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Abstract

This paper investigates simultaneous stabilization of a set of nonlinear port-controlled Hamiltonian (PCH) systems and proposes a number
of results on the design of simultaneous stabilization controllers for the PCH systems. Firstly, the case of two PCH systems is studied. Using
the dissipative Hamiltonian structural properties, the two systems are combined to generate an augmented PCH system, with which some
results on the control design are then obtained. For the case that there exist parametric uncertainties in the two systems’ Hamiltonian structures,
an adaptive simultaneous stabilization controller is proposed. When there are external disturbances and parametric uncertainties in the two
systems, two simultaneous stabilization controllers are designed for the systems: one is a robust controller and the other is a robust adaptive
one. Secondly, the case of more than two PCH systems is investigated, and a new result is proposed for the simultaneous stabilization of the
systems. Finally, two illustrative examples are studied by using the results proposed in this paper. Simulations show that the simultaneous
stabilization controllers obtained in this paper work very well.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years, port-controlled Hamiltonian (PCH) systems,
proposed by Maschke and van der Schaft (1992) and van der
Schaft and Maschke (1995), have been well investigated in a

series of works, see, e.g., Dalsmo and van der Schaft (1999),
Fujimoto, Sakurama, and Sugie (2003), Fujimoto and Sugie
(2001), Maschke, Ortega, and van der Schaft (2000), Nijmeijer
and van der Schaft (1990), Ortega, vanderSchaft, Maschke, and
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Escobar (2002) and van der Schaft (1999). A constructive
procedure was proposed in Maschke et al. (2000) to modify
the Hamiltonian function of forced Hamiltonian systems with
dissipation to generate a Lyapunov function for non-zero equi-
libria. In Dalsmo and van der Schaft (1999), it was shown that
a power-conserving interconnection of port-controlled gener-
alized Hamiltonian systems leads to an implicit generalized
Hamiltonian system, and a power-conserving partial intercon-
nection to an implicit PCH system, respectively. Several nice
results were obtained in Ortega et al. (2002) for passivity-based
control, after thorough investigation of interconnection and
damping assignment passivity-based control of PCH systems.
Via generalized canonical transformations, a very important
method was provided in Fujimoto et al. (2003) for trajectory
tracking control of time-varying PCH systems. The Hamilto-
nian function, the sum of potential energy and kinetic energy
in physical systems, is a good candidate of Lyapunov functions
for many physical systems. Due to this, the PCH system has
drawn a good deal of attention in practical control designs.
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Up to now, the energy-based approach has been used in vari-
ous control problems (Brambilla & D’Amore, 2001; Escobar,
van der Schaft, & Ortega, 1999; Galaz, Ortega, Bazanella, &
Stankovic, 2003; Macchelli & Melchiorri, 2004; Ortega, Galaz,
Astolfi, Sun, & Shen, 2005; Shen, Ortega, Lu, Mei, & Tamura,
2000; Sun, Shen, Ortega, & Liu, 2001; Wang, Cheng, Li, &
Ge, 2003; Xi, Cheng, Lu, & Mei, 2002). In these applications,
a key to success is to design effective feedback controllers.

In practical control designs, due to system’s uncertainty,
failure modes or systems with various modes of operation, the
simultaneous stabilization problem has often to be taken into
account. The problem is concerned with designing a single
controller which can simultaneously stabilize a set of systems.
Since it is one of the important research topics in the area of
robust control (Blondel, 1994; Ho-Mock-Qai & Dayawansa,
1999; Wu, 2005), the simultaneous stabilization problem has
drawn a considerable attention, and up to now a lot of im-
portant results have been obtained for the problem, see, e.g.,
Blondel (1994), Cao, Sun, and Lam (1999), Ho-Mock-Qai and
Dayawansa (1999), Howitt and Luus (1991), Miller and Chen
(2002), Miller and Rossi (2001), Schmitendorf and Hollot
(1989) and Wu (2005). In Blondel (1994), based on the fre-
quency domain approach, it was shown that the simultaneous
stabilizability of more than two linear systems is rationally
undecidable. A useful sufficient condition was presented in
Schmitendorf and Hollot (1989) for the existence of a linear
state feedback simultaneous stabilization controller for a set of
single-input linear systems. Linear periodically time-varying
controllers were successfully employed in Miller and Chen
(2002) and Miller and Rossi (2001) for the simultaneous sta-
bilization and disturbance attenuation of a collection of linear
systems. In some recent works (Ho-Mock-Qai & Dayawansa,
1999; Wu, 2005), the simultaneous stabilization problem
was investigated for nonlinear systems. In Ho-Mock-Qai and
Dayawansa (1999), some nice results were proposed for the
existence of simultaneous stabilization controllers of a set of
nonlinear systems. The control Lyapunov function approach
was successfully used in Wu (2005) to derive necessary and suf-
ficient conditions for the existence of feedback time-invariant
simultaneous stabilization controllers of single-input nonlinear
systems. It should be pointed out that except the references
(Ho-Mock-Qai & Dayawansa, 1999; Wu, 2005), almost all of
the results mentioned above were derived for linear systems.
For a set of nonlinear systems, designing a simultaneous sta-
bilization controller is not an easy task, and accordingly there
are relatively fewer results for nonlinear systems. Particularly,
there are, to the authors’ best knowledge, fewer works on the
simultaneous stabilization of Hamiltonian systems.

In this paper, we investigate the simultaneous stabilization
problem for a set of nonlinear PCH systems, and propose a
number of new results on the design of simultaneous stabi-
lization controllers for the PCH systems. Firstly, we study
the case of two PCH systems, which is an important case
in the field of robust control of PCH systems. Using the
dissipative Hamiltonian structural properties, the two Hamil-
tonian systems are combined to obtain an augmented PCH
system, with which several results on the control design are

then obtained. For the case that the two systems have para-
metric uncertainties in their Hamiltonian structures, an adap-
tive simultaneous stabilization controller is proposed. When
there are external disturbances and parametric uncertainties in
the two systems, two simultaneous stabilization controllers are
obtained for the systems: one is a robust controller and the
other is a robust adaptive one. Secondly, the case of more than
two PCH systems is studied, and a new control design method
is presented for the systems. Finally, two illustrative examples
with simulations are given to support the results proposed in the
paper.

The control design methods and results proposed in this
paper differ fundamentally from those mentioned earlier.
The major technique used in this paper is a novel one: the
system-augmentation technique, which is developed by fully
exploiting the Hamiltonian structural properties. In addition,
the simultaneous stabilization controllers obtained in this paper
can globally simultaneously stabilize the PCH systems under
consideration if the Hamiltonian functions respectively have
a unique minimum. Moreover, the conditions of the main re-
sults proposed in this paper are easy to check, and the control
design methods can be applied in practice to design (robust
and/or adaptive) simultaneous stabilization controllers for a
set of PCH systems.

It is well worth pointing out that, together with Hamiltonian
realization (Wang, Cheng, & Hu, 2005; Wang, Li, & Cheng,
2003), the results proposed in this paper have made it possible
to set up a new way to the simultaneous stabilization of ordinary
nonlinear systems. The new way can be called energy-based
control design (ECD) approach, which should contain the
following two steps: (i) Hamiltonian realization, i.e., express
nonlinear systems as the form of Hamiltonian systems; (ii)
design a simultaneous stabilization controller for the achieved
Hamiltonian systems. In some recent works (Wang et al., 2005;
Wang, Li et al., 2003), the Hamiltonian realization problem
was well investigated and several realization methods were
provided for nonlinear systems. With these realization methods
and the results proposed in this paper, we can deal with the si-
multaneous stabilization problem for some classes of nonlinear
systems.

The paper is organized as follows. The case of two PCH sys-
tems is investigated in Sections 2–4. Section 2 studies the ordi-
nary simultaneous stabilization of two PCH systems. In Section
3, we consider the case that the two systems have parametric
uncertainties in their Hamiltonian structures. Section 4 deals
with the case that there exist both external disturbances and
parametric uncertainties in the two systems. In Section 5, we
study the case of more than two PCH systems. Section 6 gives
two illustrative examples, which is followed by the conclusion
in Section 7.

2. Simultaneous stabilization of two PCH systems

This section investigates simultaneous stabilization of two
nonlinear PCH systems, and proposes some results on the con-
trol design for the two systems.
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Consider the following two PCH systems (Maschke & van
der Schaft, 1992; van der Schaft & Maschke, 1995):

�1 :

⎧⎪⎪⎨⎪⎪⎩
ẋ = [J1(x) − R1(x)]�H1(x)

�x
+ g1(x)u,

y = gT
1 (x)

�H1(x)

�x
,

(2.1)

�2 :

⎧⎪⎪⎨⎪⎪⎩
�̇ = [J2(�) − R2(�)]�H2(�)

��
+ g2(�)u,

� = gT
2 (�)

�H2(�)

��
,

(2.2)

where x, � ∈ Rn and y, � ∈ Rm are the states and outputs
of the two systems, respectively; u ∈ Rm is the control input;
Ji(x) = −J T

i (x) ∈ Rn×n, 0�Ri(x) ∈ Rn×n, gi(x) ∈ Rn×m,
Hi(x) is the Hamiltonian function with a local strict minimum
at x

(i)
e , i = 1, 2, and x

(1)
e = x0, x

(2)
e = �0.

Obviously, when u=0, the systems (2.1) and (2.2) are stable,
but not asymptotically stable at their equilibria. The objective
of this section is as follows.

Simultaneous stabilization: Design an output feedback con-
troller u = u(y, �) such that under the feedback control, the
two systems (2.1) and (2.2) are simultaneously asymptotically
stable.

For the simultaneous stabilization of the above two systems,
we have the following result.

Theorem 2.1. Assume that there exists a symmetric matrix K ∈
Rm×m such that{

R1(x) + K11(x, x) > 0,

R2(�) − K22(�, �) > 0,
(2.3)

where

Kij (x, �) = gi(x)KgT
j (�), i, j = 1, 2. (2.4)

Then, the output feedback

u = −K(y − �) (2.5)

can simultaneously stabilize the systems (2.1) and (2.2).

Proof. Substituting (2.5) into the systems (2.1) and (2.2), we
obtain

Ẋ = [J (X) − R(X)]�H(X)

�X
, (2.6)

where

X = [xT, �T]T, H(X) = H1(x) + H2(�),

J (X) =
[

J1(x) K12(x, �)

−KT
12(x, �) J2(�)

]
, (2.7)

and

R(X) = Diag{R1(x) + K11(x, x), R2(�) − K22(�, �)}. (2.8)

Obviously, J (X) is skew-symmetric, and from (2.3) R(X) is
positive definite. Thus, the system (2.6) is an augmented strictly
dissipative Hamiltonian system.

Let X0 := [xT
0 , �T

0 ]T. Since ∇H1(x0) = 0 and ∇H2(�0) = 0,
we know that X0 is the equilibrium of the system (2.6), where
∇Hi(x) = �Hi/�x, i = 1, 2. On the other hand, it can be seen
that H(X) has a local strict minimum at X0. From the proper-
ties of dissipative PCH systems (Ortega et al., 2002; Wang, Li
et al., 2003), the system (2.6) is asymptotically stable at X0,
which means that x → x0 and � → �0. Therefore, under the
feedback (2.5), the systems (2.1) and (2.2) are simultaneously
stabilized. �

Remark 2.2. Combining the two PCH systems to obtain
an augmented Hamiltonian system is called the system-
augmentation (SA) technique in this paper. This tech-
nique plays an important role in the control design of this
paper.

In the following, we use the SA technique to give a relatively
more general result for the simultaneous stabilization of the
systems (2.1) and (2.2).

Theorem 2.3. Assume that there exist a matrix K0(x, �) ∈
Rn×n and a symmetric matrix K ∈ Rm×m such that

(i) the following inequalities hold true:

R̄1(x) := R1(x) + K11(x, x)�0,

R̄2(�) := R2(�) − K22(�, �)�0, (2.9)

where Kij are defined in (2.4), i, j = 1, 2;
(ii) the systems

ẋ = [J1(x) − R̄1(x)]�H1

�x
,

�̇ = [J2(�) − R̄2(�)]�H2

��
(2.10)

are zero-state detectable with respect to ȳ := R̄
1/2
1

(x)∇H1(x) and �̄ := R̄
1/2
2 (�)∇H2(�) (van der Schaft,

1999), respectively, where R̄
1/2
i (x) is defined as R̄i(x) =

[R̄1/2
i (x)]2, i = 1, 2;

(iii) either

K12(x, �) = K0(x, �)R̄2(�)

or K21(�, x) = K0(x, �)R̄1(x) (2.11)

holds true.

Then,

u = −K(y − �)

can simultaneously stabilize the two systems (2.1) and (2.2).

Proof. Substituting u = −K(y − �) into the systems (2.1) and
(2.2), similar to the proof of Theorem 2.1, we obtain the sys-
tem (2.6). Now, consider the energy flow of the system (2.6).
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Using Condition (i), we have

Ḣ (X) = − �HT

�X
R(X)

�H

�X

= − ∇TH1(x)R̄1(x)∇H1(x)

− ∇TH2(�)R̄2(�)∇H2(�)�0,

from which we know that the system (2.6) is stable. Further-
more, it is easy to see from the dynamic system theory (Khalil,
1996) that the system (2.6) converges to the largest invariant
set contained in

S = {X|Ḣ = 0}
= {(x, �)|R̄1/2

1 (x)∇H1(x) = 0, R̄
1/2
2 (�)∇H2(�) = 0}.

Without loss of generality, we assume that K12(x, �) =
K0(x, �)R̄2(�) holds in Condition (iii) (as for the other equa-
tion, we can follow the similar argument). With K12(x, �) =
K0(x, �)R̄2(�), we have R̄

1/2
2 (�)∇H2(�)=0 ⇒ K12(x, �)∇H2

(�) = 0. Thus, when R̄
1/2
2 (�)∇H(�) = 0, the system (2.6) can

be decomposed as{
ẋ = [J1(x) − R̄1(x)]∇H1(x),

�̇ = [J2(�) − R̄2(�)]∇H2(�) − K21(�, x)∇H1(x).
(2.12)

Because the first system of (2.10) being zero-state detectable
with respect to ȳ, R̄

1/2
1 (x)∇H1(x) ≡ 0 ⇒ x → x0 (t → ∞),

from which it follows that ∇H1(x) → 0. Then, as t → ∞, the
second part of system (2.12) becomes

�̇ = [J2(�) − R̄2(�)]∇H2(�).

Since the second system of (2.10) is zero-state detectable with
respect to �̄, R̄

1/2
2 (�)∇H2(�) ≡ 0 ⇒ � → �0. Thus, the

above largest invariant set only contains one point, i.e., X0 :=
[xT

0 , �T
0 ]T. From LaSalle’s invariance principle (Khalil, 1996),

the system (2.6) is asymptotically stable. Therefore, x → x0
and � → �0. That is, under the feedback law u=−K(y−�), the
systems (2.1) and (2.2) can be simultaneously stabilized. �

Remark 2.4. Notice that R̄1(x) and R̄2(�) denote the dissipa-
tive parts of the two systems, and that ȳ2(t) = −Ḣ1(x(t)) and
�̄2(t) = −Ḣ2(�(t)). The outputs ȳ and �̄ can be interpreted as
a kind of energy dissipation output, which is the physical in-
terpretations of ȳ and �̄.

Remark 2.5. In Theorem 2.3, K and K0(x, �) can be deter-
mined in the following steps:

(1) find K according to Conditions (i) and (ii);
(2) compute Kij (x, �) and R̄i(x);
(3) find K0(x, �) from K12(x, �) = K0(x, �)R̄2(�) or K21

(�, x) = K0(x, �)R̄1(x).

Remark 2.6. (1) The form of the control u = −K(y − �) is
a suitable choice that can provide an augmented dissipative
Hamiltonian structure for the systems (2.1) and (2.2). Other

forms such as u=−K(y +�) and u=−K(y −2�) cannot play
the role of providing an augmented dissipative Hamiltonian
structure for the two systems.

(2) Noticing that K is only demanded to be symmetric,
not positive (semi-)definite, the condition R2(�) − K22(�, �) =
R2(�) − g2(�)KgT

2 (�)�0 can be satisfied for many PCH sys-
tems. In fact, it is as demanding as the condition R1(x) +
K11(x, x)�0 (see Example 6.1).

(3) Both Kij and R̄i can be obtained with K (see (2.4)
and Condition (i)). Thus, when K is found, K12(x, �) =
K0(x, �)R̄2(�) or K21(�, x) = K0(x, �)R̄1(x) is only a matrix
equation with respect to K0, which can generally be solved by
MatLab or Maple.

Next, as an application, we apply Theorem 2.1 to investigate
the simultaneous stabilization for a class of nonlinear affine
systems.

Consider the following two affine systems:

ẋ = f1(x) + g1(x)u, x ∈ Rn, f1(x0) = 0, (2.13)

�̇ = f2(�) + g2(�)u, � ∈ Rn, f2(�0) = 0, (2.14)

where u ∈ Rm is the control input.

Corollary 2.7. Assume that

(1) there exist Lyapunov functions Vi such that

Lfi
Vi(x)�0, i = 1, 2;

(2) there exists a symmetric matrix K ∈ Rm×m such that⎧⎪⎨⎪⎩
Lf1V1(x)

‖∇V1‖2 In − g1(x)KgT
1 (x) < 0 (x 
= x0),

Lf2V2(x)

‖∇V2‖2 In + g2(x)KgT
2 (x) < 0 (x 
= �0),

(2.15)

where In is the n × n identity matrix.

Then, under the feedback control

u = −K[gT
1 (x)∇V1(x) − gT

2 (�)∇V2(�)],
the systems (2.13) and (2.14) can be simultaneously stabilized.

Proof. With Condition (1), the systems (2.13) and (2.14) can
be expressed as (Wang, Li et al., 2003){

ẋ = [J1(x) − R1(x)]∇V1(x) + g1(x)u,

�̇ = [J2(�) − R2(�)]∇V2(�) + g2(�)u,
(2.16)

where J T
i (x) = −Ji(x) and Ri(x)�0.

On the other hand, it can be seen from Wang, Li et al. (2003)
that Condition (2) implies that (2.3) holds for the two systems
when x 
= x0 and/or � 
= �0. Thus, all the conditions of Theo-
rem 2.1 are satisfied. From Theorem 2.1, the corollary follows
directly. �



Y. Wang et al. / Automatica 43 (2007) 403–415 407

3. Adaptive simultaneous stabilization of two PCH systems

In this section, we consider the case that the systems (2.1)
and (2.2) have parametric uncertainties in their Hamiltonian
structures, and design an adaptive output feedback law to si-
multaneously stabilize the two systems.

When the systems (2.1) and (2.2) involve parametric uncer-
tainties in their Hamiltonian structures, their dynamics become
(Shen et al., 2000)⎧⎪⎪⎨⎪⎪⎩

ẋ = [J1(x, p1) − R1(x, p1)]�H1(x, p1)

�x
+ g1(x)u,

y = gT
1 (x)

�H1(x)

�x
,

(3.1)

⎧⎪⎪⎨⎪⎪⎩
�̇ = [J2(�, p2) − R2(�, p2)]�H2(�, p2)

��
+ g2(�)u,

� = gT
2 (�)

�H2(�)

��
,

(3.2)

where p1, p2 ∈ Rs are unknown vectors denoting the para-
metric uncertainties of the two Hamiltonian structures, respec-
tively; for simplicity, we still denote the structural matrices by
Ji and Ri , and when pi = 0, Ji(x, 0)=Ji(x), Ri(x, 0)=Ri(x)

and Hi(x, 0) = Hi(x), i = 1, 2; p1 and p2 are assumed to be
small enough to keep the two dissipative Hamiltonian struc-
tures unchanged, i.e., J T

i (x, pi)=−Ji(x, pi) and Ri(x, pi)�0,
i = 1, 2.

For the adaptive simultaneous stabilization of the systems
(3.1) and (3.2), we have the following result.

Theorem 3.1. Assume that

(i) there exists a symmetric matrix K ∈ Rm×m such that{
R̄1(x, p1) := R1(x, p1) + K11(x, x) > 0,

R̄2(x, p2) := R2(x, p2) − K22(x, x) > 0,
(3.3)

where Kij (x, �) = gi(x)KgT
j (�), i, j = 1, 2;

(ii) there exists � ∈ Rm×l such that

[Ji(x, pi) − Ri(x, pi)]�Hi
(x, pi) = gi(x)��, (3.4)

where i = 1, 2,

�Hi
(x, pi) := �Hi(x, pi)

�x
− �Hi(x)

�x
, (3.5)

and � ∈ Rl is an unknown constant vector related to p1
and p2.

Then, under the following adaptive feedback law:{
u = −K(y − �) − ��̂,

˙̂� = Q�T(y + �),
(3.6)

the systems (3.1) and (3.2) can be simultaneously stabilized,
where �̂ is the estimate of � and Q ∈ Rl×l is a positive definite
constant matrix called the adaptation gain.

Proof. Substituting (3.6) into the systems (3.1) and (3.2) and
using Condition (ii), we obtain

Ẋ = [J (X, p) − R(X, p)]�H(X)

�X
, (3.7)

where X := [xT, �T, �̂T]T, p := [pT
1 , pT

2 ]T,

J (X, p) :=
⎡⎢⎣ J1(x, p1) K12(x, �) −g1(x)�Q

−K21(�, x) J2(�, p2) −g2(�)�Q

(g1(x)�Q)T (g2(�)�Q)T 0

⎤⎥⎦ ,

R(X, p) := Diag{R̄1(x, p1), R̄2(�, p2), 0} and

H(X) := H1(x) + H2(�) + 1
2 (� − �̂)TQ−1(� − �̂). (3.8)

Noticing that KT
12(x, �) = K21(�, x), J (X, p) is skew-

symmetric. And from Condition (i), R(X, p) is positive semi-
definite. Thus, the system (3.7) is a dissipative Hamiltonian
system. From Ortega et al. (2002) and Wang, Li et al. (2003),
we know that the system (3.7) is stable.

In the following, we consider the energy flow of the system
(3.7). From (3.7), we obtain

Ḣ (X) = − ∇TH(X)R(X, p)∇H(X)

= − ∇TH1(x)R̄1(x, p1)∇H1(x)

− ∇TH2(�)R̄2(�, p2)∇H2(�)�0.

Thus, the system (3.7) converges to the largest invariant set
contained in

S = {X|R̄1/2
1 (x, p1)∇H1(x) = 0, R̄

1/2
2 (�, p2)∇H2(�) = 0}.

From Condition (i), we know that both R̄
1/2
1 (x, p1) and

R̄
1/2
2 (�, p2) are nonsingular, which implies that R̄

1/2
1 (x, p1)

∇H1(x)= 0 ⇒ x = x0, and R̄
1/2
2 (�, p2)∇H2(�)= 0 ⇒ �= �0.

Therefore, S = {[xT
0 , �T

0 , �̂T]T}, with which it is easy to see
that x → x0 and � → �0, as t → ∞. That is, under the
adaptive feedback (3.6), the systems (3.1) and (3.2) can be
simultaneously stabilized. �

Now, we apply Theorem 3.1 to investigate adaptive simul-
taneous stabilization of the following two uncertain nonlinear
systems:

ẋ = f1(x) + �f1(x) + g1(x)u, x ∈ Rn, (3.9)

�̇ = f2(�) + �f2(�) + g2(�)u, � ∈ Rn, (3.10)

where f1(x0)= 0, f2(�0)= 0, u ∈ Rm is the control input, and
�fi(x), i = 1, 2, are the uncertain parts of the two systems,
respectively.

Corollary 3.2. Assume that

(1) x0 and �0 are, respectively, the unique zero point of f1(x)

and f2(�);
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(2) the Jacobian matrix of fi(x), denoted by Jfi
(x), is strictly

dissipative,1 i = 1, 2;
(3) there exists an m × n symmetric matrix K such that{

J−1
f1

(x) + J−T
f1

(x) − 2g1(x)KgT
1 (x) < 0,

J−1
f2

(x) + J−T
f2

(x) + 2g2(x)KgT
2 (x) < 0;

(4) there exists � ∈ Rm×l such that

�fi(x) = gi(x)��, i = 1, 2, (3.11)

where � ∈ Rl is an unknown constant vector related to
�fi(x), i = 1, 2.

Then, under the following adaptive feedback law:{
u=−K[gT

1 (x)J T
f1

(x)f1(x)−gT
2 (�)J T

f2
(�)f2(�)]−��̂,

˙̂� = Q�T[gT
1 (x)J T

f1
(x)f1(x) + gT

2 (�)J T
f2

(�)f2(�)],
(3.12)

the systems (3.9) and (3.10) can be simultaneously stabilized,
where �̂ is the estimate of � and 0 < Q ∈ Rl×l is the adaptation
gain.

Proof. Since Jfi
(x) is strictly dissipative, from Wang, Li et al.

(2003) Jfi
is nonsingular, i =1, 2. From Wang, Li et al. (2003),

the systems (3.9) and (3.10) can be, respectively, expressed as

ẋ = J−T
f1

(x)∇H1(x) + �f1(x) + g1(x)u, (3.13)

�̇ = J−T
f2

(�)∇H2(�) + �f2(�) + g2(�)u, (3.14)

where Hi(x) = 1
2f T

i (x)fi(x). From Condition (1), we know
that H1(x) and H2(�) have a unique minimum at x0 and �0,
respectively. On the other hand, J T

fi
(x) is strictly dissipative,

too. According to Wang, Li et al. (2003), J−T
fi

(x) is strictly

dissipative and can be expressed as J−T
fi

(x) = Ji(x) − Ri(x),
where Ji(x) is skew-symmetric and Ri(x) > 0, i = 1, 2. Thus,
the systems (3.13) and (3.14) can be rewritten as

ẋ = [J1(x) − R1(x)]∇H1(x) + �f1(x) + g1(x)u,

�̇ = [J2(�) − R2(�)]∇H2(�) + �f2(�) + g2(�)u. (3.15)

Moreover, it can be seen from Wang, Li et al. (2003) that
Condition (3) implies that

R1(x) + K11(x, x) > 0, R2(�) − K22(�, �) > 0, (3.16)

where Kij (x, �) = gi(x)KgT
j (�), i, j = 1, 2.

With (3.16) and Condition (4), similar to the proof of Theo-
rem 3.1, we can show that under the adaptive feedback law{

u = −K[gT
1 (x)∇H1(x) − gT

2 (�)∇H2(�)] − ��̂,

˙̂� = Q�T[gT
1 (x)∇H1(x) + gT

2 (�)∇H2(�)],
(3.17)

the two systems given in (3.15) can be simultaneously stabi-
lized. Noticing that ∇Hi(x) = J T

fi
fi(x) (i = 1, 2), (3.17) is ex-

actly (3.12). Thus, the proof is completed. �

1 An n × n matrix M(x) is called dissipative if it can be expressed as
M(x)=J (x)−R(x), with J (x) skew-symmetric and R(x)�0. Furthermore,
if R(x) > 0, M(x) is called strictly dissipative.

Corollary 3.3. Consider the systems (3.9) and (3.10). Assume
that

(1) there exist Lyapunov functions Vi such that

Lfi
Vi(x)�0, i = 1, 2;

(2) there exists a symmetric matrix K ∈ Rm×m such that⎧⎪⎨⎪⎩
Lf1V1(x)

‖∇V1‖2 In − g1(x)KgT
1 (x) < 0 (x 
= x0),

Lf2V2(x)

‖∇V2‖2 In + g2(x)KgT
2 (x) < 0 (x 
= �0);

(3.18)

(3) there exists � ∈ Rm×l such that

�fi(x) = gi(x)��, i = 1, 2, (3.19)

where � ∈ Rl is an unknown constant vector related to
�fi(x), i = 1, 2.

Then, under the following adaptive feedback:{
u = −K[gT

1 (x)∇V1(x) − gT
2 (�)∇V2(�)] − ��̂,

˙̂� = Q�T[gT
1 (x)∇V1(x) + gT

2 (�)∇V2(�)],
(3.20)

the systems (3.9) and (3.10) can be simultaneously stabilized,
where 0 < Q ∈ Rl×l .

Proof. From the proof of Corollary 2.7, we know that under
Condition (1), the two systems can be expressed as the forms
of (3.15), where Hi(x) = Vi(x) and Ri(x)�0, i = 1, 2. On
the other hand, from Wang, Li et al. (2003) we can show that
Condition (2) implies that

R1(x) + K11(x, x) > 0, R2(�) − K22(�, �) > 0, (3.21)

where Kij (x, �) = gi(x)KgT
j (�), i, j = 1, 2.

With (3.21) and Condition (3), from the proof of Corollary
3.2, we know that under the adaptive feedback law (3.20) the
systems (3.9) and (3.10) can be simultaneously stabilized. �

4. Robust simultaneous stabilization of two PCH systems

In this section, we consider the case that there are external
disturbances and parametric uncertainties in the systems (2.1)
and (2.2). We design two controllers to simultaneously stabilize
the systems: one is a robust controller and the other is a robust
adaptive one.

4.1. Robust simultaneous stabilization

Consider the systems (2.1) and (2.2) with external distur-
bances as follows:⎧⎪⎪⎨⎪⎪⎩

ẋ = [J1(x) − R1(x)]�H1

�x
+ g1(x)u + ḡ1(x)w,

y = gT
1 (x)

�H1

�x
,

(4.1)
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⎧⎪⎪⎨⎪⎪⎩
�̇ = [J2(�) − R2(�)]�H2

��
+ g2(�)u + ḡ2(�)w,

� = gT
2 (�)

�H2

��
,

(4.2)

where w ∈ Rq is the disturbance, ḡi (x) ∈ Rn×q , i = 1, 2, and
other variables are the same as in Section 2.

Given a disturbance attenuation level � > 0, choose

z = 	(y + �) (4.3)

as the penalty function, where 	 ∈ Rs×m is a weighting matrix.
Our objective of this subsection is described as follows:

Robust simultaneous stabilization: Design an L2 disturbance
attenuation control law such that under the law

R1: The two systems are simultaneously asymptotically stable
when w vanishes;

R2: The L2 gain (from w to z) of the closed-loop system is
less than �.

For the above control problem, we have the following results.

Theorem 4.1. Consider the systems (4.1) and (4.2), with the
penalty function (4.3) and the given level � > 0. If

(i) there exists a symmetric matrix K ∈ Rm×m such that{
R1(x) + K11(x, x) > 0,

R2(�) − K22(�, �) > 0,
(4.4)

where Kij (x, �) = gi(x)KgT
j (�), i, j = 1, 2;

(ii) ḡ1 = g1 and ḡ2 = g2,

then

u = −K(y − �) −
[

1

2
	T	 + 1

2�2 Im

]
(y + �) (4.5)

is an L2 disturbance attenuation controller such that both R1
and R2 hold true for the systems (4.1) and (4.2).

Proof. Rewrite (4.5) as follows:⎧⎨⎩
u = −K(y − �) + v,

v = −
[

1

2
	T	 + 1

2�2 Im

]
(y + �).

(4.6)

Substituting the first part of (4.6) into the systems (4.1) and
(4.2), it can be seen from the proof of Theorem 2.1 that the
systems (4.1) and (4.2) can be expressed as

Ẋ = [J (X) − R(X)]�H

�X
+ G(X)v + Ḡ(X)w, (4.7)

where X, J (X), R(X) and H(X) are given in (2.7) and (2.8),
G(X) := [gT

1 (x), gT
2 (�)]T and Ḡ(X) := [ḡT

1 (x), ḡT
2 (�)]T.

On the other hand, the penalty function (4.3) can be
rewritten as

z = 	GT(X)∇H(X). (4.8)

Moreover, from Conditions (i) and (ii), we have

R(X) + 1

2�2 [G(X)GT(X) − Ḡ(X)ḠT(X)] = R(X) > 0. (4.9)

Consider the system (4.7) with (4.8) and (4.9). From Wang,
Cheng et al. (2003), an L2 disturbance attenuation controller
of the system (4.7) can be designed as

v = −
[

1

2
	T	 + 1

2�2 Im

]
GT(X)

�H

�X
(4.10)

and furthermore, the �-dissipation inequality

Ḣ + �TH

�X
R(X)

�H

�X
� 1

2
{�2‖w‖2 − ‖z‖2} (4.11)

holds along the trajectories of the closed-loop system consisting
of (4.7) and (4.10).

Noticing that (4.10) is exactly the second part of (4.6), the
feedback law (4.5) is an L2 disturbance attenuation controller
for the systems (4.1) and (4.2). According to Wang, Cheng
et al. (2003), the L2 gain from w to z is less than �. Moreover,
since ∇TH(X)R(X)∇H(X) > 0, from (4.11) we know that the
system (4.7) is asymptotically stable when w = 0, that is, x →
x0 and � → �0 (as t → ∞). Thus, R1 and R2 hold under the
feedback law (4.5). �

Theorem 4.2. Consider the systems (4.1) and (4.2), with the
penalty function (4.3) and the given level � > 0. If

(i) there exists a symmetric matrix K ∈ Rm×m such that⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

R̃1(x) := R1(x) + K11(x, x)

+ 1

2�2 [g1(x)gT
1 (x) − ḡ1(x)ḡT

1 (x)] > 0,

R̃2(�) := R2(�) − K22(�, �)

+ 1

2�2 [g2(�)gT
2 (�) − ḡ2(�)ḡT

2 (�)] > 0,

(4.12)

where Kij (x, �) = gi(x)KgT
j (�), i, j = 1, 2;

(ii) g1g
T
2 = 0 and ḡ1ḡ

T
2 = 0,

then

u = −K(y − �) −
[

1

2
	T	 + 1

2�2 Im

]
(y + �) (4.13)

is an L2 disturbance attenuation controller such that both R1
and R2 hold true for the systems (4.1) and (4.2).

Proof. The proof is similar to that of Theorem 4.1, and thus
omitted. �

4.2. Robust adaptive simultaneous stabilization

We now consider the case that there are both disturbances
and parametric uncertainties in the systems (2.1) and (2.2).
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In this case, the two systems can be expressed as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ẋ = [J1(x, p1) − R1(x, p1)]�H1(x, p1)

�x

+g1(x)u + ḡ1(x)w,

y = gT
1 (x)

�H1(x)

�x
,

(4.14)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�̇ = [J2(�, p2) − R2(�, p2)]�H2(�, p2)

��

+g2(�)u + ḡ2(�)w,

� = gT
2 (�)

�H2(�)

��
,

(4.15)

where w ∈ Rq is the systems’ disturbance; and p1, p2 and
other variables are the same as in Section 3.

Given a disturbance attenuation level � > 0, choose

z = 	(y + �) (4.16)

as the penalty function, where 	 ∈ Rr×m is a weighting matrix.
The aim of this subsection is described as follows:

Robust adaptive simultaneous stabilization: Design an adap-
tive L2 disturbance attenuation control law such that under the
law both R1 and R2 hold true for the systems (4.14) and (4.15).

For the robust adaptive simultaneous stabilization problem,
we have the following results.

Theorem 4.3. Assume that

(i) there exists a symmetric matrix K ∈ Rm×m such that{
R̄1(x, p1) := R1(x, p1) + K11(x, x) > 0,

R̄2(�, p2) := R2(�, p2) − K22(�, �) > 0,
(4.17)

where Kij (x, �) = gi(x)KgT
j (�), i, j = 1, 2;

(ii) there exists � ∈ Rm×l such that

[Ji(x, pi) − Ri(x, pi)]�Hi
(x, pi) = gi(x)��, (4.18)

where i = 1, 2, �Hi
(x, pi) is given in (3.5) and � ∈ Rl is

an unknown vector related to p1 and p2;
(iii) ḡ1 = g1 and ḡ2 = g2.

Then,⎧⎪⎨⎪⎩
u = −K(y−�)−

[
1

2
	T	+ 1

2�2 Im

]
(y+�)−��̂,

˙̂� = Q�T(y + �)

(4.19)

is an adaptive L2 disturbance attenuation controller such that
both R1 and R2 hold true for the systems (4.14) and (4.15),
where �̂ is the estimate of � and Q ∈ Rl×l is a positive definite
constant matrix (the adaptation gain).

Proof. Rewrite (4.19) as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

{
u = −K(y − �) − ��̂ + v,

˙̂� = Q�T(y + �),

v = −
[

1

2
	T	 + 1

2�2 Im

]
(y + �).

(4.20)

Substituting the first part of (4.20) into the systems (4.14)
and (4.15), from the proof of Theorem 3.1 and Condition (ii),
we obtain

Ẋ = [J (X, p) − R(X, p)]�H(X)

�X
+ G(X)v + Ḡ(X)w, (4.21)

where X = [xT, �T, �̂T]T, p = [pT
1 , pT

2 ]T, R(X, p) =
Diag{R̄1(x, p1), R̄2(�, p2), 0},

J (X, p) =
⎡⎢⎣ J1(x, p1) K12(x, �) −g1(x)�Q

−KT
12(x, �) J2(�, p2) −g2(�)�Q

(g1(x)�Q)T (g2(�)�Q)T 0

⎤⎥⎦ ,

H(X) = H1(x) + H2(�) + 1
2 (� − �̂)TQ−1(� − �̂), (4.22)

G(X) := [gT
1 (x), gT

2 (�), 0]T ∈ R2n+l and Ḡ(X) :=
[ḡT

1 (x), ḡT
2 (�), 0]T ∈ R2n+l .

On the other hand, the penalty function (4.16) can be rewrit-
ten as z = 	GT(X)�H/�X. Furthermore, from Conditions (i)
and (iii), R(X, p) + (1/2�2)[G(X)GT(X) − Ḡ(X)ḠT(X)] =
R(X, p)�0.

From Wang, Cheng et al. (2003), an L2 disturbance attenu-
ation controller for the system (4.21) can be designed as

v = −
[

1

2
	T	 + 1

2�2 Im

]
GT(X)

�H

�X

= −
[

1

2
	T	 + 1

2�2 Im

]
(y + �), (4.23)

which is the second part of (4.20), and furthermore, the �-
dissipation inequality

Ḣ + �TH

�X
R(X, p)

�H

�X
� 1

2
{�2‖w‖2 − ‖z‖2} (4.24)

holds along the trajectories of the closed-loop system consisting
of (4.21) and (4.23).

From Wang, Cheng et al. (2003), R2 is true under the feed-
back (4.19). On the other hand, from (4.24) we know that when
w vanishes

Ḣ � − �TH1

�x
R̄1(x, p1)

�H1

�x
− �TH2

��
R̄2(�, p2)

�H2

��
�0,

with which it is easy to see that the closed-loop system con-
sisting of (4.21) and (4.23) converges to the largest invariant
set contained in

S =
{
X|R̄1/2

1 (x, p1)
�H1

�x
= 0, R̄

1/2
2 (�, p2)

�H2

��
= 0

}
.

From Condition (i), R̄
1/2
1 (x, p1)�H1/�x = 0 ⇒ x = x0 and

R̄
1/2
2 (�, p2)�H2/��=0 ⇒ �=�0. Therefore, x → x0, � → �0

as t → ∞, which means that R1 also holds under the feedback
(4.19). The proof is thus completed. �
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Theorem 4.4. Consider the systems (4.14) and (4.15), with the
penalty function (4.16) and the given � > 0. Assume that

(i) there exists a symmetric matrix K ∈ Rm×m such that

R̃1(x, p1) := R1(x, p1) + K11(x, x)

+ 1

2�2 [g1(x)gT
1 (x) − ḡ1(x)ḡT

1 (x)] > 0,

R̃2(�, p2) := R2(�, p2) − K22(�, �)

+ 1

2�2 [g2(�)gT
2 (�) − ḡ2(�)ḡT

2 (�)] > 0;

(ii) there exists � ∈ Rm×l such that (4.18) holds true;
(iii) g1g

T
2 = 0 and ḡ1ḡ

T
2 = 0.

Then,⎧⎪⎨⎪⎩
u = −K(y − �) −

[
1

2
	T	 + 1

2�2 Im

]
(y + �) − ��̂,

˙̂� = Q�T(y + �)

(4.25)

is an adaptive L2 disturbance attenuation controller such that
both R1 and R2 hold true for the systems (4.14) and (4.15),
where �̂ and Q are the same as in Theorem 4.3.

Proof. The proof is similar to that of Theorem 4.3, and thus
omitted. �

5. Simultaneous stabilization of more than two PCH
systems

In this section, we study the case of more than two PCH
systems, and propose a new control design method for the si-
multaneous stabilization of the PCH systems.

Consider the following N PCH systems:

�i :

⎧⎪⎪⎨⎪⎪⎩
ẋi = [Ji(xi) − Ri(xi)]�Hi

�xi

+ gi(xi)u,

yi = gT
i (xi)

�Hi

�xi

, i = 1, 2, . . . , N,

(5.1)

where xi ∈ Rni ; u ∈ Rm is the control input; yi ∈ Rm are
the outputs of the N systems, respectively; Ji(xi)=−J T

i (xi) ∈
Rni×ni , 0�Ri(xi) ∈ Rni×ni , gi(xi) ∈ Rni×m, and Hi(xi) is
the Hamiltonian function with a local strict minimum at x

(i)
e ,

i = 1, 2, . . . , N .
Assume that (i1, i2, . . . , iN ) is an arbitrary permutation

of {1, 2, . . . , N} and that L is a positive integral satisfying
1�L�N−1. Let M1=ni1+· · ·+niL and M2=niL+1+· · ·+niN .

Now, we divide the N systems into two sets: {i1, . . . , iL} and
{iL+1, . . . , iN }, which can, respectively, be rewritten as⎧⎪⎪⎨⎪⎪⎩

Ẋ1 = [J̄1(X1) − R̄1(X1)]�H̄1

�X1
+ G1(X1)u,

Y1 = GT
1 (X1)

�H̄1

�X1
,

(5.2)

⎧⎪⎪⎨⎪⎪⎩
Ẋ2 = [J̄2(X2) − R̄2(X2)]�H̄2

�X2
+ G2(X2)u,

Y2 = GT
2 (X2)

�H̄2

�X2
,

(5.3)

where X1=[xT
i1
, . . . , xT

iL
]T∈RM1 , X2=[xT

iL+1
, . . . , xT

iN
]T∈RM2 ,

J̄1(X1) = − J̄ T
1 (X1) = Diag{Ji1(xi1), . . . , JiL(xiL)},

R̄1(X1) = Diag{Ri1(xi1), . . . , RiL(xiL)}�0,

J̄2(X2) = − J̄ T
2 (X2) = Diag{JiL+1(xiL+1), . . . , JiN (xiN )},

R̄2(X2) = Diag{RiL+1(xiL+1), . . . , RiN (xiN )}�0,

G1(X1) = [gT
i1
(xi1), . . . , g

T
iL

(xiL)]T,

G2(X2) = [gT
iL+1

(xiL+1), . . . , g
T
iN

(xiN )]T,

and

H̄1(X1) =
L∑

j=1

Hij (xij ),

H̄2(X2) =
N∑

j=L+1

Hij (xij ). (5.4)

Obviously, the systems (5.2) and (5.3) are two dissipative
PCH systems, with which we can obtain the following result.

Theorem 5.1. Assume that there exist a symmetric matrix K ∈
Rm×m, a permutation (i1, i2, . . . , iN ) of {1, 2, . . . , N} and a
positive integral L (1�L�N − 1) such that{

R̄1(X1) + K11(X1, X1) > 0,

R̄2(X2) − K22(X2, X2) > 0,
(5.5)

where

Kij (Xi, Xj ) = Gi(Xi)KGT
j (Xj ), i, j = 1, 2. (5.6)

Then, the output feedback

u = −K(yi1 + · · · + yiL − yiL+1 − · · · − yiN ) (5.7)

can simultaneously stabilize the N systems given in (5.1).

Proof. From the proof of Theorem 2.1, we know that when
the dimension of x is not equal to that of �, Theorem 2.1 still
holds, with which Theorem 5.1 can be easily proved. In fact, it
is easy to see that under the theorem’s conditions, the systems
(5.2) and (5.3) satisfy all the conditions of Theorem 2.1. Using
Theorem 2.1, we know that the feedback law

u = −K(Y1 − Y2) (5.8)

can simultaneously stabilize the two systems (5.2) and (5.3),
which are equivalent to the N systems given in (5.1). Notic-
ing that (5.8) is exactly the feedback (5.7), the proof is
completed. �
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6. Illustrative examples

In this section, we give two examples to show how to apply
the results obtained in this paper to investigate the simultaneous
stabilization problem.

Example 6.1. Consider the following two PCH systems:⎧⎪⎨⎪⎩
ẋ = [J1(x, p) − R1(x, p)]�H1(x, p)

�x
+ g1u + ḡ1w,

y = gT
1

�H1(x)

�x
,

(6.1)

⎧⎪⎪⎨⎪⎪⎩
�̇ = [J2(�, p) − R2(�, p)]�H2(�, p)

��
+ g2u + ḡ2w,

� = gT
2

�H2(�)

��
,

(6.2)

where x = [x1, x2, x3]T ∈ R3, � = [�1, �2, �3]T ∈ R3, p is an
unknown constant satisfying |p| < 1, w ∈ R2 is the disturbance,
u = [u1, u2]T ∈ R2 is the control,

H1(x, p) = 1
2 [x2

1 + 2x2
2 + (x3 + p)2],

H2(�, p) = 1
2 [(�1 + p)2 + �2

2 + (�3 + p)2],

J1(x, p) =
⎡⎣ 0 1 0

−1 0 0

0 0 0

⎤⎦ , J2(�, p) =
⎡⎣ 0 0 2 + p

0 0 0

−2 − p 0 0

⎤⎦ ,

R1(x, p) = Diag{1, 0, 2 + p}�0, R2(�, p) = Diag{2 + p, 3 +
p, 0}�0, and

g1 = ḡ1 =
[

0 1 0

0 0 1

]T

, g2 = ḡ2 =
[

1 0 0

0 0 1

]T

. (6.3)

Choosing K = Diag{1, −1}, a straightforward computa-
tion shows that R1(x, p) + g1KgT

1 = Diag{1, 1, 1 + p} > 0,
R2(�, p) − g2KgT

2 = Diag{1 + p, 3 + p, 1} > 0.
On the other hand, it is easy to obtain

�H1 = �H1(x, p)

�x
− �H1(x)

�x
= [0, 0, p]T,

�H2 = �H2(�, p)

��
− �H2(�)

��
= [p, 0, p]T.

Letting �=[0, −1]T and �=p(2 +p), it is easy to check that
[Ji(x, p) − Ri(x, p)]�Hi

= gi�� holds for i = 1, 2.

Thus, all the conditions of Theorem 4.3 are satisfied. From
Theorem 4.3, a robust adaptive simultaneous stabilizer for the
systems (6.1) and (6.2) can be designed as⎧⎪⎨⎪⎩

u = −K(y − �) −
[

1

2
	T	 + 1

2�2 I2

]
(y + �) − ��̂,

˙̂� = Q�T(y + �),
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that is,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
u1 = −2x2 + �1 −

(
1

2
r2

1 + 1

2�2

)
(2x2 + �1),

u2 = x3 − �3 −
(

1

2
r2

2 + 1

2�2

)
(x3 + �3) + �̂,

˙̂� = −Q(x3 + �3),

(6.4)

where 	 = Diag{r1, r2} > 0 is the weighting matrix, Q > 0 is
a real number used as the adaptation gain, and � > 0 is the
disturbance attenuation level.

To illustrate the effectiveness of the control law (6.4),
we carry out some numerical simulations with the fol-
lowing choices. Initial Conditions: x(0) = [0.6, 0.2, 1]T,
�(0) = [0.5, 1, 0.2]T; parameters: r1 = 0.2, r2 = 0.3, Q = 1,
� = 0.4. To test the robustness of the controller with respect to
external disturbances, a square disturbance of amplitude [5, 5]T

is added to the two systems in the time duration (1s–1.1 s. The
simulation results are shown in Figs. 1 and 2, which are the
responses of the two systems, respectively.

From Figs. 1 and 2, we know that the robust adaptive control
law (6.4) is very effective in simultaneously stabilizing the sys-
tems (6.1) and (6.2), and has strong robustness against external
disturbances.
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Example 6.2. Consider the following two affine nonlinear sys-
tems:

ẋ = f1(x) + �f1(x) + g1(x)u,

�̇ = f2(�) + �f2(�) + g2(�)u, (6.5)

where x = [x1, x2, x3]T ∈ R3, � = [�1, �2, �3]T ∈ R3, u =
[u1, u2]T ∈ R2,

f1(x) =
⎡⎢⎣−x1 + x1x2 − x3

1

−x2
1 − x2 − x2

1x2

−x3 − x2
1x3

⎤⎥⎦ , �f1 =

⎡⎢⎢⎢⎢⎣
p1x3 + 2p2x3

−1

2
p2x1

p1x2 + 2p2x2

⎤⎥⎥⎥⎥⎦ ,

f2(�) =

⎡⎢⎢⎣
−6�1 − 6�1�

2
3

−4�2 − 4�2�
2
3 + �2

3

−2�3 − �2�3 − 2�3
3

⎤⎥⎥⎦ , �f2 =
⎡⎣ p2�1

−2p1�3 − 4p2�3

p2�2

⎤⎦ ,

g1(x) =

⎡⎢⎢⎣
x3 0

0 −1

2
x1

x2 0

⎤⎥⎥⎦ , g2(�) =
⎡⎢⎣ 0 �1

−2�3 0

0 �2

⎤⎥⎦ ,

and p1, p2 ∈ R1 are two unknown parameters.

It can be verified that the two systems given in (6.5) are not
simultaneously asymptotically stable when u=0. In the follow-
ing, we use Corollary 3.3 to design an adaptive simultaneous
stabilizer for the two systems. Choose Lyapunov functions as

V1(x) = 1
2 (x2

1 + x2
2 + x2

3 ), V2(�) = 3
4�2

1 + 1
2�2

2 + 1
4�2

3,

then, it is easy to know that

Lf1V1(x) = −(1 + x2
1 )(x2

1 + x2
2 + x2

3 ) < 0,

Lf2V2(�) = −(1 + �2
3)(9�2

1 + 4�2
2 + �2

3) < 0.

Setting K = Diag{1, −2}, a straightforward computation
shows that

Lf1V1(x)

‖∇V1‖2 I3 − g1(x)KgT
1 (x) < 0,

Lf2V2(�)

‖∇V2‖2 I3 + g2(�)KgT
2 (�) < 0.

Let

� =
[

1 2

0 1

]
,

then it is easy to check that

�f1(x) = g1(x)��, �f2(�) = g2(�)��,

where � = [�1, �2]T := [p1, p2]T.
Therefore, all the conditions of Corollary 3.3 are satisfied.

From Corollary 3.3, an adaptive simultaneous stabilization con-
troller for the two systems given in (6.5) can be designed as{

u = −K[gT
1 (x)�V1(x) − gT

2 (�)�V2(�)] − � �̂,

˙̂� = Q�T[gT
1 (x)�V1(x) + gT

2 (�)�V2(�)],
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that is,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

u1 = −x1x3 − x2x3 − 2�2�3 − �̂1 − 2�̂2,

u2 = −x1x2 − 3�2
1 − �2�3 − �̂2,

˙̂�1 = r1(x1x3 + x2x3 − 2�2�3),

˙̂�2 = 2r2(x1x3 + x2x3 − 1
4x1x2)

−r2(4�2�3 − 3
2�2

1 − 1
2�2�3),

(6.6)

where Q = Diag{r1, r2} > 0 is the adaptation gain matrix, and
�̂ = [�̂1, �̂2]T is the estimate of �.

To illustrate the effectiveness of the control law (6.6),
some numerical simulations are carried out with the following
choices. Initial Condition: x(0) = [−0.2, −0.5, 1]T, �(0) =
[1, −0.5, 0.5]T; parameters: r1 = 0.5, r2 = 0.8. The simulation
results are shown in Figs. 3 and 4, which are the responses of
the two systems, respectively.

From Figs. 3 and 4, we know that the adaptive control law
(6.6) is very effective in simultaneously stabilizing the two
uncertain systems given in (6.5).
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7. Conclusion

This paper has investigated the simultaneous stabilization
of a set of nonlinear PCH systems and proposed a number
of new results on the design of the simultaneous stabilization
controllers. Using the dissipative structural properties, we have
combined the two PCH systems to obtain an augmented Hamil-
tonian system, with which some simultaneous stabilization
results are proposed. When the two systems have parametric
uncertainties in their Hamiltonian structures, we have pre-
sented an adaptive simultaneous stabilization controller. For
the case that there are external disturbances and parametric
uncertainties in the two PCH systems, two simultaneous stabi-
lization controllers are obtained: one is a robust controller and
the other is a robust adaptive one. The case of more than two
PCH systems is also studied in this paper, and a new control
design method has been proposed for the case. Study on exam-
ples and simulations shows that the simultaneous stabilization
controllers obtained in this paper work very well.
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