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Lyapunov-Based Approach to Multiagent Systems
With Switching Jointly Connected Interconnection

Yiguang Hong, Lixin Gao, Daizhan Cheng, and Jiangping Hu

Abstract—This note addresses a coordination problem of a multiagent
system with jointly connected interconnection topologies. Neighbor-based
rules are adopted to realize local control strategies for these continuous-
time autonomous agents described by double integrators. Although the in-
teragent connection structures vary over time and related graphs may not
be connected, a sufficient condition to make all the agents converge to a
common value is given for the problem by a proposed Lyapunov-based ap-
proach and related space decomposition technique.

Index Terms—Common Lyapunov function, double integrator, joint con-
nection, multiagent system.

I. INTRODUCTION

Collective behaviors of large numbers of autonomous agents have
drawn a broad interest from various research communities in the
last decades. With applications in different disciplines including
physics, ecology, and engineering [1], [2], [7], [11]–[13], [15], the
dynamics and control of multiagent systems have been studied in
order to achieve a cooperative goal with decentralized control laws
or neighbor-based rules. Particularly, synchronized motion of agents
in the leader-following coordination has been studied widely. For
example, leader-following phenomena of self-propelled particles was
observed [10], while an active leader could be followed by the agents
with dynamic neighbor-based rules [4].

In practical situations, interaction between individual agents may
change over time. Different conditions on variable interconnection
graphs to achieve the coordination have been explored in recent years.
In [6], the states of all the jointly connected agents converged to the
same value or the value of a given leader, where the motions of nearest
neighbors were averaged. [9] reported a simple network model of
agents interacting via time-dependent communication links based
on graph theory and set-valued Lyapunov theory. Additionally, [8]
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showed the agreement of multiagent systems with switching inter-
connection structure and nonlinear agent dynamics. In the study of
variable topologies, joint connection is an important condition because
it does not require the connection of the time-varying interconnec-
tion topology at any moment. For multiagent systems with simple
neighbor-based average rules under joint-connection-like conditions,
many research works focused on each agent expressed as

_�i = ui �i; ui 2 R
M
;M � 1; i = 1; . . . ; n (1)

where �i is the state (e.g., position or angle) of agent i and ui its local
control input for i = 1; . . . ; n.

The objective of this note is to analyze the coordination of multiagent
systems with jointlyconnected interconnection and individual agents in
the form of vector double integrator

_�i = qi

_qi = ui
�i; qi; ui 2 R

M
; i = 1; . . . ; n (2)

where �i and ui are the position (or angle) and control input, re-
spectively, and qi its velocity (or angular velocity) of agent i for
i = 1; . . . ; n (referring to [11] and [14]). However, the analysis idea
(mainly based on graph theory and related stochastic matrix) that
served system (1) effectively cannot be extended straightforward to
study system (2) with jointlyconnected interconnection structures
since the system matrix related to dynamics (2) along with the
nearest-neighbor average rule does not satisfy some properties directly
associated with stochastic matrices. Therefore, a Lyapunov-based
approach is proposed here. Although the existence of common Lya-
punov function and the construction of common Lyapunov functions
are usually difficult to solve for switching multiagent networks (as [6]
pointed out), a common Lyapunov function is explicitly constructed
in the case of switching jointlyconnected topologies and then a coor-
dination problem that each agent expressed as (2) flocks to a desired
state (given by a leader) with a neighbor-based rule is solved.

II. FORMULATION AND MAIN RESULT

Consider a dynamical system consisting of n agents and a leader
(or food source) with help of graph theory (referring to [3] for the de-
tails). The interconnection topology of n agents can be conveniently
described by graph G = fV; "g, where V = fvi; i = 1; . . . ; ng is
the set of vertices (representing n agents) and " � V � V is the set
of edges of the graph. If (vi; vj) 2 ", then vi is said to be a neighbor
of vj and the set of all neighbor vertices of vertex vj is denoted by
Nj = fij(vi; vj) 2 "g. The leader (labelled 0) is represented by
vertex v0, and the connection between the agents and the leader (or
food source) is directed; namely, there are only edges from some agents
to the leader, but there are no edges from the leader to any agents. Then,
we have a simple graph �G with vertex set �V = V [ fv0g, which con-
tains graph G of n agents and vertex v0 (representing the leader) with
directed edges, if any, from some vertices ofG to the leader vertex. Note
that there may not be any connection between the agents and the leader
at some moment. By “the graph �G is connected,” we mean that there
is at least one directed edge from some vertices of each (connected)
component of G to the leader vertex v0.

A union graph of a collection of simple graphs �G1; . . . ; �Gm, with
the same vertex set �V for some m � 1 is defined as a simple graph,
denoted by �G1;...;m with vertex set �V and edge set equaling the union of
the edge sets of all the graphs in the collections, and connection weight
between edge i and edge j is the sum of nonzero aij ’s of �G1; . . . ; �Gm
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and connection strength between edge i and the leader is the sum of
nonzero bi’s of �G1; . . . ; �Gm. Moreover, this collection, �G1; . . . ; �Gm, is
jointly connected if its union graph �G1;...;m is connected (see [6] for
the details).

An angle between two nonzero vectors y; z 2 Rn is defined as
�y;z = arccos(hy; zi=kyk kzk), where hy; zi = yT z and kyk =
hy; yi denotes a norm of y. If hy; zi = 0, then the two vectors y and

z are orthogonal, denoted by y ? z. A subspace S � Rn is trivial if
it is either {0} or the whole space Rn. Let S and S0 be two nontrivial
subspaces. If hs; s0i = 0 for any s 2 S and s0 2 S0, then the two
subspaces are orthogonal, denoted by S ? S0. Then a new subspace
S� = S + S0 with S ? S0 will be denoted by S� = S �? S0. If
Rn = S �? S0, then S0 is called the orthogonal complement of S,
denoted by S?. Moreover, the angle between two subspaces S and S0

is defined as

�S;S = min
s2S;s 2S

�s;s = min
s2S;s 2S

arccos
jhs; s0ij

kskks0k

with 0 � �S;S � �=2.
Consider two symmetric matrices G1 and G2, which are positive

semi-definite. Clearly

rank(G1 +G2) � max frank(G1); rank(G2)g : (3)

Denote rank(G1) = ~r1 and rank(G1 +G2) = ~r1;2. It is not hard to
get the following lemma.

Lemma 1: For any positive–semidefinite matrices G1 and G2, there
is an orthogonal matrix U , such that

UT (G1 +G2)U =
~G1;2 0

0 0
(4)

with

UTG1U =
� 0

0 0
UTG2U =

~G2 0

0 0

where � 2 R~r �~r is a diagonal matrix with positive diagonal el-
ements, ~G1;2 2 R~r �~r is a positive–definite matrix, and ~G2 2
R~r �~r is a positive–semidefinite matrix.

In this note, the neighboring graph of the multiagent system is time-
varying (i.e., the neighbor of agent i,Ni(t), changes over time), which
can be described by the change of interconnection weights

aij(t) =

�ij ; if agent i is connected to
agent j at time t

0 otherwise

bi(t) =

�i; if agent i is connected to
the leader at time t

0; otherwise

where �ij > 0 and �i > 0 are fixed constants (i; j = 1; . . . ; n).
Denote �S = f �G1; �G2; . . . ; �GNg as a set of the graphs of all possible
topologies, and P = f1; 2; . . . ; Ng as the index set.

Consider an infinite sequence of nonempty, bounded, and contiguous
time-intervals [tk; tk+1), k = 0; 1; . . ., with t0 = 0 and tk+1 � tk �
T (k � 0) for some constant T > 0. Suppose that in each interval
[tk; tk+1) there is a sequence of nonoverlapping subintervals

[tk ; tk ) ; . . . ; tk ; tk ; . . . ; tk ; tk

tk = tk ; tk+1 = tk (5)

satisfying tk � tk � � , 0 � j < mk for some integer mk � 0
and given constant � > 0 such that, during each of such subintervals,

the interconnection topology described by of �G does not change. It is
easy to see that there are at most

m� =
T

�
+ 1 (6)

([T=� ] denotes the maximum integer no larger than T=� ) subintervals
in each interval. For convenience, let � : [0;1) ! P be a piece-
wise constant switching signal with successive times to describe the
topology switches between subintervals.

For simplicity, each agent of the considered multiagent system is
in the form of a double integrator (2) with M = 1. In this scenario,
we consider how the agents converge (or flock) to a static leader (or
food source), whose state is denoted by a constant �0, under jointly-
connected interconnection.

Here is our main result.
Theorem 1: Consider any given initial condition (�i(0); qi(0)) of

system (2) for i = 1; . . . ; n, a switching signal � : [0;1) ! P
corresponding to an infinite sequence of time-intervals [tk; tk+1), k =
0; 1; � � �, with t0 = 0 and tk+1 � tk � T (k � 0) for T > 0,
and a sequence of nonoverlapping subintervals in the form of (5) with
tk � tk � � in each interval for � > 0. If the collection of simple
graphs (each graph in the form of �G associated with the time-invariant
interconnection topology in each subinterval) in [tk; tk+1) (for k =
0; 1; . . .) is jointly connected, then

lim
t!1

�i(t) = �0 lim
t!1

qi(t) = 0; i = 1; . . . ; n

by taking a neighbor-based feedback rule

ui(t) = �
j2N (t)

aij(t) (�i(t)� �j(t))

�bi(t) (�i(t)� �0)� �qi(t); i = 1; . . . ; n (7)

where

� � � + 1 (8)

with � := maxi=1;...;nf�ig+ 2maxi=1;...;n
n

j=1 �ij + 1.
Let si = �i � �0 (i = 1; . . . ; n) and

x =

x1
...
xn

2 R2n xi =
si
qi

2 R2 (9)

where xi is the state of agent i (i = 1; . . . ; n). Then, the closed-loop
multiagent system can be expressed as

_x = F�x (10)

with

F� = In 

0 1

0 ��
+H� 


0 0

�1 0
H� = L� +B�

where
 denotes the Kronecker product [5], In 2 Rn�n is the identity
matrix, and �(t) is the switching signal defined in Theorem 1. L� is
the Laplacian of the switching graph G consisting of n follower-agents,
and B� is a diagonal matrix whose ith diagonal entry is bi. Notice
that � takes some constant value p 2 P (i.e., the corresponding inter-
connection does not change) during a given subinterval. Therefore, Lp

and Bp are time-invariant matrices, and then Hp associated with graph
�Gp (p 2 P) is a time-invariant matrix.

The conditions in Theorem 1 are almost the same as those given
in [6]. However, the agent dynamics under consideration here is in the
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form of (2), different from the one in the form of (1) discussed in [6]. In
fact, this result may be viewed as an extension of the joint-connection
discussion presented in [6]. However, the analysis idea of [6] cannot be
extended straightforwardly to study system (10) sinceF� fails to satisfy
some properties associated with Laplacian or stochastic matrices.

Obviously, Hp of system (10) is positive semidefinite because both
Lp and Bp are positive semidefinite. Moreover, based on [4, Lemma
3], we can easily obtain the following.

Lemma 2: If �Gp is connected for some p, then this symmetric ma-
trix Hp is positive definite. Moreover, let matrices Hi ; . . . ; Hi be
associated with the graphs �Gi ; . . . ; �Gi , respectively. If these graphs
are jointly connected, then m

j=1Hj is positive definite.

III. LYAPUNOV FUNCTION

To prove Theorem 1, we only need to prove limt!1 x(t) = 0 of
system (10). Since the method based on stochastic analysis (reported
in [6]) cannot be applied to F� , we propose a Lyapunov-based ap-
proach for system (10) with each agent in the form of (2). Here, we
first construct a common Lyapunov function V = xTPx for system
(10), where

P = In 

� 1

1 1
2 R2n�2n; � > 1: (11)

Obviously, for any given orthogonal matrix U0 2 Rn�n, P is un-
changed under U0 
 I2

(U0 
 I2)
TP (U0 
 I2) = UT

0 U0 
 P0 = P P0 =
� 1

1 1
(12)

and the vector x can be transformed to

x0 =

x01
...
x0n

= (U0 
 I2)
Tx 2 R2n

x0l =
s0l
q0l

2 R2; l = 1; . . . ; n: (13)

Thus, setting ~V (�) = �TP0�, � 2 R2, we have

V (x) =xTPx =

n

i=1

~V (xi)

=

n

i=1

~V x0i = (x0)TPx0 = V (x0) (14)

by (12). In fact, ~V (xi) can be regarded as the energy function of xi or
agent i and V (x) can be viewed as the total energy function of system
(10). Moreover, define an energy vector � = (�1; . . . �n)

T 2 Rn with

�i = ~V (xi) to show how the “energy” (Lyapunov function V (x))
of this multiagent system is distributed. Note that V (x) and k�(x)k =
V (x) keep unchanged through any orthogonal transformations in the

form of U0 
 I2 according to (14).
For a given matrixHp (p 2 P) of rank rp > 0, there is an orthogonal

matrix U0 = Up such that

UT
p HpUp =

�p 0

0 0
�p 2 Rr �r (15)

where diagonal matrix �p = diagf�1(Hp) . . . �r (Hp)g is posi-
tive definite with �i(Hp) (i = 1; . . . ; rp) denoting the nonzero eigen-
value of Hp. Correspondingly, we have xp = (Up 
 I2)

Tx. Based on

(15) and (14), V (x) = V (xp) = n

i=1
~V (xpi ). Then, we have the

following.
Lemma 3: Let Hp be the matrix associated with the subinterval

[tk ; tk ) (for any k � 0 and appropriate l and with tk �tk � � ).
Then, with � given in (8), we have

_V (x(t)) � 0 8t 2 tk ; tk (16)

and, moreover

~V xpi tk � ~V (xpi (tk )) ; i = 1; . . .n (17)

~V xpi tk � 
0 ~V (xpi (tk )) ; i = 1; . . . ; rp (18)

for some positive real number 
0 < 1.
Proof: From (8), � > 1, which secures the positive definiteness

of P defined in (11).
Note that Fp is time-invariant during any given subinterval

_V (x)j(10)=xT F T
p P + PFp x=�xTQpx; t2 tk ; tk

where

Qp = � F T
p P + PFp

= In 

0 0

0 2(�� 1)
+Hp 


2 1

1 0
:

Then, based on (15)

(Up 
 I2)
TQp(Up 
 I2) = In 


0 0

0 �2(�� 1)

+
�p 0

0 0



2 1

1 0
(19)

where �p = diagf�1(Hp) . . . �r (Hp)g is positive definite. It is not
hard to see that all the eigenvalues of Hp (8p 2 P) are less than �,
and then, by (8)

Qi
p =

2�i(Hp) �i(Hp)

�i(Hp) 2(�� 1)
; i = 1; . . . ; rp

is positive definite. Therefore, Qp is positive semidefinite, which im-
plies (16).

Moreover, from (19), we can easily obtain _~V (xpi ) � 0,
(i = 1; . . . ; n), which leads to (17).

Note that _~V (xpi ) = �(xpi )
TQi

px
p
i (i = 1; . . . ; rp). Denote �i;� as

the eigenvalues of Qi
p, i = 1; . . . ; rp, and then

�i;� = �+ �i(Hp)� 1� (�i(Hp)� �+ 1)2 + �i(Hp)2:

Set �� := minfpositive eigenvalues of Hp 8p 2 Pg > 0. Clearly, the
minimum eigenvalue �min of Qi

p takes the form of �i;�. Again, based
on (8), it can be found that the eigenvalues of Qi

p are no less than �� :=

k+���1� (�� ��� 1)2 + ��2. In addition, the maximum eigenvalue
of P0 defined in (12) is �+(P0) = (� + 2 + (�� 1)2 + 4)=2.
Therefore

_~V (xpi ) � �
��

�+(P0)
~V (xpi ) := �� ~V (xpi ) i = 1; . . . ; rp:

In this way, (18) follows with 
0 = e��� < 1 because tk � tk �
� .
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Lemma 3 shows that any interconnection topology cannot make the
Lyapunov function V increase due to (16). Moreover, the selection of
� given in (8) does not depend on 
0.

Remark 1: Take Vp;0(x) = n

i=r +1
~V (xpi ) and Vp;?(x) =

r

i=1
~V (xpi ). According to Lemma 3, there is a positive constant


0 < 1 such that

Vp;0 x tk �Vp;0 (x (tk ))

Vp;? x tk � 
0Vp;? (x (tk ))) : (20)

The next lemma is proposed to estimate the convergent rate in the
following section.

Lemma 4: Set 0 < � < 1. For a constant 0 < 
0 < 1, define a
sequence of constants


l+1 = (1� �
2)(1� 
l) + 
l; l = 0; 1; . . . : (21)

Then, we have 
l+1 > 
l and 0 < 
l < 1, l = 0; 1; . . ..

IV. CONVERGENCE ANALYSIS

Take an interval [tk; tk+1) with mk subintervals, and, without
loss of generality, denote the matrix associated with the (time-in-
variant) interconnection graph on subinterval [tk ; tk ) by
Hi (i = 1; � � � ;mk � m�). Note that interval [tk; tk ) con-
sists of j � 1 subintervals: [tk; tk ), [tk ; tk ), and [tk ; tk ).
It is easy to see that H

j�1
= j�1

i=1
Hi is a matrix associated with

the union graph of interval [tk; tk ) (for 2 � j � mk). For
convenience, we denote the rank of Hi as ri and the rank of H

i
as

r
i
(i = 1; � � � ;mk).
A recursive graph-based space decomposition technique is employed

to check the convergence situation in different regions over different
subintervals. We will derive the convergence of the considered system
during [tk; tk ) based on the results in [tk; tk ) and [tk ; tk ) (for
j � mk). As we discussed, we have two matrices H

j�1
and Hj for

[tk; tk ) and [tk ; tk ), respectively. Then, H
j
= H

j�1
+Hj is

associated with the union graph on [tk; tk ).
According to Lemma 1 (by takingG1 = H

j�1
and G2 = Hj , along

with an orthogonal matrix U = U1), there is a normalized orthogonal
basis f~e1; . . . ; ~eng of Rn (that is, ~ei ? ~el when i 6= l and k~eik = 1,
i = 1; . . . ; n) such that we can obtain three subspaces.

• S
j;0

denotes the kernel of matrix H
j

with f~e1r +1; � � � ; ~e
1
ng as its

orthogonal basis.
• S

j�1;?
with f~e11; . . . ; ~e

1
r g as its basis of the subspace spanned

by eigenvectors corresponding to nonzero eigenvalues of H
j�1

.

• S
j�1;�

with f~eir +1; . . . ; ~e
i
r g as its orthogonal basis:

H
j�1

s = 0 for any s 2 S
j�1;�

.
Denote S

j;?
= S

j�1;?
�? S

j�1;�
, which is the orthogonal comple-

ment of S
j;0

. Moreover, we have a new expression of a vector, denoted
by x1

x
1 = (U1 
 I2)

T
x =

x11
...
x1n

2 R
2n
: (22)

Then, we define Lyapunov functions and related energy vectors in
the subspaces

V
j;0

(x)=

n

l=r +1

~V x
1
l ; �

j;0
=

n

l=r +1

~V (x1l )~e
1
l 2R

n

V
j�1;?

(x)=

r

l=1

~V x
1
l ; �

j�1;?
=

r

l=1

~V (x1l )~e
1
l 2R

n

V
j�1;�

(x)=

r

l=r +1

~V x
1
l ; �

j�1;�
=

r

l=r +1

~V (x1l )~e
1
l :

Furthermore, we have the kernel of H
j�1

, denoted by S
j�1;0

(=

S
j;0
�?Sj�1;�), which is the orthogonal complement ofS

j�1;?
. Cor-

respondingly, we have

V
j�1;0

(x) =

n

l=r +1

~V x
1
l :

On the other hand, recalling Lemma 1 (with taking G1 = Hj and
G2 = H

j
with an orthogonal matrix U = U2), there are a normalized

orthogonal basis denoted by f~e21; � � � ; ~e
2
ng, and a new expression of a

vector in the new coordinates (similar to (22)): x2 = (U2 
 I2)
Tx 2

R2n. Also, we have three subspaces, still with the first subspace S
j;0

,

the kernel of H
j
. Thus, we can take ~e1r = ~e2r for l = j + 1; . . . ; n.

The other two subspaces are
• Sj;?, with its orthogonal basis f~e21; . . . ; ~e

2
r g, is spanned by the

eigenvectors corresponding to nonzero eigenvalues of Hj ;
• Sj;� is a subspace with f~e2r +1; . . . ; ~e

2
r g as its orthogonal basis:

Hjs = 0 for any s 2 Sj;�.
Similarly, define Vj;?(x) =

r

l=1
~V (x2l ), �j;? =

r

l=1
~V (x2l )~e

2
l and Vj;�(x) =

r

l=r +1
~V (x2l ),

�j;� =
r

l=r +1
~V (x2l )~e

2
i . Obviously

S
j;?

= S
j�1;?

�? S
j�1;�

= Sj;? �? Sj;�: (23)

Therefore, V = V
j;0

+ V
j�1;?

+ V
j�1;�

= V
j;0

+ Vj;? + Vj;�. For
convenience, we denote

V
j;?

(x) = V
j�1;?

+ V
j�1;�

= Vj;? + Vj;� (24)

and, correspondingly, a vector �
j;?

= �
j�1;?

+ �
j�1;�

= �j;? +

�j;� 2 Rn with

k�
j;?

k = k�
j�1;?

k2 + k�
j�1;�

k2 = k�j;?k2 + k�j;�k2:

(25)
Remark 2: It is not hard to show that S

j�1;�
\ Sj;� = f0g. If

not, there will be a nonzero vector s 2 S
j�1;�

\ Sj;� � S
j;?

with
H

j�1
s = 0 and Hjs = 0. Then (H

j�1
+Hj)s = 0, which leads to a

contradiction because s 2 S
j;?

.
By (3), rank(H

j�1
+ Hj) � maxfrank(H

j�1
); rank(Hj)g,

which leads to the following two cases: That is, Case (I):
r
j
= maxfr

j�1
; rjg; and Case (II):

r
j
> maxfr

j�1
; rjg: (26)

Remark 3: Let us consider Case (II). According to (26) and Remark
2, S

j�1;�
6= f0g and Sj;� 6= f0g, and the angle �j between these two

subspaces is positive. Define a set Ĥ = f m̂

i=1
Hl 2 Rn�njHl 6=

Hl ; li 2 P; i � m̂� m�g, which is a finite set because P is finite.
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Because Hj ; Hĵ 2 Ĥ, (j = 1; . . . ;mk) and Ĥ is finite, there is a
lower bound of �� (0 < �� � �=2) such that

min
H ;H 2Ĥ with satisfying (26)

�j > ��:

According to (23), for any nonzero vector z 2 S
j;?

, we have z =

zl;? + zl;� for l representing either j � 1 or j, with zl;? 2 Sl;? and
zl;� 2 Sl;�. Define two sets

S�l = z 2 S
j;?

: z 6= 0 &
kzl;?k
kzk � � � S

j;?
(27)

for l = j � 1 or j, with positive constant � < sin(��=2). Clearly,
S
j�1;�

� S�
j�1

[f0g and Sj;� � S�j [f0g. Therefore, S�
j�1

\S�j =

;.
We propose an assumption for the next lemma.
Assumption 1: There is a positive constant 
j�2 < 1 defined in (21)

(with a fixed j � 2 and 
0 = e��� defined in Lemma 3) such that

V
j�1;0

x tk � V
j�1;0

(x(tk)) (28)

and

V
j�1;?

x tk � 
j�2V
j�1;?

(x(tk)) : (29)

Lemma 5: If Assumption 1 holds with 
j�2, then Assumption 1
holds with 
j�1 from (21); that is

V
j;0

x tk � V
j;0

(x(tk)) (30)

and

V
j;?

x tk � 
j�1Vj;? (x(tk)) : (31)

Proof: (30) is obvious by Lemma 3 and construction of V
j;0

.
Meanwhile, due to Lemma 3 and (24) along with the definitions of
V
j�1;?

, V
j�1;�

, Vj;?, and Vj;�, we have

_V
j;?

� 0 t 2 tk; tk : (32)

In what follows, we only need to prove (31).
Consider Case (I) first. If r

j
= r

j�1
, then S

j;?
= S

j�1;?
and

S
j;0

= S
j�1;0

. Based on Assumption 1 and 
j�1 > 
j�2 (from
Lemma 4), we have the conclusion. If r

j
= rj , then we have (20) with

p = j. Clearly, S
j;?

= Sj;?, S
j;0

= Sj;0, and 
j�1 � 
0, which
implies the conclusion.

Next, we study Case (II). With (25), for any �
j;?

2 S
j;?

, we have

�
j;?

62 S�l if and only if
k�l;�k
k�

j;?
k �

p
1� �2

if and only if
Vl;�
V
j;?

� 1� �2 (33)

with l representing either j � 1 or j. Then, we discuss the following
cases.

Case (II)a: If V
j;?

(tk ) � 
j�2Vj;?(tk), then we have (31)
because V

j;?
(tk ) � V

j;?
(tk ) by (32) and 
j�2 � 
j�1.

Case (II)b: If V
j;?

(tk ) > 
j�2Vj;?(tk), then, with (29) in
Assumption 1, we have

V
j�1;?

tk

V
j;?

tk
�

V
j�1;?

(tk)

V
j;?

(tk)
: (34)

Thus, we have two subcases.

Subcase b.1 (when �
j;?

(tk) 62 S�
j�1

): From (33), we have

V
j�1;�

(tk)=Vj;?(tk) � 1 � �2. Then, from Assumption 1,
(21), and V

j;?
= V

j�1;?
+ V

j�1;�

V
j;?

tk

V
j;?

(tk)
� max

� (t ) 62S

V
j�1;�

(tk) + 
j�2V
j�1;?

(tk)

V
j;?

(tk)

� (1� �2)(1� 
j�2) + 
j�2 = 
j�1: (35)

According to (32), V
j;?

(tk ) � V
j;?

(tk ) in [tk ; tk ),
which implies (31) in light of (35).
Subcase b.2 (when �

j;?
(tk) 2 S�

j�1
): According to (34),

�
j;?

(tk ) 2 S�
j�1

if �
j;?

(tk) 2 S�
j�1

. Similar analysis leads
to V

j;?
(tk ) � 
1Vj;?(tk), which implies (31) since 
j�1 � 
1.

In a sum of the previous cases, (31) holds for Case (II). Thus, (31)
is proved and the proof is completed.

Then, we give the proof of Theorem 1.
Proof of Theorem 1: Consider interval [tk; tk+1) consisting of a

series of subintervals [tk ; tk ) (k0 = k, km = k + 1) without
topological switching in-between (corresponding to a switching signal
�). Without loss of generality, a sequence of matrices, corresponding
to mk graphs �Gk ; . . . ; �Gk in these mk subintervals, are denoted by
H1; H2; . . . ; Hm , respectively. Set


 = 
m (36)

according to (6) and (21) with 
0 = e��� given in Lemma 3 and �

given in Remark 3.
We claim that, for any given switching signal � and any initial value

x0 = x(0),

V (x(tk+1)) � 
V (x(tk)) : (37)

To prove (37), a recursive procedure based on space decomposition is
given as follows.

Step 1: Take the first subinterval [tk; tk ). According to Remark
1 with taking p = 1, Assumption 1 holds for j = 1.
Step p(� 2): With Assumption 1 for j = p�1 in Step p�1, we
can prove Assumption 1 for j = p by Lemma 5.
Step mk: Since a collection of mk graphs, H1; H2; . . . ; Hm ,
are jointly connected in [tk; tk+1),

m

p=1Hp is positive
definite by Lemma 2. Therefore, V = V

m ;?
. Note that


 = 
m � 
m �1 according to Lemma 4 and (36). From
Lemma 5, V (x(tk+1)) � V (x(tk )) = V

m ;?
(x(tk+1))�


m �1Vm ;?
(x(tk)) = 
V (x(tk)), which leads to (37).

Therefore, for any t > 0, let jt be the largest nonnega-
tive integer such that tj � t. By (37) and (16), V (x(t)) �
V (x(tj )) � 
j V (x(0)). Since jt ! 1 as t ! 1, we have
limt!1 V (x(t)) = 0, and the conclusion follows.

The proposed method can be also used for the multiagent system
with the agent dynamics expressed in the form of (1), and the results
are consistent with those in [6]. The detailed analysis is omitted due to
the space limitations. In addition, it is quite straightforward to extend
our results to the case for �i 2 RM with M > 1.
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Global Stabilization With Low Computational Cost of the
Discrete-Time Chain of Integrators

by Means of Bounded Controls

Nicolas Marchand, Ahmad Hably, and Ahmed Chemori

Abstract—This note proposes a bounded nonlinear control law composed
of saturation functions for the discrete-time chain of integrators. A dynam-
ical adaptation rule of the saturation levels involved in the control law is
proposed to improve the closed-loop performances. The note unifies the
original work of Yang et al. (1997) with static saturation level and conver-
gence improvements that recently appeared in the continuous time case.
The possible ranges for the controller’s parameters are extended with re-
spect to existing results.

Index Terms—Bounded control, chain of integrators, saturation
functions.

I. INTRODUCTION

Practical control applications obviously require bounded control in
order to fit into the physical limits of the actuators (see, for instance,
recent books [1], [2], or the special issue [3] and the chronological bibli-
ography therein). Among the numerous existing methods, one can find
the model predictive control (MPC). It is based on an online computa-
tion of an open-loop optimal input over a prediction horizon. The first
step of the resulting optimal sequence is applied, and then the predic-
tion horizon is shifted forward. The optimization problem is resolved
again, and so on. MPC is a well-known method used for stabilizing
linear systems with constrained control inputs [4]–[7]. However, due
to the intensive computations, this method is not always applicable to
fast systems. Moreover, the optimal solution may be discontinuous as
it is for the optimal time problem. The linear anti-windup compensa-
tion is widely used. The saturation effect is compensated by means of
a linear feedback (see [8] and [9] in continuous time and [10] and [11]
in discrete time). Unfortunately, as mentioned by Megretski [12], a rig-
orous stability and robustness analysis is hard to carry out. Low-gain
control also gave rise to much literature [12]–[15]. In this scheme, the
saturation of a linear controller is usually obtained by solving a Ric-
cati equation which depends on a specific parameter adapted online
(without adaptation, only semiglobal stabilization is achieved) [12],
[13], [16]. Unfortunately, in order to insure global asymptotic stability,
a convex optimization problem must be solved at each time instant,
a drawback that reduces the number of embedded and fast applica-
tions based on this type of control. Teel in [17] has proposed a non-
linear globally stabilizing control law composed of nested saturation
functions for the continuous linear chain of integrators. Various works
extended Teel’s initial result to general controllable linear systems (in
continuous time [18] or in discrete time [19]) and linear systems subject
to measurement bounds [20]. The complexity of these methods is close
to those for the unconstrained one. As mentioned in [21], a comparison
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