, when (2k + 1)M ≤ t < 2(k + 1)M.

k = 0, 1, 2, . . . . (3.14)

And, the controller is

cσ(t) =

{
cT2, when 2kM ≤ t < (2k + 1)M;

cT1, when (2k + 1)M ≤ t < 2(k + 1)M.

k = 0, 1, 2, . . . . � (3.15)

Remark 3.1. From the above theoremwe can see that the case for
switching systemswith N > 2 follows immediately. In fact, all that
matters is the existence of two subsystems (Aj, bj) and (Ak, bk), with
bj, bk linearly independent.

Remark 3.2. The conclusion derived here is somewhat different
than quadratic stabilizability, since the most accepted definition
of quadratically stabilizable requires the switching sequence
depending on the state, i.e. the switching law is of the form σ(x, t),
while the switching law constructed in this paper depends only on
time t.

4. An illustrative example

Since the proof of the main result is constructive, it provides a
method to design the switching law and the control. In this section
weuse an example to illustrate themethod presented in this paper.

Example 1. Let

A1 =

(
1 1
0 1

)
, b1 =

(
1
0

)
; A2 =

(
1 1
1 1

)
,

b2 =

(
1

−1

)
.

(4.1)
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Fig. 1. Figure of Example 1.

Choose cT2 = (−9, 9). Then a direct computation shows that

e(A2+b2c
T
2)t = e2t

(
1
1

) (
1
2

1
2

)
+ e−9t

(
1

−1

) (
1
2

−
1
2

)
. (4.2)

Choose cT1 = (−10, 0) and cT0 = (0,−11). Then the eigenvectors
associated with the uncontrollable eigenvalue 1 of the matrix A1 +

b1c
T
1 + b1c

T
0 is orthogonal to the vector

(
1
2 ,

1
2

)
. Also

e(A1+b1c
T
1+b1c

T
0)t = e−9t

(
1
0

) (
1 1

)
+ et

(
−1
1

) (
0 1

)
. (4.3)

A direct computation shows that the following switching
sequence and the controller

σ(t) =

{
1, for k ≤ t < k + 0.5;

2, for k + 0.5 ≤ t < k + 1 k = 0, 1, . . . .

cTσ(t) =

{
cT1 + cT0, for k ≤ t < k + 0.5;

cT2, for k + 0.5 ≤ t < k + 1 k = 0, 1, . . . .
(4.4)

can stabilize the switched control system.
Fig. 1 is the portrait of the solution starting from the initial point

(9, 9) and the corresponding phase graph during time interval
[0, 2].

5. Conclusions

The stabilization of planar switched linear control systems
via switching strategy and control was considered. Excluding the
trivial case that a mode is stabilizable, a necessary and sufficient
condition was obtained. The constructive proof provides a design
technique for both the switching law and the stabilizer.
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