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Abstract: Here, the speed regulation of permanent magnet synchronous motors (PMSM) is inves-
tigated through feedback dissipative Hamiltonian realisation. Feedback laws for precise and uncer-
tain cases are constructed to transfer the dynamics of PMSM into dissipative Hamiltonian forms.
When the load torque is unknown, to realise the speed regulation, an update law is embedded into
the dissipative Hamiltonian structure. Simulations show that the controllers designed in this way
are efficient.
1 Introduction

In recent years, permanent magnet synchronous motors
(PMSM) have received more attention because of their
advantages over many other kinds of motors, such as induc-
tion motors and DC motors. Generally speaking, they have
high power density, torque-to-interia ratio and efficiency.
PMSMs play an important role in motion control appli-
cations and are broadly used as electric drives. However,
it is not an easy task to design a controller of high perform-
ance in order to achieve the speed regulation, not only
because of the strong coupling between the motor speed
and the electrical quantities, also because of the different
kinds of uncertainties, for example parameter and modelling
uncertainty.

Various nonlinear analysis tools have been used by many
authors to investigate the speed control of PMSM, such as
sliding-mode control technique [1], adaptive backstepping
method [2, 3], feedback linearisation control [4] and so
on. Recently, passivity property has drawn considerable
attention in nonlinear control design [5–11], for example,
Hamiltonian system method [12–16] and IDA-PBC tech-
nique [17]. Particularly, the speed regulation of PMSM
was investigated by Petrovic et al. [18] using inter-
connection and damping assignment-passivity-based
control (IDA-PBC). In this paper, we propose feedback
dissipative Hamiltonian realisation (FDHR) of dynamics
of PMSM for both precise and uncertain cases to achieve
the speed regulation of PMSM. The adaptive control of
Hamiltonian systems was first proposed by Xi [19], where
it is successfully applied to power systems. This paper
also develops an adaptive control technique of
Hamiltonian systems to deal with the speed regulation of
PMSM with parametric uncertainty in load torque and
stator resistance. We first consider the Hamiltonian realis-
ation and the update law of the estimated load torque sim-
ultaneously, thus the dynamics of the estimated load

# The Institution of Engineering and Technology 2006

doi:10.1049/iet-cta:20050307

Paper first received 25th August 2005 and in revised form 21st February 2006

The authors are with the Key Laboratory of Systems and Control, Institute of
Systems Science, Chinese Academy of Sciences, Beijing 100080, People’s
Republic of China

E-mail: dcheng@iss.ac.cn
IET Control Theory Appl., Vol. 1, No. 1, January 2007
torque is naturally embedded into the closed-loop dissipa-
tive Hamiltonian system. Then, the update law for the
stator resistance is constructed by
the certainty-equivalence method [20].

2 Mathematical model of PMSM

When described in d–q frame, a typical PMSM can be rep-
resented as the following dynamic model [21, 22]

Ld

did

dt
¼ �Rsid þ npvLqiq þ ud

Lq

diq

dt
¼ �Rsiq � npvLdid � npvFþ uq

J
dv

dt
¼

3

2
np½ðLd � LqÞidiq þFiq� � tL

ð1Þ

where id and iq are the d–q axis currents, ud and uq the d–q
axis voltages, Rs the stator resistance, Ld and Lq the d–q axis
stator inductors, np the number of pole pairs, F the flux
linkage of the permanent magnet, J the rotor moment of
inertia, and tL the load torque.

Define

x ¼

x1

x2

x3

0
@

1
A ¼ Ldid

Lqiq
Jv

0
@

1
A; u ¼

u1

u2

� �
¼

ud

uq

� �

and denote a ¼ Rs/Ld, b ¼ np/J, c ¼ Rs/Lq, d ¼ Fb,
e ¼ (3(Ld 2 Lq)/2LdLq)np and h ¼ (3npF)/2Lq, then
system (1) can be represented as

_x ¼ f 0ðxÞ þ G0u ð2Þ

where

f 0ðxÞ ¼

�ax1 þ bx2x3

�cx2 � bx1x3 � dx3

ex1x2 þ hx2 � tL

0
B@

1
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G0 ¼ ðg1 g2Þ ¼

1 0

0 1

0 0

0
B@

1
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The control objective is to regulate the rotor speed to any
pre-specified value �v. In real physical systems, some par-
ameters are unknown because of various reasons. Both
precise and uncertain cases are discussed in the sequel.

3 Feedback dissipative Hamiltonian realisation

A generalised Hamiltonian system is defined as [8]

_x ¼ FðxÞrHðxÞ ð3Þ

where x [ Rn and F(x) [ Rn�n are called the structure
matrices and H(x) the Hamiltonian function. If the structure
matrix F(x) satisfies

FðxÞ þ FT
ðxÞ � 0 ð4Þ

then we call system (3) a dissipative Hamiltonian system. In
this case, F(x) can be decomposed as

FðxÞ ¼ J ðxÞ � RðxÞ

where J(x) is skew symmetric and R(x) the symmetric, posi-
tive semi-definite.

Consider an affine nonlinear system

_x ¼ f ðxÞ þ GðxÞu ð5Þ

where x [ Rn, u [ Rm and G(x) are of full rank.

Definition 1 [23]: System (5) is said to have a feedback
Hamiltonian realisation if there exists a control law
u ¼ f(x) such that the closed-loop system is of form (3).

System (5) is said to have a feedback dissipative
Hamiltonian realisation (FDHR) if the closed loop is a dis-
sipative Hamiltonian system, that is, its structure matrix
satisfies (4).

With uncertain parameters, system (5) becomes

_x ¼ f ðx; uÞ þ Gðx; uÞu ð6Þ

where u [ Rp are uncertain parameters.

Definition 2: System (6) is said to have an adaptive feed-
back Hamiltonian realisation if there exists a control law

u ¼ fðx;û Þ

_̂
u ¼ hðx;û Þ

ð7Þ

such that the closed loop is of the form

_x
_̂
u

� �
¼ Fðx;û ; uÞ

rxHðx;û; uÞ

r
û
Hðx;û; uÞ

 !

with û [ Rp and F an (nþ p) � (nþ p) matrix.
Moreover, if F is dissipative, then system (6) is said

to have an adaptive feedback dissipative Hamiltonian
realisation (AFDHR).

Remark 1: If system (6) has an AFDHR with the
Hamiltonian function positive-definite with respect to
(0, u) [ Rnþp, then (7) is its adaptive stabiliser, embedded
into the closed-loop Hamiltonian structure.

According to Definition 1, a feedback dissipative
Hamiltonian realisation of system (5) means finding a feed-
back law u ¼ f(x), a Hamiltonian function H(x) and a dis-
sipative structure matrix F(x) such that the matching
equation [24]

f ðxÞ þ GðxÞfðxÞ ¼ FðxÞrHðxÞ ð8Þ
282
holds. In general, this leads to a set of partial differential
equations. But for a real physical system, according to its
physical meaning and the control objectives, we may find
a natural candidate Hamiltonian function, then (8)
becomes a set of algebraic equations. A necessary and suffi-
cient condition for the existence of feedback dissipative
Hamiltonian realisation for fixed F(x) and Hamiltonian
function H(x) is as follows.

Lemma 1 [24]: For fixed H(x) and F(x), which satisfy (4),
there exists a feedback such that (8) holds if and only if
the projected matching equation

G?ðxÞð f ðxÞ � FðxÞrHðxÞÞ ¼ 0 ð9Þ

holds for an arbitrary full-rank left annihilator G?(x) of
G(x).

Full-rank left annihilator of G(x) is an (n 2 m) � n matrix
G?(x), which satisfies G?(x)G(x) ¼ 0 and rank(G?(x)) ¼
n 2 rank(G(x)) [24].

For system (6), without loss of generality, we consider
the AFDHR for the case

G ¼
Gm

On�m

� �

with Gm being an m � m matrix of full rank. We denote

f ðx; uÞ ¼
f mðx; uÞ

f n�mðx; uÞ

� �

with fm and fn2m represent vectors containing the first m
and the last n 2 m components of f, respectively. Similarly,
for an (nþ p) � (nþ p) matrix F, we denote

F ¼

Fm

Fn�m

Fp

0
@

1
A

We have the following lemma.

Lemma 2: Assume that a pair of fixed H(x, û , u) and F(x,
û , u), satisfying (4), is given. Moreover, FprH and Gm

21

(FmrH 2 fm) are assumed to be independent of the uncer-
tain parameter u. Then, system (6) has an AFDHR if and
only if

f n�m � Fn�mrH ¼ 0 ð10Þ

where rH stands for r(x,û)H.

Proof: The necessity is obvious. In the following, we
assume that (10) holds. Denote

~G ¼

Gm

On�m

Op

0
@

1
A

and choose

~G
?
¼

Oðn�mÞ�m In�m Oðn�mÞ�p

Op�m Op�ðn�mÞ Ip

� �

Then

~G
? f

h

� �
� FrH

� �
¼

f n�m � Fn�mrH

h� FprH

 !

¼
O

h� FprH

 !
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As FprH is independent of u, we can choose h ¼ FprH,
thus the matching equation (9) holds. According to
Lemma 1, system (6) has an AFDHR by adaptive controller

u ¼ G�1
m ðFmrH � f mÞ

_̂
u ¼ FprH

ð11Þ

because Gm
21(FmrH 2 fm) is independent of u. A

4 Control design

In this section, we investigate the design technique to
achieve the control goal through transferring the original
system into a dissipative Hamiltonian form. According to
the control objective, we choose a candidate Hamiltonian
function that is minimised at the desired equilibrium
point. Then, find a suitable control that transfers system
(2) into a dissipative Hamiltonian system. For convenience,
we first impose a pre-feedback to the original system to
simplify the controller design.

4.1 Pre-feedback

For simplicity, we first use a pre-feedback

u1 ¼ ax1 � bx2x3 þ v1

u2 ¼ cx2 þ bx1x3 þ dx3 þ v2

ð12Þ

to convert system (2) to

_x ¼ f ðxÞ þ Gv ð13Þ

where

f ðxÞ ¼

0

0

ex1x2 þ hx2 � tL

0
B@

1
CA

G ¼ G0 ¼

1 0

0 1

0 0

0
B@

1
CA; v ¼

v1

v2

� � ð14Þ

Note that if all the parameters in the pre-feedback are
exactly known, then the design of controllers for system
(13) is rather obvious. In the next, we also discuss the
case when the stotor resistance Rs is unknown (precisely,
a and c ¼ (Ld/Lq)a are unknown), so the parameters a
and c in the pre-feedback should be replaced by their esti-
mated values â and (Ld/Lq)â respectively.

In this paper, the speed regulation problem of PMSM
means to design a control law such that the rotor velocity
v (or x3) is regulated to any pre-specified value �v (or
�x3 ¼ J �v). From system (13), for any feedback law, equili-
brium points of the closed-loop system must satisfy

e�x1 �x2 þ h�x2 � tL ¼ 0

As we will see, for any �x1 satisfying e�x1þ h = 0 and any
given �x3, there exists a feedback law to asymptotically
stabilise the point �x ¼ (�x1, (tL/(e�x1þ h)), �x3)T. In the fol-
lowing sections, we will investigate how to design feedback
law to transfer system (2) into a dissipative Hamiltonian
system.

Remark 2: From the third equation of system (1), we know
the driving torque tD is

tD ¼ np½ðLd � LqÞid þF�iq
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and the composition of torques is the difference between the
driving torque and the load torque, that is t ¼ tD 2 tL. So,
if the load torque tL = 0, the assumption e�x1þ h = 0 (or
equivalently (Ld 2 Lq)�idþF = 0) means that the driving
torque tD does not vanish when the rotor speed approaches
its equilibrium value. (Of course, in this case, �iq = 0.) In the
case tL ¼ 0, as we will see, our results are still valid, this is
because the driving torque and the load torque can still be
balanced by regulating iq to zero, that is, �iq ¼ 0. So, in
this paper, we ignore the trivial case e�x1þ h ¼ 0 for
simplicity.

4.2 For precise model

This section considers the case that all the parameters in the
system are precisely known. In this case, the following
result is obtained.

Proposition 1: Suppose all of the parameters in system (1)
are precisely known, then the speed regulation problem of
PMSM can be solved by the feedback

ud ¼ �G1Ldðid �
�idÞ �

3JnpðLd � LqÞ

2Ldk1

iqðv� �vÞ

þ Rsid � npLqiqv

uq ¼ �G2Lq iq �
2tL

3npððLd � LqÞ
�id þFÞ

 !

�
3JnpððLd � LqÞ

�id þFÞ

2Lqk2

ðv� �vÞ

þ Rsiq þ npLdidvþFnpv

ð15Þ

where G1, G2, k1 and k2 are positive numbers.

Proof: Obviously, achieving the regulating objective is
equivalent to asymptotically stabilising the equilibrium �x.
In order to stabilise the desired equilibrium point �x ¼ (�x1,
(tL/(e�x1þ h)), �x3)T, we first choose H(x) ¼ 1/2(x 2 �x)T

K(x 2 �x) as a candidate Hamiltonian function, where

K ¼

k1 0 0

0 k2 0

0 0 k3

0
@

1
A

is a positive definite matrix. Suppose there is a feedback
v ¼ f(x) ¼ (f1(x) f2(x))T such that

f ðxÞ þ Gf ¼ FðxÞrHðxÞ ð16Þ

where F(x) is an n � n dissipative matrix. According to
Lemma 1 [24], such a feedback exists if and only if

G?ð f ðxÞ � FðxÞrHðxÞÞ ¼ 0 ð17Þ

holds for a full-rank left annihilator G? of G. It is easy to
verify that one of such left annihilators of G is

G? ¼ ð 0 0 1 Þ

Suppose the last row of F(x) is (a b g), that is

FðxÞ ¼

� � �

� � �

a b g

0
@

1
A

then (17) becomes

ða b gÞrHðxÞ ¼ ex1x2 þ hx2 � tL
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It is easy to see that one of its solutions is

a ¼
ex2

k1

; b ¼
e�x1 þ h

k2

; g ¼ 0

In order to render the resulting Hamiltonian system dissipa-
tive, that is

FðxÞ þ FT
ðxÞ � 0

we choose

FðxÞ ¼

�G1 0 �
ex2

k1

0 �G2 �
e�x1 þ h

k2

ex2

k1

e�x1 þ h

k2

0

0
BBBBBB@

1
CCCCCCA

where G1 and G2 are arbitrary positive constants. We can
easily solve for the feedback v ¼ f(x) from (16) as

f1ðxÞ ¼ �G1

@HðxÞ

@x1

�
ex2

k1

@HðxÞ

@x3

f2ðxÞ ¼ �G2

@HðxÞ

@x2

�
ðe�x1 þ hÞ

k2

@HðxÞ

@x3

ð18Þ

Thus, the closed-loop system is

_x ¼ ðJ ðxÞ � RðxÞÞrHðxÞ ð19Þ

where

J ðxÞ ¼
1

2
ðFðxÞ � FT

ðxÞÞ

¼

0 0 �
ex2

k1

0 0 �
ðe�x1 þ hÞ

k2

ex2

k1

ðe�x1 þ hÞ

k2

0

0
BBBBBB@

1
CCCCCCA

RðxÞ ¼ �
1

2
ðFðxÞ þ FT

ðxÞÞ ¼

G1 0 0

0 G2 0

0 0 0

0
B@

1
CA � 0

As the Hamiltonian function is positive definite and the
closed loop is dissipative, it is stable. In order to prove
that �x is asymptotically stable, we calculate the derivative
of H(x) along the trajectories of the closed loop as follows

_HðxÞ ¼ �dHðxÞRðxÞrHðxÞ

¼ �G1ðx1 � �x1Þ
2
� G2 x2 �

tL

e�x1 þ h

� �2

� 0

So, Ḣ(x) is positive semi-definite and

M W fxj _HðxÞ ¼ 0g ¼ xjx1 ¼ �x1 and x2 ¼
tL

e�x1 þ h

� �

In the following, we will show that the only solution of the
closed-loop system contained in M is �x. Thus, according to
LaSelle’s invariance principle, the closed-loop system is
284
asymptotically stable. In fact, the closed-loop system is

_x1 ¼ �
k3e

k1

x2ðx3 � �x3Þ � G1k1ðx1 � �x1Þ

_x2 ¼ �
k3ðe�x1 þ hÞ

k2

ðx3 � �x3Þ � G2k2ðx2 � �x2Þ

_x3 ¼ ex2ðx1 � �x1Þ þ ðe�x1 þ hÞðx2 � �x2Þ

ð20Þ

Suppose (�x1 �x2 x3(t))T is a solution contained in M, then
from the second equation of the this closed-loop system, we
have x3(t) ; �x3. Recall the form of M, the conclusion follows.

Combining the control (18) with (12), we obtain an
asymptotical stabiliser for system (2) as

u1 ¼ �G1ðx1 � �x1Þ �
ex2

k1

ðx3 � �x3Þ þ ax1 � bx2x3

u2 ¼ �G2 x2 �
tL

e�x1 þ h

� �
�
ðe�x1 þ hÞ

k2

ðx3 � �x3Þ

þ cx2 þ bx1x3 þ dx3

ð21Þ

which is equivalent to (15). A

4.3 Adaptive control

In this section, we consider uncertain cases. First, assume
that the load torque is uncertain. Then, consider a more
general case when the stator resistance is also unknown.
The adaptive controls are constructed, respectively, to
solve the speed regulation problem.

4.3.1 Load torque is uncertain: For PMSMs, it is very
likely that the load torque is unknown. The following
control is constructed to solve the problem.

Proposition 2: Suppose that the load torque tL is uncertain,
then the speed regulation problem of PMSM can be solved
by the following adaptive controller

u1 ¼ �
�G1ðid �

�idÞ �
3

2
�G2ðLd � LqÞiqðv� �vÞ

þ Rsid � npLqiqv

u2 ¼ �
�G3 iq �

2t̂L

3np½ðLd � LqÞ
�id þF�

 !

�
3

2
�G4ððLd � LqÞ

�id þFÞ

�

þ
2 �G5

3½ðLd � LqÞ
�id þF�

#
ðv� �vÞ

þ Rsiq þ npLdidvþ npFv

_̂tL ¼ �
�G6ðv� �vÞ

ð22Þ

where Ḡi (i ¼ 1, 2, . . . , 6) are positive numbers.

Proof: Note that tL does not appear in control law (12), thus
we can directly investigate system (13). Our objective is to
construct an adaptive law

_̂tL ¼ hðx; t̂LÞ ð23Þ

to estimate the uncertain load torque and a feedback law

v ¼ wðx; t̂LÞ ¼
w1ðx; t̂LÞ

w2ðx; t̂LÞ

� �
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to make (�x,tL) asymptotically stable. Combining (13) and
(23), we have

_z ¼ ~f ðx; t̂LÞ þ
~Gv ð24Þ

where z ¼
x

t̂L

� �
and

~f ðx; t̂LÞ ¼

0

0

ex1x2 þ hx2 � tL

hðx; t̂LÞ

0
BB@

1
CCA; ~G ¼

1 0

0 1

0 0

0 0

0
BB@

1
CCA

Similar to the discussion in Section 4.2, according to the
control objective, we first choose a candidate Hamiltonian
function. Then, using this Hamiltonian function, we can
find a suitable control and an adaptive law to transfer
system (24) into a dissipative Hamiltonian system.

Choosing

HðzÞ ¼
l1

2
ðx1 � �x1Þ

2
þ
l2

2
x2 �

t̂L

e�x1 þ h

� �2

þ
l3

2
ðx3 � �x3Þ

2
þ
l4

2
ðt̂L � tLÞ

2

where li . 0 (i ¼ 1, 2, 3, 4) are adjustable parameters,
we have

rHðzÞ ¼

l1ðx1 � �x1Þ

l2 x2 �
t̂L

e�x1 þ h

� �
l3ðx3 � �x3Þ

l4ðt̂L � tLÞ �
l2

e�x1 þ h
x2 �

t̂L

e�x1 þ h

� �

0
BBBBBBB@

1
CCCCCCCA

Suppose that

~FðzÞ ¼

� � � 0

� � � 0

a b g j

l m n 0

0
BB@

1
CCA

According to Lemma 2, it is easy to check that there is an
adaptive controller such that the closed-loop system
becomes

_z ¼ ~FðzÞrHðzÞ

if and only if

ða b g j ÞrHðzÞ ¼ ex1x2 þ hx2 � tL ð25Þ

A particular solution of (25) is

a ¼
ex2

l1

; b ¼
e�x1 þ h

l2

þ
1

l4ðe�x1 þ hÞ
; j ¼

1

l4

; g ¼ 0

In order to assure the dissipation of ~F(z), we choose

~FðzÞ ¼

�G1 0 �a 0

0 �G2 �b 0

a b 0 j

0 0 �j 0

0
BB@

1
CCA
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Thus, according to (11), the corresponding control and
adaptive laws are

v1 ¼ �G1

@HðzÞ

@x1

�
ex2

l1

@HðzÞ

@x3

v2 ¼ �G2

@HðzÞ

@x2

�
e�x1 þ h

l2

þ
1

l4ðe�x1 þ hÞ

� �
@HðzÞ

@x3

_̂tL ¼ �
1

l4

@HðzÞ

@x3

ð26Þ

Note that in the form of rH(z), the only term that con-
tains tL is @H(z)/@t̂L, so tL does not appear in the above
controller. The resulting closed-loop system is

_z ¼ ð ~J ðzÞ � ~RðzÞÞrHðzÞ ð27Þ

where

~J ðzÞ ¼
1

2
ð ~FðzÞ � ~F

T
ðzÞÞ

¼

0 0 �
ex2

l1

0

0 0 �
e�x1þ h

l2

þ
j

e�x1þ h

� �
0

ex2

l1

e�x1þ h

l2

þ
j

e�x1þ h
0 j

0 0 �j 0

0
BBBBBBBB@

1
CCCCCCCCA

~RðzÞ ¼ �
1

2
ð ~FðzÞþ ~F

T
ðzÞÞ ¼

G1 0 0 0

0 G2 0 0

0 0 0 0

0 0 0 0

0
BBB@

1
CCCA� 0

A straightforward calculation shows that

_HðzÞ ¼ �l1G1ðx1� �x1Þ
2
�l2G2 x2�

t̂L

e�x1þ h

� �2

� 0

Define

~M ¼ fzj _HðzÞ ¼ 0g ¼ zjx1 ¼ �x1 and x2 ¼
t̂L

e�x1þ h

� �

In order to use LaSelle’s invariance principle to obtain the
asymptotic stability of the closed-loop system, we suppose
that (x1 x2(t) x3(t) tL(t))T is a solution of (27), contained
in M̃, that is,

x2ðtÞ ¼
1

e�x1þ h
t̂LðtÞ ð28Þ

Substituting it into (27), we have

x2ðx3� �x3Þ ¼ 0

_x2 ¼�
e�x1þ h

l2

þ
j

e�x1þ h

� �
l3ðx3� �x3Þ

_x3 ¼ jl4ðt̂L� tLÞ

_̂tL ¼�jl3ðx3� �x3Þ

ð29Þ

The second and the fourth equations of (29), combined with
relation (28), imply that (e�x1þ h)(x3– �x3) ¼ 0 and this
implies x3 ¼ �x3, as e�x1þ h = 0. Thus, according to the
285



third equation of (29), we have t̂L ¼ tL, and (28) implies
that x2 ¼ �x2, that is, �x is the only solution contained in M̃.

Combining the two controls (12) and (26), we obtain the
overall adaptive control law

u1 ¼ �l1G1ðx1 � �x1Þ �
l3ex2

l1

ðx3 � �x3Þ þ ax1 � bx2x3

u2 ¼ �l2G2 x2 �
t̂L

e�x1 þ h

� �
� l3

e�x1 þ h

l2

þ
1

l4ðe�x1 þ hÞ

� �

� ðx3 � �x3Þ þ cx2 þ bx1x3 þ dx3

_̂tL ¼ �
l3

l4

ðx3 � �x3Þ

ð30Þ

which is equivalent to (22) with Ḡ1 ¼ l1LdG1,
Ḡ2 ¼ (l3npJ )/l1, Ḡ3 ¼ l2LqG2, Ḡ4 ¼ (l3npJ )/l2Lq,
Ḡ5 ¼ (l3JLq)/l4np and Ḡ6 ¼ l3J/l4. A

4.3.2 Both load torque and stator resistance are
unknown: This section considers a more general
uncertain case.

Proposition 3: Suppose that both the load torque tL and the
stotor resistance Rs are uncertain. Then, the speed regulation
problem of PMSM can be solved by the following adaptive
controller

u1 ¼ �
�G1ðid �

�idÞ �
3

2
�G2ðLd � LqÞiqðv� �vÞ

þ R̂sid � npLqiqv

u2 ¼ �
�G3 iq �

2t̂L

3np½ðLd � LqÞ
�id þF�

 !

�

"
3

2
�G4ððLd � LqÞ

�id þFÞ

þ
2 �G5

3ðLd � LqÞ
�id þF

#
ðv� �vÞ

þ R̂siq þ npLdidvþ npFv

_̂tL ¼ �
�G6ðv� �vÞ

_̂
Rs ¼ �

�G7idðid �
�idÞ �

�G8iq iq �
2t̂L

3np½ðLd � LqÞ
�id þF�

 !

ð31Þ

where Ḡi (i ¼ 1, 2, . . . , 8) are suitable positive numbers.

Proof: We first use the following feedback instead of the
pre-feedback (12)

u1 ¼ âx1 � bx2x3 þ v1

u2 ¼ ĉx2 þ bx1x3 þ dx3 þ v2

ð32Þ

where ĉ ¼ Ld/Lq â, v1, v2 and the dynamics of t̂L are
designed in a similar way as in Section 4.3.1. Then, the
closed-loop system becomes

_z ¼ ð ~J ðzÞ � ~RðzÞÞrHðzÞ þ �GðxÞðâ� aÞ ð33Þ
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where

�GðxÞ ¼

x1

Ld

Lq

x2

0

0

0
BBBB@

1
CCCCA

Taking

V ðz; âÞ ¼ HðzÞ þ
Ga

2
ðâ� aÞ

2

where Ga is a positive number, then we have

_V ¼ �dHðzÞ ~RðzÞrHðzÞ þ dHðzÞ �GðxÞðâ� aÞ þ Gaðâ� aÞ _̂a

¼ �dHðzÞ ~RðzÞrHðzÞ þ ðdHðzÞ �GðxÞ þ Ga
_̂aÞðâ� aÞ

Note that the last two elements of �G(x) are zeros, so the
unknown parameter tL does not appear in dH(z) �G(x).
Thus, we can take

_̂a ¼ �
1

Ga

dHðzÞ �GðxÞ ð34Þ

It follows that

_V ¼ �dHðzÞ ~RðzÞrHðzÞ � 0

Define

~M ¼

�
ðz; âÞ _V ðz; âÞ ¼ 0g ¼ fðz; âÞ

�� ��x1 ¼ �x1 and

x2 ¼
t̂L

e�x1 þ h

�

As we know, any trajectory converges to the largest invar-
iant set V in M̃. In the following, we only need to prove
that if (�x1 x2 x3 t̂L â)T is a solution of the closed-loop
systems (33) and (34) contained in V , M̃, then
x3(t) ¼ �x3. In fact, if x(t) is such a solution, we have

�
el3

l1

x2ðx3 � �x3Þ þ �x1ðâ� aÞ ¼ 0 ð35Þ

and

_x2 ¼ �
e�x1 þ h

l2

þ
j

e�x1 þ h

� �
l3ðx3 � �x3Þ þ

Ld

Lq

x2ðâ� aÞ

_x3 ¼ jl4ðt̂L � tLÞ

_̂tL ¼ �jl3ðx3 � �x3Þ

_̂a ¼ 0

ð36Þ

As x2 ¼ 1/e�x1 ¼ ht̂L, we have

�
l3ðe�x1 þ hÞ

l2

ðx3 � �x3Þ þ
Ld

Lq

x2ðâ� aÞ ¼ 0 ð37Þ

Consider (35) and (37), the determinant of the coefficient
matrix is

det AðtÞ ¼ �
l3 �x1

l2

ðe�x1 þ hÞ þ
l3Lde

l1Lq

x
2
2ðtÞ

At first, we show that x2(t) ; constant. Otherwise, there
exists t0 such that det A(t0) = 0, thus x3(t0) ¼ �x3 and
â(t0) ¼ a. Therefore â(t) ¼ a for t [ R because ȧ̂ ¼ 0. So,
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according to (37), x(t) ¼ �x3 for t [ R. Thus, the first
equation of (36) implies _x2 ; 0, which is a contradiction.
We conclude that x2(t) ; constant.

As x2 is a constant, we have _x2 ¼ 0 and thus t̂̇L ¼ 0, so
x3(t) ¼ �x3 and t̂L ¼ tL, x2(t) ¼ �x2. Thus, the speed regu-
lation is achieved, as limt!1 x3(t) ¼ �x3.

Moreover, if �x1 = 0 or t = 0, then (35) and the first
equation of (36) imply â ¼ a, thus the only solution
contained in M̃ is (�z, a). According to LaSelle’s invariance
principle, the closed loop is asymptotically stable.

The adaptive controller therefore can be constructed as

u1 ¼ �l1G1ðx1 � �x1Þ �
l3ex2

l1

ðx3 � �x3Þ þ âx1 � bx2x3

u2 ¼ �l2G2 x2 �
t̂L

e�x1 þ h

� �
� l3

e�x1 þ h

l2

�

þ
1

l4ðe�x1 þ hÞ

�
ðx3 � �x3Þ þ

Ld

Lq

âx2 þ bx1x3 þ dx3

_̂tL ¼ �
l3

l4

ðx3 � �x3Þ

_̂a ¼ �
1

Ga

l1x1ðx1 � �x1Þ þ
Ld

Lq

x2 x2 �
t̂L

e�x1 þ h

� �" #

ð38Þ

which is equivalent to (31) with Ḡ1 ¼ l1LdG1,
Ḡ2 ¼ (l3npJ )/l1, Ḡ3 ¼ l2LqG2, Ḡ4 ¼ (l3npJ )/(l2Lq),
Ḡ5 ¼ (l3JLq)/(l4np), Ḡ6 ¼ (l3J )/l4, Ḡ7 ¼ (l1Ld

3)/Ga and
Ḡ8 ¼ (Ld2Lq)/Ga. A

Remark 3: In fact, the model of PMSM should include the
viscous friction term Bv, that is, the third equation of
system (1) should be

J
dv

dt
¼

3

2
np½ðLd � LqÞidiq þFiq� � Bv� tL

where B is the viscous friction coefficient. Although we
ignored this term, our designing process can still be used
IET Control Theory Appl., Vol. 1, No. 1, January 2007
when viscous friction is considered. In fact, the term –Bv
can be decomposed as

�Bv ¼ �Bðv� �vÞ � B �v

The second term in the above equation can be viewed as a
part of tL. The first term itself contributes to the conver-
gence of v, and it only adds a positive constant to the
third diagonal element of matrix R in (19) (or ~R in (27))
when incorporated into the closed-loop Hamiltonian
structure.

Remark 4: In Petrovic et al. [18], an almost globally conver-
gent controller of PMSM was constructed on the basis of
IDA-PBC technique, the unknown load torque was treated
by an estimator. In the present paper, we use a relatively
direct way to achieve AFDHR of PMSM, thus the estimator
for the unknown load torque is naturally embedded into
the Hamiltonian structure. Besides, the uncertain stator
resistance is also tackled.

5 Simulation results

In the following simulations, we set the system parameters
as: J ¼ 0.0008 kg/m2, np ¼ 4, F ¼ 0.175 Wb,
Rs ¼ 2.875 V, Ld ¼ 0.009 H and Lq ¼ 0.008 H. The follow-
ing simulations are all performed under the existence of
viscous friction and we assume that the viscous friction
coefficient is B ¼ 0.02.

1. Precise case. In this case, we set load torque tL ¼ 3 N m
and choose controller parameters as: G1 ¼ 100, G2 ¼ 500,
k1 ¼ k2 ¼ 1 and �id ¼ 0 A. As we consider viscous friction,
tL in controller (15) is replaced by tLþ B �v. The desired
rotor speed is set to �v ¼ 100 rad/s, �v ¼ 50 rad/s and
�v ¼ 120 rad/s in t [ [0, 1), t [ [1, 2) and t [ [2, 3],

respectively. Fig. 1 shows the responses of currents id and
iq and tracking performance of rotor speed v.
2. tL is unknown. The controller parameters are chosen to
be: Ḡ1 ¼ 100, Ḡ2 ¼ 100, Ḡ3 ¼ 200, Ḡ4 ¼ 30, Ḡ5 ¼ 0.5 and
Ḡ6 ¼ 0.4.
Fig. 1 Simulations for precise case
287



28
Case 1. In this case, the uncertain load torque tL ¼ 2 N m
is assumed to be constant. Hereinafter, we assume that the
viscous friction coefficient B is uncertain. The desired
rotor speed is set to �v ¼ 100 rad/s, �v ¼ 50 rad/s and
�v ¼ 120 rad/s in t [ [0, 4), (4, 8] and (8, 12], respect-

ively. Fig. 2a shows the responses of id, iq, v and t̂L. As
we can see, the rotor speed can rapidly track the reference.
Case 2. In this case, we set the desired rotor speed
�v ¼ 100 rad/s. The load torque is assumed to be
tL ¼ 0 N m, 2 N m and 0 N m in t [ [0, 4), [4, 8) and
[8, 12], respectively. Fig. 2b shows that while the load
torque suddenly changes, the rotor speed recovers
quickly to the pre-specified value 100 rad/s.
8

3. tL and Rs are unknown. The controller parameters are
chosen as Ḡ1 ¼ 100, Ḡ2 ¼ 100, Ḡ3 ¼ 200, Ḡ4 ¼ 30,
Ḡ5 ¼ 0.5, Ḡ6 ¼ 0.4; Ḡ7 ¼ 100 and Ḡ8 ¼ 1.

Case 1. In this case, we assume that Rs ¼ 2.875 V,
tL ¼ 2 N m. The desired rotor speed is set to
�v ¼ 100 rad/s, 50 rad/s and 120 rad/s in t [ [0, 4),

[4, 8) and [8, 12], respectively. Fig. 3a shows the
responses.
Case 2. In this case, we assume that Rs ¼ 2.875 V. The
desired rotor speed is set to �v ¼ 100 rad/s. The load
torque is supposed to be tL ¼ 0 N m, 2 N m and 0 N m
in t [ [0 ,4), [4, 8) and [8, 12], respectively. Fig. 3b
shows the responses.
Fig. 2 Simulations for uncertain load torque

a Constant load torque
b Piece wise constant load torque
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Fig. 3 Simulations for uncertain load torque and stator resistance

a Constant load torque
b Piece wise constant load torque
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6 Concluding remarks

In this paper, the adaptive speed regulation of PMSM is
investigated through Hamiltonian function approach. State
feedback is constructed to transfer the dynamics of PMSM
into dissipative Hamiltonian form and then it is used to
solve the speed regulation problem. When the load torque
(and stator resistance) is (are) unknown, corresponding adap-
tive controllers are designed to solve the problems. The
update laws are embedded into the dissipative Hamiltonian
structure. Simulations show that the controllers are efficient.
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