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Abstract

In the last few years port controlled Hamiltonian (PCH) systems have emerged as an interesting class of nonlinear models
suitable for a large number of physical applications. In this paper we study the question of feedback equivalence of nonlinear
systems to PCH systems. More precisely, we give conditions under which a general nonlinear system can be transformed
into a PCH system via static state feedback. We consider the two extreme cases where the target PCH system is completely
a priori fixed or completely free, as well as the case where it is only partially predetermined. When the energy function is
free a set of partial differential equations needs to be solved, on the other hand, if it is fixed we have to deal with a set
of algebraic equations. In the former case, we give some verifiable necessary and sufficient conditions for solvability. As a
by-product of our analysis we obtain some stabilization results for nonlinear systems.
© 2005 Elsevier B.V. All rights reserved.
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Notation.All vectors are column vectors, including
the gradient which is denoted∇x = �/�x. When clear
from the context the subindex will be omitted. For
all vectors and matrices which are functions of some
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variables we will write explicitly this dependence only
the first time they are defined. Throughout the pa-
per we will assume that all functions are sufficiently
smooth and, with some abuse of notation, treat the
vector functions aselementsof a linear space, instead
of sets, e.g., their span as the argument ranges on
some set. Finally, no particular attention is given to the
characterization of the domain of validity of our state-
ments, to which the local qualifier should be attached.
The statements become global if some rank condi-
tions of state-dependent matrices that are assumed to
hold only locally, are actually true uniformly in the
state.
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1. Introduction

The importance of the notion of passivity for analy-
sis and control design can, nowadays, hardly be over-
estimated, see e.g.[17,15,12]. The central question
of transforming a non-passive system into a passive
system via state-feedback was elegantly settled in[4]
where succinct, necessary and sufficient, geometric
conditions are given. In spite of the unquestionable
beauty of this result feedback equivalence to a (gen-
eral) passive system has been used more as a con-
ceptual framework to understand stabilization mecha-
nisms than as an actual controller design procedure.

On the other hand, feedback equivalence to port
controlled Hamiltonian (PCH) models, which are a
class of passive systems, has attracted the attention of
many researchers lately, in particular for stabilization
objectives. A PCH system (with dissipation) is defined
as[17]

�PCH

{
ẋ = [J (x)− R(x)]∇H(x)+G(x)u,

x ∈ Rn, u ∈ Rm, m<n,

y =G
(x)∇H(x), y ∈ Rm,

(1)

whereH : Rn → R is the total stored energy,J=−J

is known as the interconnection matrix,R = R
 �0
represents the dissipation andG is the input matrix that
is assumed full rank. The vector signalsu andy are
the conjugated port variables and their productu
y
has units of power. It is easy to see that, if the total
energy function is non-negative, then PCH systems are
passive. Furthermore, ifH has anisolatedminimum
at a pointx� ∈ Rn, that is

x� = arg minH(x) (2)

thenx� is a stable equilibrium of�PCH with u ≡ 0.
As explained in[17] PCH systems constitute an ex-

tension of classical Hamiltonian and Euler–Lagrange
models that naturally incorporate interaction with the
environment (through power port variables) and cap-
ture the essential physical property of power conser-
vation that is elegantly articulated using the concept
of Dirac structure. Given these nice features of PCH
models it is then natural to ask when an affine nonlin-
ear system like

�f,G: ẋ = f (x)+G(x)u (3)

with G full rank is transformable, via feedback, into a
PCH system? The investigation of this question is the
topic of interest of the present work.

Our work has been largely inspired by the recent
interesting paper[16] where some of the questions
addressed here are studied for the particular case of
symplectic Hamiltonian systems with fixed symplectic
structure. (See also[10,13].) As thoroughly explained
in the concluding remarks, the present work contains
some extensions of their results.

2. Problem formulation

As will become clear in the sequel it is convenient to
first consider feedback equivalence to pseudo-gradient
systems of the form

�PG: ẋ = F(x)∇H(x),
whereF : Rn → Rn×n is arbitrary. Then, imposing
the constraint that

F + F
 �0, (4)

address feedback equivalence to PCH systems.1 Fi-
nally, with the stabilization objective in mind, we will
additionally be interested in the case when (2) holds,
wherex� ∈ Rn is anadmissible equilibriumof �f,G,
that is, such thatf (x�) ∈ ImG(x�).

The definitions below are instrumental to provide
concise statements of our results.

Definition 1. The affine system�f,G in Eq. (3) is
feedback equivalent to apseudo-gradient systemand,
for short, denote it as�f,G ∈ FPG, if there exists a
state feedback� : Rn → Rm such that thematching
equations

f (x)+G(x)�(x)= F(x)∇H(x) (5)

hold.

Definition 2. �f,G is feedback equivalent to aPCH
system—denote it as�f,G ∈ FPCH—if �f,G ∈ FPG

with F satisfying (4).

1 It is obvious that (4) is equivalent to the existence of matrices
J = −J
 andR = R
 �0 such thatF = J − R.
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Definition 3. �f,G is feedback equivalent to astable
PCH system, denoted�f,G ∈ FS

PCH, if �f,G ∈ FPCH
with H satisfying (2)—for an admissible equilibrium
x� of �f,G.

Depending on the prior assumptions made on
the target dynamics,�PG, the feedback equivalence
question generates different mathematical problems.
In the remaining of the paper we give conditions
for feedback equivalence in the following four
cases:

(i) F andH a priori fixed,
(ii) F andH free,

(iii) F free andH a priori fixed,
(iv) F a priori fixed andH free.

Clearly, in case (iii) the matching (5) defines a set
of algebraic equations in the unknownsF and�. On
the other hand, case (iv) leads to a set of PDEs for
H—parameterized inF and�.

Remark 1. Transforming a system to be controlled
into a PCH system is the central idea of the inter-
connection and damping assignment passivity-based
control method first introduced in[13], where the
perspective of case (iv) above is adopted. A summary
of some recent developments may be found in[11],
see also[6,18] for its applications to power systems.
In [8], case (iii) above is considered. See also[3,1]
for the case of feedback equivalence to Lagrangian
systems.

Remark 2. As indicated in[8], the PCH form is in-
variant to change of coordinates. This justifies the use
of the term “feedback equivalence” in the definitions.
Also, with some abuse of notation we have used the
words “equivalence to PCH systems” in Definitions
2 and 3 without defining the port variables. How-
ever, notice that if�f,G ∈ FPCH then with the new
control inputu = �(x) + v it is possible to define a
bona fide PCH system with port variables(v, ỹ) of
the form

ẋ = F(x)∇H(x)+G(x)v,

ỹ =G
(x)∇H(x).

3. Conditions for feedback equivalence: full
matching equations

In this section we give conditions for feedback
equivalence using the full matching equations (5).
Then, in the next section concentrate on “the equa-
tions in ImG”.

To formulate our results we find convenient to define
the parameterized closed-loop vector field

f̃�(x) := f (x)+G(x)�(x),

and define the set of controls that assign the admissible
equilibriumx� to �f,G as2

Gx� := {� : Rn → Rm | f̃�(x�)= 0}.
Invoking Lemma 9.2.1, pp. 433, of[9] we can prove
that for each� ∈ Gx� , we can define a matrixA� :
Rn → Rn×n such that

f̃�(x)= A�(x)(x − x�). (6)

Similarly, for all functionsH satisfying (2) we intro-
duce the factorization

∇H(x)= �(x)(x − x�), (7)

where� : Rn → Rn×n.
The proposition below gives conditions for feed-

back equivalence for all four cases, (i)–(iv), of the pre-
vious section.

Proposition 1. Consider the affine system�f,G of
Eq. (3) with G full rank.

(i) If F and H area priorifixed,withF,H satisfying
(4) and (2), respectively, then

�f,G ∈ FS
PCH ⇔ (F∇H − f ) ∈ ImG.

(ii) If F and H are free then�f,G ∈ FPG. Further-
more, if there exists� ∈ G such that

PA� + A

� P �0 (8)

for some constantP=P
>0,whereA� is given

in (6), then�f,G ∈ FS
PCH.

2 This setGx� is clearly non-empty as it contains the element
� = −(G
G)−1G
f—invertibility of G
G stemming from the
fact that it is the Gram matrix of a set of linearly independent
vectors.
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(iii) If F is free and H isa priori fixed and satisfy-
ing (2) with �, as defined in(7), full rank then
�f,G ∈ FPG. Furthermore, if there exists� ∈
G such that

�
A� + A

� ��0, (9)

whereA� is given in(6), then�f,G ∈ FS
PCH.

(iv) If F is a priorifixed and H is free with Ffull rank
and satisfying(4) then�f,G ∈ FPCH if and only
if the n/2(n− 1) PDEs

∇[F−1(f +G�)] = (∇[F−1(f +G�)])
 (10)

admit a solution for�.

Proof. (i) This result follows trivially from the match-
ing equation (5).

(ii) Select� ∈ Gx� and define the matrixA� as in
(6). FixH = 1

2(x− x�)
P(x− x�), for some constant
full rank P ∈ Rn×n. The proof that�f,G ∈ FPG is
completed definingF =A�P

−1. To prove the second
statement select the matrixP =P
>0 solution of (8)
and define

J := 1
2 (F − F
)= −J
,

R := − 1
2 (F + F
)�0

where the inequality follows from (8).
(iii) Select� ∈ Gx� and define the matrixA� as in

(6). SinceH satisfies (2) we can define� as in (7).
The proof that�f,G ∈ FPG is completed defining
F = A��

−1. To prove the second statement define
J andR as above, where the inequality follows now
from (9).

(iv) If the matrix F is full rank, Poincare’s Lemma
gives us directly a necessary and sufficient condi-
tion for feedback equivalence. Indeed, the vector field
F−1(f + G�) is a gradient vector field, that is, (5)
is satisfied for some scalar functionH, if and only if
(10) holds. �

4. Conditions for feedback equivalence: projected
matching equations

In this section we show that it is possible to charac-
terize feedback equivalence using a projection of the
matching equations. (Although this fact is very easy

to establish, the lack of such a formal statement was
a source of some confusion in the literature, see e.g.,
[11].) This result is also of interest because, concen-
trating on the projected equations, allows to give ver-
ifiable necessary and sufficient conditions for the ex-
istence of solutions of the PDEs that arise in case (iv)
of the previous section.

Towards this end, we introduce the following:

Definition 4. We say that a matrixG⊥ : Rn →
R(n−m)×n is a full-rank left annihilator ofG if
G⊥G= 0 and rankG⊥ = n−m.

We recall a basic linear algebra lemma.

Lemma 1. Consider two linear subspacesS1,S2 ⊂
Rn. If, dimS1 = dimS2 andS1 ⊂ S2 (or S2 ⊂
S1), thenS1 = S2.

Proposition 2. Consider the affine system�f,G in Eq.
(3), with F satisfying(4). Then�f,G ∈ FPCH if and
only if the projected matching equations(PMEs)

G⊥(f − F∇H)= 0 (11)

hold for an arbitrary full-rank left annihilator of G.

Proof. Clearly, �f,G ∈ FPCH ⇔ (f − F∇H) ∈
ImG. For the sake of completeness we prove now the
well-known identity

KerG⊥ = ImG. (12)

First, note that both spaces have the same dimension,
m. Consider then the chain of implications:

a ∈ ImG ⇔ ∃b ∈ Rn : a =Gb

⇒ G⊥a =G⊥Gb = 0

⇒ a ∈ KerG⊥

⇒ ImG ⊂ KerG⊥.

Finally, we can invoke Lemma 1 to conclude (12).�

If F is a priori fixed andH is free equations (11)
define a set ofn−m PDEs. To derive sufficient con-
ditions for their solvability we need two preliminary
lemmata, which are largely inspired by[16]—more
precisely, by their coordinate-free Theorem 4.1. The
proofs of the lemmata are given in the Appendix.
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Lemma 2. GivenW : Rn → Rq×n and s : Rn →
Rq , with q <n. The following statements are equiva-
lent.

(A) ∃H : Rn → R such that

W(x)∇H(x)= s(x). (13)

(B) ∃H̃ : Rn × R → R such that

W(x)∇xH̃ (x, z)− s(x)∇zH̃ (x, z)= 0, (14)

∇zH̃ (x, z) �= 0. (15)

Lemma 3. Let W and s be as in Lemma2 and define
the distributions

� := involutive closure span{W
(x)}
�̃ := involutive closure span

{[
W
(x)
s
(x)

]}
.

Assume� and �̃ are regular. Then(B) of Lemma2
holds if and only if

dim� = dim �̃. (16)

We are in a position to present the main proposition
of this section.

Proposition 3. Consider the affine system�f,G of Eq.
(3).Let F bea priorifixed and H free,with F satisfying
(4). Let

W := G⊥F, s := G⊥f , (17)

compute the distributions� and�̃ as in Lemma3 and
assume that they are regular. Then�f,G ∈ FPCH if
and only if condition(16) holds.

Proof. With W and s as in (17) the PDEs (11) take
the form (13) withq = n − m. The proof follows
immediately from Lemmata 2 and 3, and Proposition
2. �

Remark 3. A full-rank left annihilator forG can be
easily constructed as follows. Define the partition

G(x)=
[
G1(x)

G2(x)

]
, G1 : Rn → R(n−m)×m,

G2 : Rn → Rm×m,

where rankG2=m in some neighborhood of interest.3

Then define

G⊥ = [ In−m −G1G
−1
2 ] .

See also[5] for some alternative constructions and fur-
ther discussion on the set of solutions of the equations
of interest.

5. Concluding remarks

In this paper we have investigated the problem of
feedback equivalence—via state-feedback—of affine
systems to PCH systems. Such a transformation lies
at the core of some stabilization techniques recently
reported in the literature. We also recall that it has
been considered as one of the open problems in math-
ematical systems theory[2]. Necessary and sufficient
conditions, expressed in terms of solvability of sets of
PDEs or algebraic equations, are given.

A comparison of our work with the interesting re-
sults of [16] is in order. In the spirit of[16] verifi-
able necessary and sufficient conditions for feedback
equivalence are given in Proposition 1 (case (i)), with
fixed interconnection and damping structure and fixed
Hamiltonian. This is the extension of Proposition 3.1
of [16] to our case. Also, similarly to Theorem 4.1 of
[16], necessary and sufficient conditions are given in
Proposition 3 for the solvability of the PDEs.

Several variations to the feedback equivalence prob-
lem studied here are of practical interest and have been
studied in the literature. For instance, in some cases it
is reasonable to make the interconnection matrixJ de-
pendent on the control—e.g., in switched systems like
power converters this is the natural way of modelling
[7]. In this case, the matching equation (5) becomes

f (x)+G(x)�(x)= [J (x,�(x))− R(x)]∇H(x),
leading to a completely different characterization of
feedback equivalence. This approach has been adopted
in [14] yielding some practically interesting stabilizing
control laws.

3 This partition can always be locally achieved simply swap-
ping and relabelling the state equations. However, the size of the
neighborhood where rankG2=m might be smaller than the region
where rankG=m.
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As is well-known, solving PDEs and nonlinear
algebraic equations is not an easy task. In[5] the
possibility of reducing their number, which turns
out to be determined by a simple rank condition, is
investigated.
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Appendix A.

In this appendix we give the proofs of Lemmata 1
and 2. As indicated in Section 4, they heavily borrow
from [16].

A.1. Proof of Lemma 2

(A) ⇒ (B) With H solution of (13) define
H̃ (x, z) := H(x) + z, which clearly solves (14) and
satisfies (15).

(B) ⇒ (A) Given H̃ solution of (14) we know from
the implicit function theorem and (15) that the equa-
tion H̃ (x, z)= 0 admits a (local) solution inz. Let us
call this solutionz=H(x), that is4

H̃ (x, z)|z=H(x) = H̃ (x,H(x))= 0,

Taking the gradient ofH̃ (x, z) we get

∇xH̃ (x, z)|z=H(x) + ∇zH̃ (x, z)|z=H(x)∇H(x)= 0.

Using again (15) we obtain

∇H(x)= −1

∇zH̃ (x, z)|z=H(x)
∇xH̃ (x, z)|z=H(x).

4 For clarity, we write explicitly the arguments of the functions.

Replacing this expression in (13) we get

W(x)∇H(x)− s(x)

= W(x)

( −1

∇zH̃ (x, z)
∇xH̃ (x, z)

)∣∣∣∣
z=H(x)

− s(x)

= −1

∇zH̃ (x, z)|z=H(x)
× (W(x)∇xH̃ (x, z)|z=H(x))︸ ︷︷ ︸

−s(x)∇zH̃ (x,z)|z=H(x)

−s(x),

where we have used (14) to get the underbrace. Since
the right-hand side is equal to zeroH(x) solves (13)
completing the proof. �

A.2. Proof of Lemma 3

To prove sufficiency, note that dim̃��n. Hence
by involutivity and regularity, there exists a function

H̃ (x, z) such that d̃H ∈ �̃
⊥

. Hence, the first claim in
(B) of Lemma 2 holds.

To prove the second claim we proceed by contra-
diction. Suppose that at some point(x̄, z̄) one has

�H̃
�z

∣∣∣∣∣
(x̄,z̄)

= 0.

Then, at this point,[
0n
1

]
∈ ker{dH̃ }. (A.1)

Note now that, by regularity of�, there exist an integer
r�n and (n-dimensional) vectors�1(x) to �r (x) such
that

� = span{�1, �2, . . . , �r}. (A.2)

This implies that, for some functions�1(x) to �r (x),

�̃ = span

{[
�1
�1

]
,

[
�2
�2

]
, . . . ,

[
�r
�r

]}
. (A.3)

However, Eq. (A.1) implies that

dim �̃>dim�,

hence a contradiction, which completes the proof.�



D. Cheng et al. / Systems & Control Letters 54 (2005) 911–917 917

To prove necessity, suppose that (B) of Lemma 2
holds. Then, by Frobenius theorem, and regularity of
�̃ we have that

dim �̃ = n1�n

for some constantn1. Note now that, by Eqs. (A.2)
and (A.3), and regularity of� and�̃, one has

dim� = dim �̃ = n1,

which completes the proof.
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