
ARTICLE IN PRESS
Journal of the Franklin Institute 344 (2007) 36–57
0016-0032/$3

doi:10.1016/j

�Correspo
E-mail ad
www.elsevier.com/locate/jfranklin
Output feedback exponential stabilization of
uncertain chained systems

Zairong Xia,�, Gang Fengb, Z.P. Jiangc, Daizhan Chenga

aLaboratory of Systems and Control, Institute of Systems Science, Academy of Mathematics and Systems Science,

Chinese Academy of Sciences, Beijing 100080, China
bDepartment of Manufacture Engineering and Engineering Management, The City University of Hong Kong,

Tat Chee Avenue, Kowloon Tong, Hong Kong
cDepartment of Electrical and Computer Engineering, Polytechnic University, Six Metrotech Center, Brooklyn,

NY 11201, USA

Received 1 September 2005; received in revised form 20 September 2005; accepted 27 October 2005
Abstract

This paper deals with chained form systems with strongly nonlinear disturbances and drift terms.

The objective is to design robust nonlinear output feedback laws such that the closed-loop systems

are globally exponentially stable. The systematic strategy combines the input-state-scaling technique

with the so-called backstepping procedure. A dynamic output feedback controller for general case of

uncertain chained system is developed with a filter of observer gain. Furthermore, two special cases

are considered which do not use the observer gain filter. In particular, a switching control strategy is

employed to get around the smooth stabilization issue (difficulty) associated with nonholonomic

systems when the initial state of system is known.

r 2006 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.

Keywords: Chained form systems; Input-state scaling; Backstepping; Observer gain filter; Output feedback
1. Introduction

The control and stabilization of nonholonomic dynamic systems has been studied by
many researchers within the nonlinear control community since Brockett’s work [1], for
example, see the recent survey paper by Kolmanovsky and McClamroch [2] and references
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cited therein. In 1983 Brockett [1] showed that the origin of a simple nonholonomic
integrator would not be made asymptotically stable in the sense of Lyapunov by any
continuous state feedback control law, and at the same time he obtained a necessary
condition for asymptotic stabilization of general nonlinear systems. This condition implies
that a nonholonomic system is not stabilizable by stationary continuous state-feedback,
although it is (open-loop) controllable. In the past decade, many researchers have been
attracted to the search for new control strategies. So far, several interesting solutions, such
as open-loop periodic steering control, smooth or continuous time-varying feedback
control, and discontinuous feedback control, have been found to overcome the above-
described obstruction in stabilizing a nonholonomic system, for example, [3–21].

It is noted that the majority of these constructive methods have been developed for an
important class of driftless nonholonomic systems in chained form, which was first
introduced by Murray and Sastry [13]. It has been shown in [2,13] and references therein
that many nonlinear mechanical systems with nonholonomic constraints on velocities can
be transformed, either locally or globally, to the chained form system via coordinates and
state feedback transformation. The typical examples include tricycle-type mobile robots,
cars towing several trailers, the knife edge, a vertical rolling wheel, and a rigid spacecraft
with two torque actuators.

In many practical applications, both asymptotic stabilization and exponential
convergence of regulation are often demanded. However, it has been known that for
nonholonomic system a smooth time-varying state feedback law can be applied to achieve
asymptotic stabilization but fails to meet the requirement of exponential convergence,
while a continuous time-varying and/or discontinuous feedback law guarantees the
exponential regulation of nonholonomic systems in chained form but fails to achieve
asymptotic stabilization [3,4,6–8,11,12,15,17,18,22]. More recently, Marchand and Alamir
[19] obtained Lyapunov stability and exponential rate of convergence in the absence of
disturbances. Unfortunately, their method could not easily be extended to the case with
occurrence of uncertain disturbances if not impossible. We recently proposed a switching
scheme to achieve Lyapunov stability and exponential convergence for uncertain chained
form systems using state feedback in [23]. It is noted that most control laws proposed in the
past literatures are based on state feedback, and hence can be used only if the whole state
vector is measurable. If this is not the case, a dynamic output feedback control law needs
to be designed. The output feedback issue has been considered for chained systems without
uncertainties in [24] and with a special class of uncertainties in [17,25], where the x0-
subsystem is assumed to be linear when considering output feedback.

The objective of this paper is to obtain both robust global exponential regulation and
Lyapunov stability with output feedback for a class of disturbed nonlinear chained
systems. We make use of a particular input-state scaling, the backstepping technique, the
switching scheme and observer gain filter to design a dynamic output feedback controller
such that the closed-loop system is exponentially convergent and Lyapunov stable. The
contribution of the paper is twofold. First, we propose a systematic control design
procedure to construct a robust nonlinear output feedback control law which solves global
exponential regulation problem for all plants in the considered class, including the ideal
chained systems, the systems with linear x0-subsystem which was considered in [17,25], and
in particular, the systems which have uncertainties in the x0-subsystem. Second, a
switching scheme is proposed to achieve Lyapunov stability when the initial states are in a
specified manifold. For the Lyapunov stability with global exponential regulation using
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output feedback, to the best of our knowledge, there is still no robustification design tool
for nonholonomic systems.
The remainder of this paper is organized as follows. In Section 2, the class of

nonholonomic systems with strongly nonlinear disturbances is introduced, and the
problem of global exponential stabilization is formulated, and some techniques are
introduced. Section 3 presents the backstepping design procedure and switching control
strategy. Then, in Section 4, we illustrate our novel output feedback control design
methodology via a simple practical nonholonomic system with disturbances. The
numerical simulations testify to the effectiveness and robustness aspects of the proposed
robustification tool. Finally, some conclusions are given in Section 5.

2. Problem formulation and preliminaries

Consider the following perturbed version of nonlinear system in chained form [17]

_x0 ¼ u0 þ x0f0ðt; x0Þ;

_x1 ¼ x2u0 þ fd
1 ðt;x0;x1; u0Þ;

..

.

_xn�2 ¼ xn�1u0 þ fd
n�2ðt;x0;x1; u0Þ;

_xn�1 ¼ uþ fd
n�1ðt;x0;x1; u0Þ;

y ¼
x0

x1

 !
;

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

(1)

where x ¼ ðx1; . . . ;xn�1Þ 2 Rn�1, the functions fd
i ’s denote the possible modeling error and

neglected dynamics, and f0ðt;x0Þ is a known smooth function.
The following assumption is usually used in output feedback design [17,26].

Assumption 1. For every 1pipn� 1, there are (known) smooth nonnegative functions fi

such that

jfd
i ðt;x0;x1; u0Þjpjx1jfiðt; y; u0Þ

for all ðt; x0; x1; u0Þ 2 Rþ � R� R� R.
First of all, we introduce a notion of exponential stability, which is usually called

K-exponential stability in literature. It should be noted that the function gð�Þ is of class K.

Definition 1. Consider a nonlinear system
P
: _x ¼ f ðt; xÞ with x 2 Rn. Let g:Rþ ! Rþ be

of class K which means g is continuous, monotonically increasing and gð0Þ ¼ 0. The
system is said to be globally K-exponentially stable (GES) if there exist a strictly positive
constant l and a function g of class K such that 8xð0Þ 2 Rn, 8tX0

jxðtÞjpgðjxð0ÞjÞe�lt. (2)

For a subset A � Rn, if 8xð0Þ 2 A, there are a strictly positive constant l, Tðxð0ÞÞ40 and a
function g0:Rþ ! Rþ such that 8tXT , jxðtÞjpg0ðjxð0ÞjÞe�lt, then the system

P
is said to

be K-exponentially regulated with respect to A.

Remark 1. K-exponential stability is different from the uniform global asymptotical

stability (UGAS). If there is a KL function bð�; �Þ such that xðtÞpbðkxð0Þk; tÞ, then the
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system
P

is said to be UGAS. From [27, Proposition 7] there exist K1 functions y1, y2 so
that bðs; tÞpy1ðy2ðsÞe�tÞ; s40 t40.

In this paper, we are interested in finding a dynamic output feedback

_Z ¼ XðZ; yÞ;

u0 ¼ m0ðZ; yÞ;

u ¼ mðZ; yÞ;

8><
>: (3)

such that the closed-loop systems consisting of Eqs. (1) and (3) isK-exponentially stable in
the sense of Definition 1.

In order to apply backstepping technique we introduce the following input-state scaling
discontinuous transformation defined by [18,19]

xi ¼
xi

u
n�ðiþ1Þ
0

; 1pipn� 1. (4)

Under the new x-coordinates, the x-subsystem is transformed into

_x1 ¼ x2 � ðn� 2Þx1
_u0

u0
þ

fd
1ðt; x0;x1; u0Þ

un�2
0

;

_x2 ¼ x3 � ðn� 3Þx2
_u0

u0
þ

fd
2ðt; x0;x1; u0Þ

un�3
0

;

..

.

_xn�2 ¼ xn�1 � xn�2

_u0

u0
þ

fd
n�2ðt;x0;x1; u0Þ

u0
;

_xn�1 ¼ uþ fd
n�1ðt; x0;x1; u0Þ:

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

(5)

It should be noted that the measurement of state x1 can be obtained if the to-be-designed
control u0 is only dependent on output y.

If u0ðtÞa0 for every tX0, the discontinuous state transformation (4) is applicable. Then
the system (5) has the following form:

_x ¼ A�
_u0

u0
L

� �
xþ buþCd ðt;x0;x1; u0Þ, (6)

where

A ¼
0ðn�2Þ�1 I ðn�2Þ�ðn�2Þ

0 01�ðn�2Þ

 !
; b ¼

0ðn�2Þ�1

1

� �
; L ¼ diagððn� 2Þ � � � 1 0Þ

and

Cdðt;x0; x1; u0Þ:¼ðCd
1ðt;x0;x1; u0Þ � � � Cd

n�2ðt;x0;x1; u0Þ Cd
n�1ðt;x0;x1; u0ÞÞ

T

:¼
fd
1 ðt;x0;x1; u0Þ

un�2
0

� � �
fd

n�2ðt;x0;x1; u0Þ

u0
fd

n�1ðt; x0;x1; u0Þ

 !T

.

From Assumption 1 it is easy to obtain the following lemmas.
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Lemma 1. For each 1pipn� 1, there exists a smooth nonnegative functions Ci such that

jCd
i ðt; x0; x1; u0Þjpjx1jCiðt;x0; x1; u0Þ.

Proof. In view of Eq. (4) and Assumption 1, we have

jCd
i ðt;x0;x1; u0Þjp

jx1j

ju
n�ðiþ1Þ
0 j

fiðt; y; u0Þ

¼
jx1j

ju
n�ðiþ1Þ
0 j

fiðt;x0; x1; u0Þ

¼ jx1jju0j
ði�1Þfiðt;x0;x1; u0Þ

pjx1jððu0Þ
2ði�1Þ
þ 1Þfiðt;x0; ðu0Þ

n�2x1; u0Þ.

Therefore, the proof of Lemma 1 is completed. &

Denote C ¼ ð1 01�ðn�2ÞÞ and then Y ¼ Cx is a measurable variable. It is easily verified
that ðA; bÞ is controllable and ðC;AÞ observable.

Lemma 2. For any continuous function K0ðtÞ there exist two strictly positive real numbers

pmin and pmax such that the unique solution PðtÞ of the following matrix differential equation:

_P ¼ PðA� K0ðtÞLÞ
T
þ ðA� K0ðtÞLÞP� PCTCPþ I ;

Pð0Þ ¼ P040;

(

satisfies

pminIpPðtÞppmaxI ; tX0.

Proof. Since

A ¼
0ðn�2Þ�1 I ðn�2Þ�ðn�2Þ

0 01�ðn�2Þ

 !
; C ¼ ð1 01�ðn�2ÞÞ; L ¼ diagððn� 2Þ � � � 1 0Þ

it is directly verified that for y ¼ Cx along _x ¼ ðA� K0ðtÞLÞx we have

yði�1ÞðtÞ ¼ ½� � � � � 1
i

0 � � � 0�x

i ¼ 1; . . . ; n.

Then ðC;A� K0ðtÞLÞ is observable. From duality of controllability and observability and
[28,29] the proof is completed. &

Then the following full-order observer can be designed:

_̂x ¼ A�
_u0

u0
L

� �
x̂þ buþ PCTðY � Cx̂Þ;

_P ¼ P A�
_u0

u0
L

� �T

þ A�
_u0

u0
L

� �
P� PCTCPþ I ;

Pð0Þ ¼ P040:

8>>>>>><
>>>>>>:

(7)

Remark 2. It is noted that the observer gain P is determined by a filter, which is time-
varying and dependent on the nonlinearity of x0-subsystem. The observer is reminiscent of
high-gain observer, for example, see the more recent paper [30].
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3. Dynamic output feedback

In this section we focus on dynamic output feedback design for system (1). In order to
apply the input-state scaling discontinuous transformation (4) u0ðtÞ should not be equal to
0. The inherently triangular structure of system (5) suggests that we should design the
control inputs u0 and u in two separate stages.

3.1. General case

It is noted that there exists a smooth nonnegative function o0ðt;x0Þ such that

jf0ðt; x0Þjpo0ðt; x0Þ,

for example, o0ðt;x0Þ ¼ 1þ f2
0ðt; x0Þ. Then for systems (1) we have

Lemma 3. The x0-subsystem of the uncertain system (1) can be globally K-exponentially

regulated at the origin by the following switching control scheme:

u0ðtÞ ¼

�ðl0 þ o0Þx0; l040 if x0ð0Þa0;

b� x0o0 if tots

�ðl0 þ o0Þx0 if tXts;

(
if x0ð0Þ ¼ 0;

8>><
>>:

where tsðTÞ ¼ minfd; 1=2D;Tg is a positive constant, d40, �40, b40 and T40 are strictly

positive constants, and D ¼ max0pvpT
jsjpbT
f�þ o0ðv; sÞg. At the same time, the designed control u0

is an almost continuous and differentiable function such that
(1)
 for all tX0, u0ðtÞa0,

(2)
 for almost all tX0,

du0

dt

����
����pj0ðt;x0Þju0ðtÞj, (8)

where j0ðt;x0Þ is a known smooth nonnegative function.
Proof. The proof is divided into two cases.
Case 1: x0ð0Þa0. First, it can be easily seen that the x0-subsystem is exponentially stable

since _V 0p� 2l0V0 where V0 ¼
1
2
x2
0.

Second, it follows from

_x0 ¼ �ðl0 þ o0 � f0Þx0

that

x0ðtÞ ¼ x0ð0Þ exp �

Z t

0

ðl0 þ o0ðs;x0ðsÞÞ � f0ðs;x0ðsÞÞÞds

� �
,

and thus x0ðtÞa0. Then u0ðtÞa0.
Third, we need to verify that there exists a smooth nonnegative function j0 such that

_u0

u0

����
����pj0.
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In fact, since u0 ¼ �l0x0 � x0o0, then

_u0 ¼ ðl0 þ o0 � f0Þ l0 þ o0 þ
@o0

@x0
x0

� �
x0 �

@o0

@t
x0.

So

_u0

u0
¼ �

ðl0 þ o0 � f0Þðl0 þ o0 þ ðð@o0=@x0Þx0Þ � @o0=@t

l0 þ o0
,

:¼� j̄0ðt;x0Þ

which is smooth, and

_u0

u0

����
����p1þ j̄2

0ðt;x0Þ:¼j0ðt; x0Þ.

Case 2: x0ð0Þ ¼ 0. Firstly, when tpts it is easy to see that 0px0ðtÞpbt. At the same time,

dV0

dt
¼ 2x0ðb� ðo0 � f0Þx0Þ

¼ 2b
ffiffiffiffiffiffi
V 0

p
� 2ðo0 � f0ÞV0,

where V0 ¼ x2
0. Then using the variable coefficient method we have

V0ðtÞ ¼ b2 expð�2sðtÞÞ
Z t

0

expðsðsÞÞds

� �2

Xb2 expð�2sðtÞÞt2,

where sðtÞ ¼
R t

0ðo0ðs; x0ðsÞÞ � f0ðs; x0ðsÞÞÞds. So x0ðtÞ40 for all 0otpts.
Secondly, the following inequality is satisfied.

u0ðtÞX
b
2
; tots.

It is easy to know that when tots

u0ðtÞ ¼ b� o0x0ðtÞ

Xb� Dbt

X
b
2
; tots.

Thirdly, from above discussion we know that x0ðtsÞa0. So we can switch from u0ðtÞ ¼

b� o0x0 when tots to u0ðtÞ ¼ �ðl0 þ o0Þx0 when tXts. It follows from the discussion of
Case 1 that the x0-subsystem is exponentially regulated.
Fourthly, it is easy to know that there exists smooth nonnegative function j0 such that

for almost tX0,

_u0

u0

����
����pj0,

and it is easy to see that _u0=u0 is smooth except at t ¼ ts.

Remark 3. Notice that tsðTÞ ¼ minfd; 1=2D;Tg, where d40, �40, b40 are arbitrarily
chosen constants and T40. In particular, D ¼ max0pvpT

jsjpbT
f�þ o0ðv; sÞg is a continuous



ARTICLE IN PRESS
Z. Xi et al. / Journal of the Franklin Institute 344 (2007) 36–57 43
function of T . Then it is easy to know that the switching time tsðTÞ is continuous with
respect to T and its computation is dependent on T explicitly. If T is given and known
tsðTÞ can be calculated in advance.

From previous discussion the observer (7) can be designed. Then let

e ¼ x� x̂:¼ðe1; . . . ; en�1Þ,

and Ci (i ¼ 1; . . . ; n� 1) are n� 1-dimensional row vectors with zero elements except the
ith element being 1. So the overall system to be controlled can be expressed as

_P ¼ P A�
_u0

u0
L

� �T

þ A�
_u0

u0
L

� �
P� PCTCPþ I ;

_e ¼ A� PCTC �
_u0

u0
L

� �
eþCd ðt;x0;x1; u0Þ;

_x1 ¼ x̂2 � ðn� 2Þx1
_u0

u0
þCd

1ðt;x0;x1; u0Þ þ e2;

_̂x2 ¼ x̂3 � ðn� 3Þx̂2
_u0

u0
þ C2PCTCe;

..

.

_̂xn�2 ¼ x̂n�1 � x̂n�2

_u0

u0
þ Cn�2PCTCe;

_̂xn�1 ¼ uþ Cn�1PCTCe:

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

(9)

Then the design of the control input u will be obtained using the standard backstepping
method shown in [17,18,23,26] to the transformed system (9), i.e.,
3.1.1. Design procedure

Step 1: Let us begin with the ðP; e; x1Þ-subsystem of Eq. (9),

_P ¼ P A�
_u0

u0
L

� �T

þ A�
_u0

u0
L

� �
P� PCTCPþ I ;

_e ¼ A� PCTC �
_u0

u0
L

� �
eþCd ðt;x0;x1; u0Þ;

_x1 ¼ x̂2 � ðn� 2Þx1
_u0

u0
þCd

1ðt;x0;x1; u0Þ þ e2;

8>>>>>>>><
>>>>>>>>:

where x̂2 is regarded as the virtual control input. Denote z1 ¼ x1. From Lemma 2, PðtÞ is
bounded. Then the positive definite function V 1 ¼ eTP�1eþ 1

2
z21 of ðe; z1Þ can be chosen as

Lyapunov function for ðe; z1Þ-subsystem. Using Lemma 1, the time derivative of V1 along
the solutions of Eq. (9) satisfies

_V1 ¼ � eTP�2e� eTCTCeþ z1x̂2 � ðn� 2Þz21
_u0

u0
þ 2eTP�1Cd þ z1Cd

1 þ z1e2

p�
1

2
eTP�2e� e21 þ z1x̂2 þ ðn� 2Þz21j0 þ 4z21C

TCþ z21C1 þ z21C2PPCT
2 ð10Þ
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since z1e2pz21C2PPCT
2 þ

1
4
eTP�2e. Then we are led to introduce a virtual control function

a1 and a new variable z2 as

a1ðt;P;x0; z1; u0Þ ¼ �l1z1 � j1ðt;P;x0; z1; u0Þz1,

z2 ¼ x̂2 � a1ðt;P;x0; z1; u0Þ,

where l1 is a positive design parameter and j1ðt;P; x0; z1; u0Þ ¼ ½ðn� 2Þj0 þ 4CTCþC1þ

C2PPCT
2 �z1. Consequently, Eq. (10) implies

_V 1p� 1
2
eTP�2e� e21 � l1z21 þ z1z2.

Note that a1 is a smooth function satisfying

a1ðt;P;x0; 0; u0Þ ¼ 0.

Step i (2pipn� 2): As in [17,23,26], consider the Lyapunov function candidate
Vi ¼ V i�1ðt;P; e; z1; . . . ; zi�1Þ þ

1
2z

2
i . Therefore, we can choose a virtual control function ai

and a new variable ziþ1 as follows:

aiðt;P;x0; z1; . . . ; zi; u0Þ ¼ �lizi �
Xi

j¼1

jijðt;P;x0; z1; . . . ; zi; u0Þzj ,

ziþ1 ¼ x̂iþ1 � ai,

where jijðt;P; x0; z1; . . . ; zi; u0Þ (j ¼ 1; . . . ; n� 1) are some suitable smooth functions, such
that

_V ip�
1

2i
eTP�2e� e21 �

Xi

j¼1

ðlj � i þ jÞz2j þ ziziþ1.

Step n� 1: At this last step, consider the whole ðP; e; x̂Þ-system (9) where the true input u

is to be designed on the basis of the virtual control functions an�1’s. To this end, consider a
positive definite and radially unbounded Lyapunov function

V n�1 ¼ V n�2ðt;P; e; z1; . . . ; zn�2Þ þ
1
2
z2n�1.

As in [26,17,18,23], it is easy to know that some suitable smooth functions jðn�1Þjðt;P;
x0;z1; . . . ; zn�1; u0Þ (j ¼ 1; . . . ; n� 1) can be found such that along the solutions of Eq. (9)

_V n�1p�
1

2n�1
eTP�2e� e21 �

Xn�1
j¼1

ðlj � nþ 1þ jÞz2j (11)

when choosing control law u as

u ¼ �ln�1zn�1 �
Xn�1
j¼1

jðn�1Þjðt;P;x0;z1; . . . ; zn�1; u0Þzj. (12)

So the following theorem can be obtained.

Theorem 4 (Main theorem). Let
�
 b, d, �, l0 and li (1pipn� 1Þ be strictly positive real constants such that

l� ¼ minflj � nþ 1þ jjj ¼ 1; . . . ; n� 1g40,
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G ¼ fð0;xÞ: jxja0g.
�
Then, the following dy!namic discontinuous output feedback law globally K-exponentially

stabilizes uncertain chained system (1). Moreover, the feedback law is bounded.
(i)
 ðx0ð0Þ; xð0ÞÞ ¼ ð0;xð0ÞÞ 2 G

u0ðtÞ ¼
b� x0o0 if totsðjxð0ÞjÞ;

�ðl0 þ o0Þx0 if tXtsðjxð0ÞjÞ;

(
(13)

_̂x ¼ A�
_u0

u0
L

� �
x̂þ buþ PCTðY � Cx̂Þ;

_P ¼ P A�
_u0

u0
L

� �T

þ A�
_u0

u0
L

� �
P� PCTCPþ I ;

Pð0Þ ¼ P040;

uðtÞ ¼ an�1ðt;P;x0;x1; x̂2; . . . ; x̂n�1; u0Þ;

8>>>>>>>><
>>>>>>>>:

(14)

where D ¼ max0pvpjxð0Þj
jsjpbjxð0Þj

f�þ o0ðv; sÞg and tsðjxð0ÞjÞ ¼ minfd; 1=2D; jxð0Þjg.
(ii)
 ðx0ð0Þ; xð0ÞÞ ¼ ð0; 0Þ,

u0 ¼ 0, (15)

u ¼ 0, (16)
(iii)
 ðx0ð0Þ; xð0ÞÞeG [ fð0; 0Þg,

u0 ¼ �ðl0 þ o0Þx0, (17)

_̂x ¼ A�
_u0

u0
L

� �
x̂þ buþ PCTðY � Cx̂Þ;

_P ¼ P A�
_u0

u0
L

� �T

þ A�
_u0

u0
L

� �
P� PCTCPþ I ;

Pð0Þ ¼ P040;

uðtÞ ¼ an�1ðt;P;x0;x1; x̂2; . . . ; x̂n�1; u0Þ:

8>>>>>>>><
>>>>>>>>:

(18)
Proof. Choose T ¼ jxð0Þj. Hence it follows from Lemma 3 that the x0-subsystem can be
globally K-exponentially regulated at the origin. Moreover, at the same time from the
proof of Lemma 3 we have

jx0ðtÞjpbt; 0ptptsðjxð0ÞjÞ;

jx0ðtÞjpbjxð0Þje�l0ðt�tsÞ; t4tsðjxð0ÞjÞ:

(
(19)

It is easy to see that the x0-subsystem is globally K-exponentially stable at the origin from
the definition of ts.

If parameters li satisfy

l� ¼ minflj � nþ 1þ jjj ¼ 1; . . . ; n� 1g40,
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and l ¼ minfl�; 1=2n�1pmaxg40, then the above backstepping control strategy (7)–(12)
yields that the x-subsystem of uncertain system (1) with the observer x̂ is well defined and
globally stabilized at the origin from backstepping design.
Let z ¼ ðz1; . . . ; zn�1Þ. According to Eq. (11), we have

_V n�1p� lV n�1,

which implies

V n�1ðtÞpVn�1ð0Þe
�lt; tX0.

Then it follows from [17] that

jðeðtÞ; xðtÞÞjpgðjðeð0Þ;x0ð0Þ; xð0Þ; u0ð0Þ;P0ÞjÞe
�et; tX0, (20)

where e40, x ¼ ðx1; . . . ; xn�1Þ and g is a class-K function.
In the following we are to prove that x is K-exponentially stable if x is K-exponentially

stable. From Eqs. (4), (19) and (20) it is easy to know that
(a)
 ðx0ð0Þ; xð0ÞÞ ¼ ð0;xð0ÞÞ 2 G,

jxiðtÞjpju0ðtÞj
n�ðiþ1ÞjxiðtÞj

p
ðbþ bjxð0ÞjDÞn�ðiþ1Þge�et; 0ptptsðjxð0ÞjÞ;

ððl0 þ DÞbjxð0ÞjÞn�ðiþ1Þge�½l0ðn�ðiþ1ÞÞþe�ðt�tsÞ; t4tsðjxð0ÞjÞ:

(

(b)
 ðx0ð0Þ; xð0ÞÞ ¼ ð0; 0Þ, jxiðtÞj ¼ 0.

(c)
 ðx0ð0Þ; xð0ÞÞeG [ fð0; 0Þg,

jxiðtÞjpju0ðtÞj
n�ðiþ1ÞjxiðtÞj

pððl0 þ DÞbjxð0ÞjÞn�ðiþ1Þgðjðeð0Þ;x0ð0Þ; xð0Þ; u0ð0Þ;P0ÞjÞe
�½l0ðn�ðiþ1ÞÞþe�t.
Hence, the claim of Theorem 4 is true. &

Remark 4. It is known from the proof of Theorem 4 that the switching time relies on the
knowledge of the initial state of the system, which is the penalty in order to obtain the
Lyapunov stability. It is this dependence on the initial state that makes the closed-loop
system Lyapunov stable. If the initial state is unknown the switching time tsðTÞ could be set
to be dependent on any known positive constant T and independent on the initial state of
the system. From the design procedure it is easy to see that xðtÞ ! 0 as t!1. However,
the closed-loop system cannot be made Lyapunov stable in this case.

Remark 5. From the previous discussion, it is known that under Assumption 1, there is a
smooth row vector wðt;P;x0;z; u0Þ such that u ¼ wz. Thus, it follows that the boundedness
of x0ðtÞ and zðtÞ would imply the boundedness of u0ðtÞ and uðtÞ. It is easily seen that the
boundedness of x0ðtÞ and zðtÞ can be deduced from the backstepping procedure, and thus
the boundedness of u0ðtÞ and uðtÞ can be concluded.
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Remark 6. From Lemma 2, Theorem 4 and Remark 5, the signals of closed-loop are
bounded in interval of existence of solution. Then the interval of existence of solution is
½0;1Þ.
3.2. Two special cases

3.2.1. Case one

In this case in addition to Assumption 1 we further assume that f0ðt; x0Þ is a known
constant, i.e.,

f0ðt;x0Þ ¼ c0.

Then it is easily seen from the proof of Lemma 3 that there is a constant c1 such that
j0ðt;x0Þ ¼ c1. Similar to the last subsection, the following full-order observer can be
designed.

_̂x ¼ A�
_u0

u0
L

� �
x̂þ buþ KðY � Cx̂Þ, (21)

where K ¼ ðk1; . . . ; kn�1Þ is chosen such that A� KC is Hurwitz. So there is a symmetric
positive definite matrix P satisfying

PðA� KCÞ þ ðA� KCÞTPþ ðc1 þ 2ÞPþ c1LPLp0.

Remark 7. It is noted that the observer gain K is static which can be determined in
advance such that A� KC is Hurwitz. This is different from the last subsection since the
x0-dynamics is linear in this case.

Let

e ¼ x� x̂:¼ðe1; . . . ; en�1Þ.

So the overall system to be controlled can be expressed as

_e ¼ A� KC �
_u0

u0
L

� �
eþCdðt;x0;x1; u0Þ;

_x1 ¼ x̂2 � ðn� 2Þx1
_u0

u0
þCd

1ðt;x0;x1; u0Þ þ e2;

_̂x2 ¼ x̂3 � ðn� 3Þx̂2
_u0

u0
þ k2e1;

..

.

_̂xn�2 ¼ x̂n�1 � x̂n�2

_u0

u0
þ kn�2e1;

_̂xn�1 ¼ uþ kn�1e1:

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

(22)

The design of the control input u can be obtained by following the similar but simpler
Design Procedure described in the last subsection to the transformed system (22). The
major difference lies in Step 1. In this case we should choose the candidate Lyapunov
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function V 1 ¼ eTPeþ 1
2
x21 for the ðe; x1Þ-subsystem of Eq. (22), i.e.,

_e ¼ A� KC �
_u0

u0
L

� �
eþCdðt; x0; x1; u0Þ;

_x1 ¼ x̂2 � ðn� 2Þx1
_u0

u0
þCd

1ðt; x0; x1; u0Þ þ e2:

8>>><
>>>:

Then the following theorem is in order.

Theorem 5. Under Assumption 1 and f0ðt;x0Þ ¼ c0, the uncertain system (1) can be globally

K-exponentially stabilized at the origin by

u0ðtÞ ¼

�l0x0 � x0c0 if x0ð0Þa0;

b� x0c0 if totsðjxð0ÞjÞ

�ðl0 þ c0Þx0 if tXtsðjxð0ÞjÞ;

(
if x0ð0Þ ¼ 0;

8>><
>>: (23)

and the corresponding output feedback control strategy uðy; x̂; u0Þ with the observer (21),
which is designed based on the similar but simpler Design Procedure described in the last

subsection, where b, d, � and l0 (l0 þ c0a0) be strictly positive real constants, and

tsðjxð0ÞjÞ ¼ minfd; 1=2ðjc0j þ �Þ; jxð0Þjg.

In the discussion up to here, the x0-dynamics, whether or not it is linear, must be
completely known because of the observer dynamics (7) or (21). In the next subsection the
case of x0-dynamics with uncertainties will be considered.

3.2.2. Case two

If only variables x0 and x1 are measurable it is known from the previous discussion that
the dynamics of x0 should be completely known in general. If there are some uncertainties
in the x0-dynamics the output feedback control design discussed in the previous
subsections cannot be used directly. In this subsection we will show that the following
system with unknown x0-dynamics

_x0 ¼ d0ðtÞu0 þ x0f
d
0ðt; x0Þ;

_x1 ¼ x2u0 þ fd
1 ðt;x0;x1; u0Þ;

_x2 ¼ uþ fd
2 ðt;x0;x1; u0Þ;

8>><
>>: (24)

which can be transformed into

_x0 ¼ d0ðtÞu0 þ x0f
d
0ðt; x0Þ;

_x1 ¼ x2 � x1
_u0

u0
þ

fd
1ðt;x0;x1; u0Þ

u0
;

_x2 ¼ uþ fd
2 ðt;x0;x1; u0Þ

8>>>><
>>>>:

(25)

by input-state scaling x1 ¼ x1=u0, x2 ¼ x2, can be globally K-exponentially stabilized
based on the backstepping technique and switching scheme. The following assumptions are
supposed to be satisfied.

Assumption 2. 0oc01pd0ðtÞpc02.
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Assumption 3. For every 0pip2, there are smooth nonnegative functions fi such that

jfd
0ðt;x0Þjpf0ðx0Þ;

jfd
i ðt;x0; x1; u0Þjpjx1jfiðy; u0Þ; i ¼ 1; 2

for all ðt;x0;x; u0Þ 2 Rþ � R� R2 � R.

Similar to the previous subsections, the following reduced-order observer can be
constructed

_w ¼ �lw� l2x1 þ u;

x̂2 ¼ wþ lx1:

(
(26)

Then we have the following dynamics

_e ¼ �leþ lx1
_u0

u0
� l

fd
1 ðt;x0;x1; u0Þ

u0
þ fd

2 ðt;x0;x1; u0Þ;

_x1 ¼ wþ lx1 � x1
_u0

u0
þ

fd
1ðt;x0;x1; u0Þ

u0
þ e;

_w ¼ �lw� l2x1 þ u;

8>>>>>><
>>>>>>:

(27)

where l is a positive design parameter and e ¼ x2 � x̂2.
Similar to the previous subsections, based on Lemma 3, the control u can be designed

using the backstepping technique to system (27). Let

a1 ¼
3

2
ðl2j2

0 þ l2f2
1 þ u2

0f
2
2Þ þ l þ

1

l
þ l1 þ j0 þ f1

� �
,

w ¼ z� a1x1,

and choose the candidate Lyapunov function V1 ¼
1
2

e2 þ 1
2
x21 for the ðe; x1Þ-subsystem of

Eq. (27). Then

_V1p�
l

4
e2 � l1x

2
1 þ x1z.

Thus, letting

a2 ¼ l2zþ x1 þ
@a1
@x1

x1 þ a1 � l

� �
ðwþ lx1Þ þ

2

l
þ

5

2l1
f2
1 þ

5

2l1
j2
0

� �
@a1
@x1

x1 þ a1

� �2

z

þ
5

2l1

@a1
@x0

x0f0

� �2

þ
@a1
@x0

c02u0

� �2

þ
@a1
@u0

j0u0

� �2
" #

z, ð28Þ

u ¼ �a2,

and choosing the candidate Lyapunov function V ¼ V 1 þ
1
2

z2 for the whole system (27) we
have

_Vp�
l

8
e2 �

l1
2
x21 � l2z2.

Hence the following result is obtained.
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Theorem 6. Under Assumptions 2 and 3, the uncertain system (24) can be globally

K-exponentially stabilized at the origin by

u0ðtÞ ¼

�l0x0 �
f0ðx0Þ

c01
x0 if x0ð0Þa0;

b�
f0ðx0Þ

c01
x0 if totsðjxð0ÞjÞ

� l0 þ
f0ðx0Þ

c01

� �
x0 if tXtsðjxð0ÞjÞ;

8>>><
>>>:

if x0ð0Þ ¼ 0;

8>>>>>>>><
>>>>>>>>:

(29)

and (28) with the observer (26), where b, d, � and l0 be strictly positive real constants, and

T0ðsÞ ¼ maxt2½�s;s�f�þ f0ðtÞg and

tsðjxð0ÞjÞ ¼ min d;
1

2c02T0ðc02bjxð0ÞjÞ
; jxð0Þj

� �
.

Remark 8. In fact, if ðx0; x1; . . . ;xn�2Þ is measurable then a dynamic output feedback can
also be designed by the input-state scaling, backstepping technique and reduced-order
observer for the chained system (1).
4. Example

Consider the following bilinear model, which is an approximation of a mobile robot
with small angle measurement error [17,31],

_xl ¼ 1�
e2

2

� �
v;

_yl ¼ ylvþ ev;
_yl ¼ o;

8>>><
>>>:

(30)

where xl and yl can be measured. As indicated in [17] system (30) can be transformed into

_x0 ¼ 1�
e2

2

� �
u0;

_x1 ¼ x2u0;

_x2 ¼ u

8>>><
>>>:

by the following transformation:

x0 ¼ xl ; x1 ¼ yl ; x2 ¼ yl þ e; u0 ¼ v; u ¼ o.

Introducing

x1 ¼
x1

u0
;

x2 ¼ x2;
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then

_x0 ¼ 1�
e2

2

� �
u0;

_x1 ¼ x2 � x1
_u0

u0
;

_x2 ¼ u:

8>>>>><
>>>>>:

At first assume that the designed control u0 satisfies j _u0=u0jpa where a is a positive
constant. So the following controller can be designed.

Step 0: Recall that x1 is measured and but not x2. The following reduced-order observer
is built up to reconstruct x2 and thus x2:

_w ¼ u� lw� l2x1, (31)

where l40 is a design parameter. Define x̂2 ¼ wþ lx1 as an estimate of x2 and e ¼ x2 � x̂2
as the estimation error. We have

_e ¼ �leþ lx1
_u0

u0
.
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Fig. 1. The systems behaviour at initial condition ðxlð0Þ; yl ð0Þ; ylð0Þ; wð0ÞÞ ¼ ð1; 1; 1; 3:5Þ.
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Fig. 2. The systems behaviour at initial condition ðxlð0Þ; yl ð0Þ; ylð0Þ; wð0ÞÞ ¼ ð1; 1; 1; 3:5Þ.
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Then, noticing that x2 ¼ wþ lx1 þ e, the output feedback design of u is based on the
following controlled system:

_e ¼ �leþ lx1
@u0

@x0
1�

e2

2

� �
;

_x1 ¼ wþ lx1 þ e� x1
_u0

u0
;

_w ¼ u� lw� l2x1:

8>>>>><
>>>>>:

(32)

Step 1: Consider the ðe; x1Þ-subsystem of Eq. (32). Differentiating the quadratic function
W 1 ¼

1
2

e2 þ 1
2
x21 yields

_W 1 ¼ � le2 þ elx1
_u0

u0
þ x1 wþ lx1 þ e� x1

_u0

u0

� �

p�
l

2
e2 � l1x

2
1 þ x1z2,

where

b1 ¼ Ax1;

A ¼ l1 þ aþ l þ
l

2
ðlaþ 1Þ2;

w ¼ z2 � b1ðx1Þ:
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Fig. 3. The systems behaviour at initial condition ðxlð0Þ; yl ð0Þ; ylð0Þ; wð0ÞÞ ¼ ð1; 1; 1; 3:5Þ.
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Step 2: Consider the ðe; x1; wÞ-system of Eq. (32). The time derivative of the Lyapunov
function W 2 ¼W 1 þ

1
2

z22 satisfies

_W 2p� l
2
e2 � l1x

2
1 þ x1z2 þ z2 u� lw� l2x1 þ A wþ lx1 þ e� x1

_u0

u0

� �� �

p� l
2e

2 � l1x
2
1 þ z2 uþ x1 � lw� l2x1 þ A wþ lx1 þ e� x1

_u0

u0

� �� �
p� l

4
e2 � ðl1 � 1

2
Þx21 � l2z22,

where

u ¼ �ðA� lÞw� ðAl þ 1� l2Þx1 � l2z2 � A2 a2

2
þ

1

l

� �
z2,

which is our controller expression of u in all cases.
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In the following a controller of u0 can be designed according to the initial condition xð0Þ.
Assume that e 2 ½�emax; emax� and 0oemaxo

ffiffiffi
2
p

. Then 1� e2max=2pð1� e2=2Þp1.
�
 x0ð0Þ ¼ 0, xð0Þa0,

u0ðtÞ ¼
b if totsðjxð0ÞjÞ;

�l0x0 if tXtsðjxð0ÞjÞ;

(

where ts ¼ minfd; jxð0Þjg, d40, l040, b40. So

_u0ðtÞ ¼

0 if totsðjxð0ÞjÞ;

�l0 1�
e2

2

� �
u0 if t4tsðjxð0ÞjÞ;

8><
>:

i.e.,

_u0

u0

����
����pl09a.
�
 ðx0ð0Þ; xð0ÞÞ ¼ ð0; 0Þ,

u0 ¼ 0,

u ¼ 0.
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Fig. 5. The systems behaviour at initial condition ðxlð0Þ; yl ð0Þ; ylð0Þ; wð0ÞÞ ¼ ð0; 0:1; 0:1; 0:5Þ.
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�
 x0ð0Þa0,

u0 ¼ �l0x0.
Remark 9. It is noted that in [17] the controller was dependent on the value of emax, but it
is not the case in our design.

Our simulations as shown in Figs. 1–6 are based on the following choice of design and
system parameters [17]:

l0 ¼ l ¼ 0:5; l1 ¼ 0:6; l2 ¼ 1; e ¼ 0:1; emax ¼ 0:5; b ¼ 1; d ¼ 0:2.

In particular, suppose that the initial state of the system is unknown. Then the switching
time is chosen as tsð0:1Þ. As seen from the simulations, exponential rates of convergence are
obtained for all signals and the control inputs. Due to the discontinuous state
transformation, the initial transient value of the control input is relatively large.

5. Conclusions

In this paper a class of nonholonomic uncertain systems has been considered. Using
input-state scaling and backstepping technique an output feedback controller has been
proposed. Using a switching scheme dependent on the initial condition of the system the
closed-loop system can be K-exponentially stabilized. The properties of the discontinuous
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closed-loop system, in particular the existence of a unique solution, and the features of the
control signals, in particular the boundedness, have been studied. The simulations results
have demonstrated the effectiveness of the proposed control design tool.
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[26] M. Krstić, I. Kanellakopoulos, P.V. Kokotović, Nonlinear and Adaptive Control Design, Wiley, New York,

1995.

[27] E.D. Sontag, Comments on integral variants of ISS, Systems Control Lett. 34 (1998) 93–100.

[28] L. Praly, I. Kanellakopoulos, Output feedback asymptotic stabilization for triangular systems linear in the

unmeasured state components, in: Proceedings of the 39th IEEE Conference on Decision and Control,

Sydney, Australia, December 2000, pp. 2466–2471.

[29] M. Ikeda, H. Maeda, S. Kodama, Stabilization of linear systems, SIAM J. Control 10 (4) (1972) 716–729.

[30] G. Besancon, J. De Leon-Morales, O. Huerta-Guevara, On adaptive observers for state affine systems and

application to synchronous machines, in: Proceedings of the 42nd IEEE Conference on Decision and

Control, Maui, Hawaii USA, December 2003, pp. 2192–2197.

[31] P. Morin, J.B. Pomet, C. Samson, Developments in time-varying feedback stabilization of nonlinear systems,

Preprints of Nonlinear control systems design symposium (NOLCOS’98), vol. 1/2, 1998, pp. 587–594.


	Output feedback exponential stabilization of uncertain chained systems
	Introduction
	Problem formulation and preliminaries
	Dynamic output feedback
	General case
	Design procedure

	Two special cases
	Case one
	Case two


	Example
	Conclusions
	Acknowledgment
	References


