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This paper investigates Hamiltonian realization of time-varying nonlinear (TVN) sys-
tems, and proposes a number of new methods for the problem. It is shown that every
smooth TVN system can be expressed as a generalized Hamiltonian system if the origin
is the equilibrium of the system. If the Jacobian matrix of a TVN system is nonsingu-
lar, the system has a generalized Hamiltonian realization whose structural matrix and
Hamiltonian function are given explicitly. For the case that the Jacobian matrix is sin-
gular, this paper provides a constructive decomposition method, and then proves that a
TVN system has a generalized Hamiltonian realization if its Jacobian matrix has a non-
singular main diagonal block. Furthermore, some sufficient (necessary and sufficient)
conditions for dissipative Hamiltonian realization of TVN systems are also presented in
this paper.

generalized Hamiltonian realization, dissipative Hamiltonian realization, diffoemorphism, structural construction

1 Introduction

Energy-based control and stability analysis have been extensively studied for a wide range of physical

systems, which include robotic manipulators[1], flexible link robots[2], surface vehicles[3], space crafts[4],

mechanical systems[5], electrical systems[6], etc. While much research work in the area of robotics

leads to a good understanding of this approach, its recent successful applications to power systems

require new problem formulations and new insights into this approach. In recent years, Port-Controlled

Hamiltonian (PCH) systems[7,8] have been well investigated in a series of works[9−12]. The Hamiltonian

function, the sum of potential energy (excluding gravitational potential energy) and kinetic energy in

physical systems, is a good candidate of Lyapunov functions for many physical systems, and has been

successfully applied to the control of power systems in some recent works[13−16].

In order to apply the energy-based approach, it is important to be able to express the system under
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consideration as a Hamiltonian system, i.e., to obtain the Generalized Hamiltonian Realization (GHR)

for the system[17]. GHR is a very difficult issue for general nonlinear systems, since it involves solving

a kind of partial differential equation which is usually very difficult to solve[18]. For time-invariant

nonlinear systems, the GHR problem has been studied recently in a series of works[11,17−20]. In ref.

[11], some elegant and useful results were obtained for feedback GHR, after thorough investigation of

interconnection and damping assignment passivity-based control of PCH systems. Using the normal

form, an effective approximation approach was provided for the GHR of time-invariant systems in ref.

[17]. Orthogonal decomposition and control switching methods were investigated in ref. [18]. Indeed,

there are many GHR results for time-invariant systems. However, for TVN system, the Hamiltonian

realization problem remains to be investigated.

In this paper, we study the Hamiltonian realization problem for TVN systems. Using coordinate

transformation and structural construction techniques, several new methods are developed in this paper.

The main results of this paper are as follows:

(i) It is shown that every smooth TVN system can be expressed as a generalized Hamiltonian system

if the origin is the equilibrium of the system.

(ii) If the Jacobian matrix of a TVN system is nonsingular, the system has a GHR whose both struc-

tural matrix and Hamiltonian function are given explicitly.

(iii) A constructive decomposition method is proposed for the case that the Jacobian matrix of a TVN

system is singular. Using the method, we show that a TVN system has a GHR, if its Jacobian matrix

has a nonsingular main diagonal block.

(iv) Some sufficient (necessary and sufficient) conditions are provided for dissipative Hamiltonian

realization of TVN systems.

The rest of the paper is organized as follows. Section 2 gives some concepts and properties. Section 3

deals with the GHR of TVN systems, and provides some sufficient (necessary and sufficient) conditions

for the problem. In section 4, we present several new results for the dissipative Hamiltonian realization,

which is followed by the conclusion in section 5.

2 Concepts and properties

To facilitate the analysis, some fundamental concepts and properties are listed in this section for the

system under study.

Definition 1. Let M denote an n-dimensional manifold. Then, a time-varying nonlinear system

described by

ẋ = f(x, t), x ∈ M, t ∈ R
+ := [0, +∞) (1)

is said to have a generalized Hamiltonian realization (GHR), if there exists a suitable structural matrix

T (x, t) ∈ R
n×n and a Hamiltonian function H(x, t) such that system (1) can be expressed as

ẋ = T (x, t)
∂H(x, t)
∂x

. (2)

We decompose the structure matrix as

T (x, t) = J(x, t) + P (x, t), (3)

where J(x, t) ∈ R
n×n is skew-symmetric and P (x, t) ∈ R

n×n is symmetric. Furthermore, assume that

x is a regular point of P (x, t) in the sense that there exists a neighborhood, Ω, of x such that the number

672 WANG YuZhen et al. Sci China Ser F-Inf Sci | Oct. 2007 | vol. 50 | no. 5 | 671-685



of positive eigenvalues and the number of negative eigenvalues are invariant for x ∈ Ω and t ∈ R
+.

Then, we may further decompose P (x, t) at regular point x as

P (x, t) = −R(x, t) + S(x, t), (4)

where 0 � R(x, t) ∈ R
n×n, 0 � S(x, t) ∈ R

n×n and the ranks of R(x, t) and S(x, t) are equal to the

numbers of positive eigenvalues and negative eigenvalues of P (x, t), respectively. Thus, at the regular

point of P (x, t), we have the following unique decomposition:

T (x, t) = J(x, t) −R(x, t) + S(x, t). (5)

Definition 2. System (1) is said to have a dissipative Hamiltonian realization if it can be expressed

as (2) with T (x, t) = J(x, t) −R(x, t), i.e., S(x, t) ≡ 0 in the structural matrix decomposition (5).

Proposition 1. System (2) is a dissipative Hamiltonian realization, if and only if T (x, t)+T (x, t)T

� 0.

Proof. It follows immediately from Definition 2.

Proposition 2. Assume that T (x, t) in (2) can be decomposed as T (x, t) = J(x, t) − R(x, t),
with skew-symmetric J(x, t) and R(x, t) � 0. If ∂H

∂t � 0 and there exists a K-function α such that

H(x, t) � α(‖x‖) > 0, ∀x �= 0, then system (2) is Lyapunov stable.

Proof. Consider Hamiltonian function H(x, t) � α(‖x‖) > 0 as a Lyapunov function candidate.

Its derivative is given by

Ḣ =
∂HT

∂x

[
J(x, t) −R(x, t)

]∂H
∂x

+
∂H

∂t
= −∂H

T

∂x
R(x, t)

∂H

∂x
+
∂H

∂t
� 0.

Thus, system (2) is Lyapunov stable.

3 Generalized Hamiltonian realization

In this section, we will present several new results for the generalized Hamiltonian realization of system

(1). First, we propose some useful technical terms which are essential for our further development.

Assume that f(x), x ∈ R
n, is a scalar function. As it is well known, the first-order partial derivative

of f(x) can be defined as gradient ∇f(x) := ∂f/∂x and the second partial derivative can be given by

the Hessian matrix Hess(f(x)). A natural extension is the definition of partial derivatives of arbitrarily

any order, say, n.

In the following, we develop a method which gives arbitrary order partial derivative of a function or

function matrix easily. Some nice properties of the method are also presented.

Definition 3. Let
∂

∂x
=

[ ∂

∂x1
, · · · , ∂

∂xn

]T
, x ∈ R

n.

Then, the unified partial derivative operator (UPDO) is defined recursively as

∂m

∂xm
=
∂m−1

∂xm−1
⊗ ∂

∂x
, m � 1, (6)

where ⊗ is the Kronecker product, and the products between elements are defined as

∂i1+···+in

∂xi11 · · ·∂xinn
· ∂

∂xj
:=

∂i1+···+(ij+1)+···+in

∂xi11 · · ·∂xij+1
j · · · ∂xinn

,

i1 + · · · + in = m− 1, j = 1, 2, ..., n,
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in which, ∂i1+···+in

∂x
i1
1 ···∂xin

n

(i1 + ... + in = m − 1) and ∂
∂xj

are arbitrary components of ∂m−1

∂xm−1 and ∂
∂x ,

respectively. For completeness, we further define ∂0

∂x0 := I, which is called the identity operator and

satisfies

I ⊗ ∂s

∂xs
=

∂s

∂xs
⊗ I =

∂s

∂xs
, ∀ s � 1.

Remark 1. From the definition above, it is easy to know that ∂m

∂xm , m � 1, is an nm-dimensional

column vector operator. For example,

∂2

∂x2
=

[ ∂2

∂x2
1

,
∂2

∂x1∂x2
, · · · , ∂2

∂x1∂xn
, · · · , ∂2

∂xn∂x1
,

∂2

∂xn∂x2
, · · · , ∂

2

∂x2
n

]T

is an n2-dimensional column vector.

Remark 2. It is interesting to note that though the first-order UPDO is the same as the gradient

operator ∇, the second-order UPDO, ∂2

∂x2 , is no longer equal to the operator Hess (·).
With the definition above, given a scalar function f(x),

f(x) ⊗ ∂m

∂xm
:=

∂mf(x)
∂xm

, m � 1 (7)

is well defined. Based on (7), given a vector field X(x) ∈ R
p, we can define

∂mX(x)
∂xm

:= X(x) ⊗ ∂m

∂xm
, m � 1. (8)

From (8), it is easy to show that the following recursive formula holds for the higher order derivative

operators
∂mX(x)
∂xm

=
∂

∂x

(∂m−1X(x)
∂xm−1

)
, m � 1, (9)

where ∂0X(x)
∂x0 := X(x) ⊗ I = X(x).

In fact, from (6) and (8), we have

∂mX(x)
∂xm

= X(x) ⊗ ∂m

∂xm
= X(x) ⊗

( ∂m−1

∂xm−1
⊗ ∂

∂x

)

=
(
X(x) ⊗ ∂m−1

∂xm−1

)
⊗ ∂

∂x
=

(∂m−1X(x)
∂xm−1

)
⊗ ∂

∂x

=
∂

∂x

(∂m−1X(x)
∂xm−1

)
.

Thus, (9) holds.

Similarly, given a function matrix A(x) ∈ R
p×q , based on (7), we define

∂mA(x)
∂xm

:= A(x) ⊗ ∂m

∂xm
, m � 1. (10)

It can also be shown that
∂mA(x)
∂xm

=
∂

∂x

(∂m−1A(x)
∂xm−1

)
, m � 1, (11)

where ∂0A(x)
∂x0 := A(x) ⊗ I = A(x).

Lemma 1. Assume that A(x) ∈ R
p×q and B(x) ∈ R

q×l are smooth function matrices. Then,

∂

∂x

[
A(x)B(x)

]
=
∂A(x)
∂x

B(x) +
[
A(x) ⊗ In

]∂B(x)
∂x

, (12)

where In is the n× n identity matrix.
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Proof. Let A(x) = [aij(x)], B(x) = [bij(x)], and C(x) := A(x)B(x) = [cij(x)] ∈ R
p×l. Then,

∂cij(x)
∂x

=
∂

∂x

[ q∑
s=1

ais(x)bsj(x)
]

=
q∑
s=1

[∂ais(x)
∂x

bsj(x) + ais(x)
∂bsj(x)
∂x

]
.

Thus, the rth component of ∂cij(x)
∂x , i.e., the element located at (n(i− 1) + r, j) in ∂C(x)

∂x is given as

q∑
s=1

[∂ais(x)
∂xr

bsj(x) + ais(x)
∂bsj(x)
∂xr

]
, i, j, r = 1, 2, ..., n. (13)

On the other hand, the element located at (n(i − 1) + r, j) in the matrix on the right-hand side of

(12) is as follows:
q∑
s=1

[∂ais(x)
∂xr

bsj(x)
]

+
q∑
s=1

[
α

(r)
is (x)

∂bsj(x)
∂x

]

=
q∑
s=1

[∂ais(x)
∂xr

bsj(x)
]

+
q∑
s=1

[
ais(x)

∂bsj(x)
∂xr

]
, i, j, r = 1, 2, ..., n, (14)

where α(r)
is (x) :=

[
0, · · · , ais(x)︸ ︷︷ ︸

rth

, · · · , 0
]

is an n-dimensional row vector with its rth component being

ais(x) and others being zero. From (13) and (14), we know that (12) holds. QED

Before we present the high-degree homogeneous factorization lemma for functions (see Lemma 2),

let us introduce a few preparing definitions first.

The high-order semi-tensor products of x are defined recursively as

x[m] = x[m−1] ⊗ x, m � 1, x[0] := 1, x ∈ R
n. (15)

Using x[m], we now construct an nm × nm matrix, Enm , which is obtained from Inm by certain

element re-arrangement (m � 1). The construction steps are given as follows:

Step 1. Establish a map ψ : {1, 2, ..., nm} 
−→ x[m] by ψ(k) = kth component of x[m].

Step 2. Define ψmin(k) = min{j |ψ(j) = ψ(k)}.

Step 3. Swap the element ‘1’ at (k, k) in Inm with ‘0’ at (k, ψmin(k)), if ψmin(k) < k, k =
1, 2, ..., nm.

With the preparation above, we have the following high-degree homogeneous factorization lemma

(HHF-Lemma, for short).

Lemma 2 (HHF-Lemma). Assume that f(x, t) (x ∈ R
n, t � 0) is a scalar function. If f(x, t)

has continuous mth-order partial derivatives with respect to x and satisfies ∂s−1

∂xs−1 f(0, t) = 0, s =
1, 2, ...,m, then there exists a vector α(x, t) ∈ R

nm

such that

f(x, t) = αT (x, t) x[m]. (16)

Proof. The proof is completed by mathematical induction on m. First, let us prove that it is true

for case m = 1.(∫ 1

0

∂f(ξ1, ξ2, ..., ξn; t)
∂ξ1

∣∣∣
ξ1=x1s,..., ξn=xns

ds

)
x1

=
∫ 1

0

∂f(ξ1, ξ2, ..., ξn; t)
∂ξ1

∣∣∣
ξ1=x1s,..., ξn=xns

dξ1

=
(
f(ξ1, ..., ξn; t) + ψ(ξ2, ..., ξn; t)

)∣∣∣
1

0
= f(x, t) + ψ(x2, ..., xn; t) − ψ(0, t). (17)
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Let f (1)(x2, ..., xn; t)
�
= ψ(x2, ..., xn; t) − ψ(0, t), then (17) becomes

f(x, t) =
(∫ 1

0

∂f(ξ1, ξ2, ..., ξn; t)
∂ξ1

∣∣∣
ξ1=x1s,..., ξn=xns

ds

)
x1 − f (1)(x2, ..., xn; t). (18)

Since f (1)(0, t) = 0 holds, similar to the above, we can obtain

f (1)(x2, ..., xn; t) =
(∫ 1

0

∂f (1)(ξ2, ..., ξn; t)
∂ξ2

∣∣∣
ξ2=x2s,..., ξn=xns

ds

)
x2 − f (2)(x3, ..., xn; t). (19)

Substituting (19) into (18) gives

f(x, t) = a1(x, t)x1 + a2(x, t)x2 + f (2)(x3, ..., xn; t), (20)

where

a1(x, t) :=
∫ 1

0

∂f(ξ1, ξ2, ..., ξn; t)
∂ξ1

∣∣∣
ξ1=x1s,..., ξn=xns

ds,

a2(x, t) := −
∫ 1

0

∂f (1)(ξ2, ..., ξn; t)
∂ξ2

∣∣∣
ξ2=x2s,..., ξn=xns

ds.

Continuing with f (2)(x3, ..., xn; t), until (20) becomes

f(x, t) =
n−1∑
i=1

ai(x, t)xi + f (n−1)(xn; t)

=
n−1∑
i=1

ai(x, t)xi +
(∫ 1

0

∂f (n−1)(ξn; t)
∂ξn

∣∣∣
ξn=xns

ds
)
xn =

n∑
i=1

ai(x, t)xi, (21)

where an(x, t) =
∫ 1

0

∂f (n−1)(ξn; t)
∂ξn

∣∣∣
ξn=xns

ds. Eq. (21) means that the lemma holds for case m = 1.

Next, let us assume that the lemma holds for casem−1, i.e., there exists a vector γT (x, t) ∈ R
n(m−1)

such that

f(x, t) = γ(x, t) x[m−1]. (22)

Then, we only need to show that the lemma holds true for case m.

From the construction of Enm , it is easy to see that

γ(x, t) x[m−1] =
[
γ(x, t)Enm−1

]
x[m−1].

Let β(x, t) := γ(x, t)Enm−1 . Then, (22) becomes

f(x, t) = β(x, t)x[m−1]. (23)

From (23) and Lemma 1, we can recursively obtain the following:

∂f(x, t)
∂x

=
∂β(x, t)
∂x

x[m−1] +
(
β(x, t) ⊗ In

)∂x[m−1]

∂x
,

∂2f(x, t)
∂x2

=
∂

∂x

(∂β(x, t)
∂x

x[m−1]
)

+
∂

∂x

[(
β(x, t) ⊗ In

)∂x[m−1]

∂x

]

=
∂2β(x, t)
∂x2

x[m−1] +
[∂β(x, t)

∂x
⊗ In +

∂

∂x

(
β(x, t) ⊗ In

)]∂x[m−1]

∂x

+
(
β(x, t) ⊗ In2

)∂2x[m−1]

∂x2
,
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...
∂m−1f(x, t)
∂xm−1

=
∂m−1β(x, t)
∂xm−1

x[m−1]

+
[∂m−2β(x, t)

∂xm−2
⊗ In +

∂

∂x

(∂m−3β(x, t)
∂xm−3

⊗ In

)

+ · · · + ∂m−2

∂xm−2

(
β(x, t) ⊗ In

)] ∂
∂x
x[m−1]

+ · · ·
+

[∂(β ⊗ Inm−4)
∂x

⊗ In2 +
∂

∂x

(
β ⊗ Inm−3

)
⊗ In

+
∂

∂x

(
β ⊗ Inm−2

)] ∂m−2

∂xm−2
x[m−1]

+
(
β(x, t) ⊗ Inm−1

) ∂m−1

∂xm−1
x[m−1]. (24)

Since ∂m−1

∂xm−1 f(0, t) = 0 and
(
∂i

∂xix
[m−1]

)∣∣∣
x=0

= 0, 0 � i < m− 1, from (24) we have

(
β(0, t) ⊗ Inm−1

) ∂m−1

∂xm−1
x[m−1] = 0. (25)

Note that 0 �= ∂m−1

∂xm−1x
[m−1] ∈ R

n2(m−1)
. From (25) and β(x, t) = γ(x, t)Enm−1 , we obtain β(0, t) =

0.

Consider each component of β(x, t) := [b1(x, t), b2(x, t), · · · , bnm−1(x, t)]. Since the lemma

holds when m = 1, there exist row vectors αi(x, t) ∈ R
n such that

bi(x, t) = αi(x, t)x, i = 1, 2, ..., nm−1.

Let

α(x, t) =
[
α1(x, t), α2(x, t), · · · , αnm−1(x, t)

]T
∈ R

nm

,

then, (23) becomes

f(x, t) = αT (x, t)
(
x⊗ x[m−1]

)
= αT (x, t)x[m],

which implies that the lemma holds for case m.

According to the mathematical induction, the lemma holds for arbitrarym.

Corollary 1. Assume that X(x, t) ∈ R
p (x ∈ R

n, t ∈ R
+) is a vector field. If X(x, t) has con-

tinuous mth-order partial derivatives with respect to x and satisfies ∂s−1

∂xs−1X(0, t) = 0, s = 1, 2, ...,m,

then there exists a matrix A(x, t) ∈ R
p×nm

such that

X(x, t) = A(x, t)x[m]. (26)

Proof. It follows immediately from Lemma 2. QED

In the following, we apply the results above to study the generalized Hamiltonian realization for

system (1).

Theorem 1. Assume that system (1) is smooth and z = Φ(x, t) with Φ(0, t) = 0 is a diffeo-

morphism. Then, system (1) has a generalized Hamiltonian realization with Hamiltonian function

H(x, t) =
1
2

n∑
i=1

Φ2
i (x, t) if and only if (iff) f(0, t) = 0, where Φi(x, t) is the ith component of Φ(x, t),

i = 1, 2, ..., n.
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Proof. First, we show that f(0, t) = 0 implies that system (1) has a GHR with Hamiltonian

functionH(x, t) = 1
2

∑n
i=1 Φ2

i (x, t).

Assume that f(0, t) = 0, then it follows from Corollary 1 that

f(x, t) = f(Φ−1(z, t), t) = fz(z, t)

= Az(z, t)z = Az(Φ(x, t), t)Φ(x, t) := A(x, t)Φ(x, t). (27)

Let H(x, t) = 1
2

∑n
i=1 Φ2

i (x, t), then we can obtain

∂H(x, t)
∂x

=
[∂Φ(x, t)

∂x

]T
n×n

Φ(x, t). (28)

Since z = Φ(x, t) is a diffeomorphism, ∂Φ(x,t)
∂x is nonsingular. Thus, from (27) and (28), system (1) has

a generalized Hamiltonian realization as follows:

ẋ = T (x, t)
∂H(x, t)
∂x

, T (x, t) := A(x, t)
[∂Φ(x, t)

∂x

]−T
.

Next, we show that system (1) has a GHR with Hamiltonian function H(x, t) = 1
2

∑n
i=1 Φ2

i (x, t)
implies that f(0, t) = 0.

Assume that system (1) is realized as

ẋ = T (x, t)
∂H(x, t)
∂x

, H(x, t) =
1
2

n∑
i=1

Φ2
i (x, t).

Then, eq. (28) still holds. From (28) and Φ(0, t) = 0, we know that ∂H(0,t)
∂x = 0, from which it follows

that f(0, t) = 0.

Remark 3. Since system (1) can always be made to satisfy f(0, t) = 0 under a suitable coordinate

transformation, we can conclude, from Theorem 1, that every smooth system can be expressed as a

Hamiltonian system under, if it is needed, certain coordinate transformation.

Let Jf (x, t) denote the Jacobian matrix of f(x, t), i.e., Jf (x, t) =
[
∂fi

∂xj

]
∈ R

n×n. When Jf (x, t) is

nonsingular, z := f(x, t) can be taken as a diffeomorphism. Motivated by Theorem 1, system (1) should

have a GHR with Hamiltonian functionH(x, t) = 1
2

∑n
i=1 f

2
i (x, t), which leads to the following result.

Corollary 2. If the Jacobian matrix Jf (x, t) is nonsingular, then system (1) has a generalized

Hamiltonian realization as follows:

ẋ = J−T
f (x, t)

∂H(x, t)
∂x

, (29)

where

H(x, t) =
1
2

n∑
i=1

f2
i (x, t), (30)

and fi(x, t) is the ith component of f(x, t), i = 1, 2, ..., n.

Proof. A straightforward computation shows that

JTf (x, t)f(x, t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

n∑
i=1

fi(x, t)
∂fi(x, t)
∂x1

...
n∑
i=1

fi(x, t)
∂fi(x, t)
∂xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
∈ R

n.
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From (30), we obtain

∂H(x, t)
∂x

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

n∑
i=1

fi(x, t)
∂fi(x, t)
∂x1

...
n∑
i=1

fi(x, t)
∂fi(x, t)
∂xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

Accordingly, we have

JTf (x, t)f(x, t) =
∂H(x, t)
∂x

, (31)

from which and the invertibility of Jf (x, t), Corollary 2 follows immediately.

Remark 4. From (30), it can be seen that Hamiltonian function H(x, t) in (30) is positive except

for H(x, t) = 0 at the equilibrium of system (1). Therefore, H(x, t) is positive definite when the

system’s equilibrium is isolated.

Remark 5. JTf (x, t) can be taken as a structural matrix. In fact, if we assume that z = ψ(x) is

an arbitrary coordinate transformation, then ż = ∂ψ
∂x ẋ, ∂H(x,t)

∂x = (∂ψ∂x )T ∂H(ψ−1(z),t)
∂z , from which and

(31), we obtain (∂ψ
∂x

)−T
JTf (x, t)

(∂ψ
∂x

)−1

ż =
∂H(ψ−1(z), t)

∂z
. (32)

Eq. (32) means that JTf (x, t) is consistent with the changing law of structure matrices under coordinate

transformations. Thus, JTf (x, t) (or J−T
f (x, t), if JTf (x, t) is nonsingular) can be chosen as a structural

matrix.

In the following, we study the GHR of system (1) with Jf (x, t) singular, and propose a method to

handle this case.

Lemma 3. Assume that X(x, t) with X(0, t) = 0 is an n-dimensional vector field. If the Jaco-

bian matrix J
X

(x, t) is singular and has a nonsingular main diagonal block, then there exists a matrix

T
X

(x, t) ∈ R
n×n and a vector field X̄(x, t) with J

X̄
(x, t) nonsingular such that

X(x, t) = TX (x, t)X̄(x, t). (33)

Proof. Without loss of generality, we assume that Rank {J
X

(x, t)} = k < n and ∂(X1,...,Xk)
∂(x1,...,xk) is a

nonsingular main diagonal block, where Xi denotes the ith component of X(x, t).
Denote

X
I
(x, t) =

⎡
⎢⎢⎢⎣

X1(x, t)
...

Xk(x, t)

⎤
⎥⎥⎥⎦ , XII

(x, t) =

⎡
⎢⎢⎢⎣

Xk+1(x, t)
...

Xn(x, t)

⎤
⎥⎥⎥⎦ , xI

=

⎡
⎢⎢⎢⎣

x1

...

xk

⎤
⎥⎥⎥⎦ , xII

=

⎡
⎢⎢⎢⎣

xk+1

...

xn

⎤
⎥⎥⎥⎦ .

(34)

Since XII (0, t) = 0, it can be seen from Corollary 1 that there is a matrix A(x, t) ∈ R
(n−k)×n such

that

X
II

(x, t) = A(x, t)x = A1(x, t)xI
+A2(x, t)xII

, (35)

where A(x, t) = [A1(x, t), A2(x, t)], A1(x, t) ∈ R
(n−k)×k, and A2(x, t) ∈ R

(n−k)×(n−k). On the

other hand, XI = XI (xI , xII ; t), XI (0, 0; t) = 0 and
∂X

I

∂x
I

is nonsingular. It follows from the implicit

function theorem that there exists a function ψ such that

x
I

= ψ(X
I
, x

II
; t), ψ(0, 0; t) = 0. (36)
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From Corollary 1 again, there is a matrix B(x, t) = [B1(x, t), B2(x, t)] ∈ R
k×n such that (36) can be

expressed as

x
I

= B(x, t)

⎡
⎣ X

I

x
II

⎤
⎦ = B1(x, t)XI

+B2(x, t)xII
. (37)

Substituting (37) into (35) gives

XII = A1(x, t)B1(x, t)XI +
[
A1(x, t)B2(x, t) +A2(x, t)

]
xII .

Therefore, we have
⎡
⎣ X

I

X
II

⎤
⎦ =

⎡
⎣ Ik 0

A1(x, t)B1(x, t) A1(x, t)B2(x, t) +A2(x, t)

⎤
⎦

⎡
⎣ X

I

x
II

⎤
⎦ .

Let

T
X

(x, t) =

⎡
⎣ Ik 0

A1(x, t)B1(x, t) A1(x, t)B2(x, t) +A2(x, t)

⎤
⎦ , X̄(x, t) =

⎡
⎣ X

I

xII

⎤
⎦ . (38)

Then X(x, t) = T
X

(x, t)X̄(x, t), and

J
X̄

(x, t) =

⎡
⎣

∂X
I

∂x
I

∂X
I

∂x
II

0 In−k

⎤
⎦

is nonsingular. Thus, Lemma 3 holds. QED

Now, consider system (1) with f(0, t) = 0. Assume that the Jacobian matrix Jf (x, t) is singular and

has a nonsingular main diagonal block. From Lemma 3, there exists a matrix Tf(x, t) ∈ R
n×n and a

vector field f̄(x, t) ∈ R
n, with Jf̄ (x, t) nonsingular, such that

f(x, t) = Tf (x, t)f̄(x, t). (39)

From Corollary 2, system (1) has a GHR as follows:

ẋ = Tf(x, t)J−T
f̄

(x, t)
∂H(x, t)
∂x

, (40)

where H(x, t) =
1
2

n∑
i=1

f̄2
i (x, t), f̄(x, t) = [f̄1(x, t), ..., f̄n(x, t)]T .

Theorem 2. Assume that the Jacobian matrix Jf (x, t) is singular and has a nonsingular main

diagonal block. If f(0, t) = 0, then system (1) has a GHR given by (40).

Remark 6. From the proof of Lemma 3, it can be seen that the proof itself gives a practical

algorithm to find Tf(x, t) and f̄(x, t) already. Using the algorithm, we can easily obtain the GHR (40).

Example 1. Consider the following system

ẋ =

⎡
⎢⎢⎣
f1

f2

f3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−x1 − x2 sin t+ x3

−x2 + x1 sin t− x3

−x1 − x2 + (x1 − x2) sin t

⎤
⎥⎥⎦ , x ∈ R

3, t ∈ R
+. (41)

A straightforward computation shows that Rank [Jf (x, t)] = 2 < 3 and ∂(f1,f2)
∂(x1,x2)

is nonsingular. In
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this example,XI = [f1, f2]
T , XII = f3, xI = [x1, x2]

T , and xII = x3. From (41), we have

f3 = (−1 + sin t)x1 + (−1 − sin t)x2 = A1(x, t)

⎡
⎣ x1

x2

⎤
⎦ +A2(x, t)x3, (42)

where A1(x, t) =
[
− 1 + sin t, −1 − sin t

]
and A2(x, t) = 0. From

⎧⎨
⎩

f1 = −x1 − x2 sin t+ x3,

f2 = −x2 + x1 sin t− x3,

we obtain ⎡
⎣ x1

x2

⎤
⎦ = B1(x, t)

⎡
⎣ f1

f2

⎤
⎦ +B2(x, t)x3, (43)

where

B1(x, t) =
1

1 + sin2 t

⎡
⎣ −1 sin t

− sin t − 1

⎤
⎦ , B2(x, t) =

1
1 + sin2 t

⎡
⎣ 1 + sin t

−1 + sin t

⎤
⎦ .

It follows from (42) and (43) that

f3 = A1B1

⎡
⎣ f1

f2

⎤
⎦ + (A1B2 +A2)x3 = (1, 1)

⎡
⎣ f1

f2

⎤
⎦ + 0 · x3.

Thus,
⎡
⎢⎢⎣
f1

f2

f3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

⎡
⎣ 1 0

0 1

⎤
⎦ 0

[
1 1

]
0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎣
f1

f2

x3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0

0 1 0

1 1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣
f1

f2

x3

⎤
⎥⎥⎦ := Tf(x, t)f̄ (x, t). (44)

From (40), system (41) has a GHR as follows:

ẋ = Tf (x, t)J−T
f̄

(x, t)
∂H(x, t)
∂x

=

⎡
⎢⎢⎣

1 0 0

0 1 0

1 1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

−1 − sin t 1

sin t − 1 − 1

0 0 1

⎤
⎥⎥⎦

−T

∂H(x, t)
∂x

=

⎡
⎢⎢⎣

1 0 0

0 1 0

1 1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1
1 + sin2 t

− sin t
1 + sin2 t

0

sin t
1 + sin2 t

−1
1 + sin2 t

0

1 + sin t
1 + sin2 t

−1 + sin t
1 + sin2 t

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

∂H(x, t)
∂x

,

that is,

ẋ =
1

1 + sin2 t

⎡
⎢⎢⎣

−1 − sin t 0

sin t − 1 0

−1 + sin t − 1 − sin t 0

⎤
⎥⎥⎦
∂H(x, t)
∂x

, (45)
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where

H(x, t) =
1
2
(f2

1 + f2
2 ) +

1
2
x2

3. (46)

4 Dissipative Hamiltonian realization

Dissipative Hamiltonian realization is a very important case of GHR, and has many applications to

various practical control problems. This section investigates the dissipative Hamiltonian realization of

system (1). First, we present a sufficient condition, called a Krasovskii-like condition, and then provide

a sufficient and necessary condition for the realization.

Theorem 3. If there exists a constant positive definite symmetric matrix P ∈ R
n×n such that

Q(x, t) := PJf (x, t) + JTf (x, t)P < 0, (47)

then system (1) has a dissipative Hamiltonian realization as follows:

ẋ =
[
J(x, t) −R(x, t)

]∂H(x, t)
∂x

, (48)

where J(x, t) ∈ R
n×n is skew-symmetric, R(x, t) ∈ R

n×n is positive semi-definite and H(x, t) is

positive definite.

Proof. We first show that (47) implies that PJf (x, t) is nonsingular. In fact, if PJf (x, t) is

singular, there exists a vector 0 �= α ∈ R
n such that [PJf (x, t)]α = 0, from which we obtain

αT [PJf (x, t)]α = 0. Thus,

αT [PJf (x, t)]α + αT [JTf (x, t)P ]α = αT [PJf (x, t) + JTf (x, t)P ]α = 0, (49)

which contradicts the fact that Q(x, t) is negative definite. Therefore, PJf (x, t) is nonsingular, which

implies that Jf (x, t) is also nonsingular.

Choosing H(x, t) = 1
2f

T (x, t)Pf(x, t), then, similar to Corollary 2, we can show that system (1)

has a GHR as follows:

ẋ = P−1J−T
f (x, t)

∂H(x, t)
∂x

. (50)

On the other hand, we have the following equivalent relation

Q(x, t) < 0 ⇐⇒ P−1Q(x, t)P−T < 0

⇐⇒ P−1
[
PJf (x, t) + JTf (x, t)P

]
P−T < 0

⇐⇒ Jf (x, t)P−T + P−1JTf (x, t) < 0

⇐⇒ J−1
f (x, t)

[
Jf (x, t)P−T + P−1JTf (x, t)

]
J−T
f (x, t) < 0

⇐⇒ P−TJ−T
f (x, t) + J−1

f (x, t)P−1 < 0

⇐⇒ P−1J−T
f (x, t) + J−1

f (x, t)P−T < 0.

Thus, P−1J−T
f (x, t) can be expressed as

P−1J−T
f (x, t) = J(x, t) −R(x, t), (51)

where

J(x, t) =
1
2

[
P−1J−T

f (x, t) − J−1
f (x, t)P−T

]
= −JT (x, t),
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R(x, t) =
1
2

{
−

[
P−1J−T

f (x, t) + J−1
f (x, t)P−T

]}
> 0.

Therefore, (50) is a dissipative Hamiltonian realization, which means that Theorem 3 holds.

Theorem 4. Assume that V (x, t) is a positive definite function satisfying∇V (x, t)|x �=0 �= 0. Then,

system (1) with f(0, t) = 0 has a dissipative Hamiltonian realization with V (x, t) as its Hamiltonian

function iff Lf(x,t)V (x, t) � 0.

Proof. First, we show that the system has a dissipative Hamiltonian realization with V (x, t) as its

Hamiltonian function implies that Lf(x,t)V (x, t) � 0.

Assume that system (1) has a dissipative Hamiltonian realization as follows:

ẋ =
[
J(x, t) −R(x, t)

]∂V (x, t)
∂x

, (52)

where J(x, t) ∈ R
n×n is skew-symmetric and 0 � R(x, t) ∈ R

n×n. Then,

Lf(x,t)V (x, t) =
∂V T (x, t)

∂x
f(x, t) =

∂V T (x, t)
∂x

[
J(x, t) −R(x, t)

]∂V (x, t)
∂x

= − ∂V T (x, t)
∂x

R(x, t)
∂V (x, t)
∂x

� 0.

Next, we show that Lf(x,t)V (x, t) � 0 implies that the system has a dissipative Hamiltonian realiza-

tion with V (x, t) as its Hamiltonian function.

Assume that Lf(x,t)V (x, t) � 0. Then, since ∇V (x, t)|x �=0 �= 0, we can construct the following

matrices

R(x, t) =

⎧⎪⎨
⎪⎩

−Lf(x,t)V (x, t)
||∇V (x, t)||2 In x �= 0,

0 x = 0,
(53)

J(x, t) =

⎧
⎪⎨
⎪⎩

1
||∇V (x, t)||2

[
f̃(x, t)

∂V T (x, t)
∂x

− ∂V (x, t)
∂x

f̃T (x, t)
]

x �= 0,

0 x = 0,
(54)

where

f̃(x, t) = f(x, t) − f̂(x, t), f̂(x, t) =
Lf(x,t)V (x, t)
||∇V (x, t)||2 ∇V (x, t) (x �= 0). (55)

As Lf(x,t)V (x, t) � 0, it is easy to see that R(x, t) � 0 and J(x, t) is skew-symmetric.

From (55), we obtain

Lf̃(x,t)V (x, t) = L(f(x,t)−f̂(x,t))V (x, t) = Lf(x,t)V (x, t) − Lf̂(x,t)V (x, t)

= Lf(x,t)V (x, t) −∇TV (x, t)∇V (x, t)
Lf(x,t)V (x, t)
||∇V (x, t)||2 = 0,

from which, we know that when x �= 0,

J(x, t)
∂V (x, t)
∂x

=
1

||∇V (x, t)||2 [f̃(x, t)
∂V T (x, t)

∂x
− ∂V (x)

∂x
f̃T (x, t)]

∂V (x, t)
∂x

=
1

||∇V (x, t)||2 f̃(x, t)
∂V T (x, t)

∂x

∂V (x, t)
∂x

− 1
||∇V (x, t)||2

∂V (x, t)
∂x

f̃T (x, t)
∂V (x, t)
∂x

=
1

||∇V (x, t)||2 f̃(x, t)||∇V (x, t)||2 − 1
||∇V (x, t)||2

∂V (x, t)
∂x

Lf̃V (x, t) = f̃(x, t).
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Thus, when x �= 0,

f(x, t) = f̃(x, t) + f̂(x, t) = J(x, t)
∂V (x, t)
∂x

−R(x, t)
∂V (x, t)
∂x

=
[
J(x, t) −R(x, t)

]∂V (x, t)
∂x

. (56)

Note that (56) still holds when x = 0. The proof of the sufficiency is completed.

Remark 7. Note that V̇ = Lf(x,t)V (x, t) + ∂V (x,t)
∂t . Thus, if we add a condition ∂V (x,t)

∂t � 0 in

Theorem 4, the theorem implies that a system is stable is equivalent to that the system has a dissipative

Hamiltonian realization, which is very useful in the system control designs.

5 Conclusion

We have investigated the Hamiltonian realization for TVN systems, and developed several new meth-

ods to deal with the problem. It has been shown that every smooth TVN system can be expressed as

a generalized Hamiltonian one if the origin is the system’s equilibrium. If the Jacobian matrix of a

TVN is nonsingular, the system has a GHR whose structural matrix and Hamiltonian function are given

explicitly. For the case that the Jacobian matrix is singular, we provided a constructive decomposition

method for the GHR. Furthermore, we obtained some sufficient (necessary and sufficient) conditions for

dissipative Hamiltonian realization. The results presented in the paper not only provide solid theoretical

frameworks, but also give several feasible algorithms for practical Hamiltonian realization.
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