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Nonlinear systems possessing linear symmetry
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SUMMARY

This paper tackles linear symmetries of control systems. Precisely, the symmetry of affine nonlinear systems
under the action of a sub-group of general linear group GL(n, R). First of all, the structure of state space
(briefly, ss) symmetry group and its Lie algebra for a given system is investigated. Secondly, the structure
of systems, which are ss-symmetric under rotations, is revealed. Thirdly, a complete classification of
ss-symmetric planar systems is presented. It is shown that for planar systems there are only four classes
of systems which are ss-symmetric with respect to four linear groups. Fourthly, a set of algebraic equations
are presented, whose solutions provide the Lie algebra of the largest connected ss-symmetry group. Finally,
some controllability properties of systems with ss-symmetry group are studied. As an auxiliary tool for
computation, the concept and some properties of semi-tensor product of matrices are included. Copyright
© 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Symmetry of dynamic systems under a group action is an important topic in both physics and
mathematics [1-4], because many systems in the nature do possess symmetry, and because
taking symmetry into consideration may simplify the system investigation tremendously.
Symmetry of control systems has also been investigated by many authors. For instance,
symmetric structure of control systems has been proposed and studied by Grizzle and Marcus
[5] and Xie et al. [6], controllability of symmetric control systems was investigated by Zhao and
Zhang [7], Respondek and Tall [8,9] gave a complete description of symmetries around
equilibria of single input systems, the application of symmetry in optimal control problems has
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52 D. CHENG, G. YANG AND Z. X1

been studied by Jurdjevic [10] and Koon and Marsden [11], the symmetry of feedback
linearizable systems has been investigated by Gardner and Shadwick [12], etc.

The symmetry of dynamic systems considered in the paper is related to the action of a Lie
group on R”. Let G be a Lie group. G is an action on R" (or an open subset of R"), if there exists
a mapping 0 : G x R" - R" such that (i) O(e)x = x, Vx e R"; (ii) for any o), a, € G we have
O(otr02)x = 0(c1)(0(02)x).

For a control system we define two kinds of symmetries as follows:

Definition 1.1
Given an analytic control system

X=fo)+ D filu, xeR" (1)
i=1
where fi(x), i = 0,...,m are analytic vector fields. Let G be a Lie group acting on R" (or an open

subset M <= R").

(i) System (1) is said to be ss-symmetric with respect to G (or has an state space (ss)-
symmetry group G) if for each o € G

0(0), fi(x) = fi0(@)x), i=0,....m

where 6(x), is the induced mapping of 6(x), which is a diffeomorphism on R". If fi(x)
satisfies the above equation (for a given ), fi(x) is said to be 6(x) invariant.
(i1) System (1) is said to be symmetric with respect to G (or has a symmetry group G) if for

eachae G
ue[R’”}

If G is a sub-group of the general linear group, i.e. G <GL(n, R), then system (1) is said to be
linearly (ss-) symmetric with respect to G (or has a linear (ss-) symmetry group G.)

(), o = o
where

o = {f(X) + ) gilu
i=1

Remark 1.2

1. Definition (i) is proposed and used by Grizzle and Marcus [5] and Zhao and Zhang [7],
(ii) is from Respondek and Tall [9]. It is easy to see that ss-symmetry is a special case of
symmetry.

2. In this paper we consider linear symmetry(except Section 6), so the word ‘linear’ is omitted
(except Section 6).

In this paper linear ss-symmetries of nonlinear systems are investigated. The rest of the paper
is organized as follows. Section 2 investigates the general structure of ss-symmetric group and its
Lie algebra for a given system. In Section 3, we consider the ss-symmetry under rotations.
General structure of such symmetric systems is revealed. Section 4 studied the ss-symmetry of
planar systems. Four classes of symmetric systems with their corresponding symmetry groups
are obtained, which cover all possible planar ss-symmetric systems. Section 5 considers the
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NONLINEAR SYSTEMS POSSESSING LINEAR SYMMETRY 53

linear ss-symmetry group for a given system. A system of linear algebraic equations
are constructed. Its solutions provide the Lie algebra of largest connected linear ss-symmetry
group. As an application, some controllability properties of ss-symmetric systems are studied in
Section 6.

2. STRUCTURE OF SYMMETRY GROUP AND ITS LIE ALGEBRA

In this section we consider ss-symmetry of system (1). For ss-symmetry the control is not
essential. So we may start with a free analytic system as

x=f(x), xeR" )

Using Taylor series expansion and denoting by M., the set of real p x ¢ matrices, we can
express f as

f)=fo+fix+ x>+ 3)

where f; € M., x = (x1,...,x,)", and all the products are left semi-tensor product, which is
introduced in Appendix A.l.
Let « € GL(n,R). 0, : x+—»y = ax. Then for f to be invariant under 6, we need

(0.), () = of (x) = of (' p) = () VyeR" 4
It is equivalent to
af (x) = f(ax) VxeR" %)

Now since (0,), does not change the degree of a homogeneous vector field, if (4) holds for £, it
should also hold for each homogeneous component of f. That is,

afixk = fi(ox)t, VxeR"; k=0,1,... (6)
Using the definition of semi-tensor products and formula (A6), we have

(ocx)k = AXD<AXD< - <O

k

:a(liz ® OC)Xz AXD<OUXD< -+ - D< X

k=2

=), @ 0)Ip @ a)...(Li-t ® o)x*
=@ L)1, ® ), ®a)...(Li ® a)]xk
=@ @) ®0)...(Ix1 @ W'

= oc®oc®~--®ot]xk = o ®k K
k
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54 D. CHENG, G. YANG AND Z. X1

It is clear that system (2) is a-invariant iff
ofix* = fra®* 5k, k=0,1,... (7)

Since x” is a generator of kth degree homogencous polynomials, to avoid redundancy we use a
(conventional) basis. The basis, denoted by x), is the set as

X(k) = {ﬁx,’-" iti = k}
i=1 i=1

X(k) 18 also used as a matrix. Then the elements in x() are arranged in alphabetic order. That is,
let by = x’l" oo xPn by = x{" -+ x4 Define by < by if p; = g5,s = 1,...,tand p;s1 > g4 for some
0<t<n. So when x( is considered as a matrix, it is expressed as x) = (b1,. .., bd)T.

It is easy to verify that for x € R” the dimension of the vector space of kth homogeneous
polynomials is

k

s (k=1
"~ DI

We use a simple example to describe the generator x* and basis X(k)-

d = (8)

Example 2.1

Assume n = 2 and k = 3. Then x = (x,x»)". Moreover, d = (2 + 3 — nl/31=4.
X = (x? x%xz X1 X2X] xlxg xzx% Xo XX x%xl xi)T

and

302 2 T
X3 =(x] X[x2 X1X; X3)

Then we can construct a matrix Ty (n, k) € M« such that [13]
X = Tn(n, k)x(ky )
Since the coefficients for a basis are unique, from (7) we have
Proposition 2.2
System (2) is a-invariant, iff
afi Tn(n, k) = fro® Tn(n, k), k=0,1,2,... (10)

Clearly, a sufficient condition for f to be a-invariant is that
afie = fio®*, k=0,1,2,... (11)

Using Proposition 2.2, we can reach the following result immediately.

Proposition 2.3
Let H be a subset of GL(n, R), which consists of all « satisfying (10). Then H is a group.

Equation (10) provides a formula for solving «. But it is, in general, very difficult to solve such
an infinite set of algebraic equations. We have to find an alternative easy way to solve the
problem. We turn to Lie algebra approach.
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NONLINEAR SYSTEMS POSSESSING LINEAR SYMMETRY 55

Denote by g(G) the Lie algebra of G, which is a Lie sub-algebra of g/(n, R). We refer to [14, 15]
for some other related concepts, notations and terminologies used in the sequel.
We prove following lemma, which is fundamental.

Lemma 2.4
Let G<GL(n,R) be a connected sub-group. System (2) (or briefly, vector field f(x)) has
symmetry group G, iff

ady f(x) =0 VIV eg(G) (12)

where Vx is a linear vector field.

Proof
Let M be a given manifold. For a vector field X € V' (M), we denote its integral curve with initial
condition x(0) = x by ¢ (x). Then it is well known that for any Y € V(M)

(9%), Y(x) = Y(d(x))
iff [X, Y] =0 [16]. Now the integral curve of Vx e V(R") is ¢"’x. Hence
"), f(0) = e"f(x(z) = e"'f(e""2) = f(2)
where z = e/’x. Equivalently

e"f(x) = f(e""x)

iffady, f(x) =0. O
Note that in Lemma 2.4 and thereafter discrete groups have been excluded.
Now consider system (1). Using Taylor series expansion to each f;, j=0,1,...,m, we
denote

o0
_ )k P
= E WX, i=0,...,m
k=0

Since deg(ad fo,{x") = k, that is, ady, doesn’t change the degree of each term, we can define
V) = {V € gl(n,R)adyf]x* = 0}

Using Jacobi identity, it is easy to see that Wf{ is a Lie algebra. According to Lemma 2.4, if
G <GL(n,R) is the largest ss-symmetry group of system (1), then its Lie algebra is

m o0

gG) =7 =%

=0 k=0

Then the corresponding connected group G(g), which has g as its Lie algebra, can be constructed
as

k
G(g) = {Hexp(riVi) Ve V,k<oo} (13)
i=1
Summarizing them yields the following result.
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Theorem 2.5
System (1) has a unique largest connected ss-symmetry group G <GL(n, R), which has its Lie
algebra as

m o0
g =% (14)
j=0 k=0

Finally, assume a Lie algebra, g < g/(n, R) is given, we give an algebraic condition for the set
of vector fields, f(x), which have G(g) as their ss-symmetry group.

Denote by Jffj the set of vector fields with components of kth degree homogeneous
polynomials. It is easy to see that Jffj is a linear space over R and for any V € gl(n, R) the
mapping adypy : Wf; - Wﬁ is a linear mapping. We refer to [14] for some details of %fj Using
(8), dimension of #*, denoted by d*, is d* = n(n+k — 1)!/(n — 1)!k!. Then a basis of #*,
denoted by the columns of matrix H%, can be obtained as

Hy =1, ® xj, (15)

It will be called the conventional basis of J/’; In the sequel, the adjoint representation of ady,
means the representation with respect to this conventional basis.

Now we can define a mapping from g/(n,R) to the adjoint representations of the Lie
derivative, called the adjoint mapping, as

Definition 2.6
The adjoint mapping is defined as the following:
ok gl(n, R)sV — Ok(V) e gl(d*,R)

where @

basis).

We give an example to illustrate it:

(V) is the adjoint representation of adyy : Jff, - Jf’n‘ (with respect to the conventional

Example 2.7
Let n =2 and

0 1
V:(O 0) (16)

Then a straightforward computation shows that

A -1
k _
where
0
0
A= k—1 . (18)
1 0
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NONLINEAR SYSTEMS POSSESSING LINEAR SYMMETRY 57

The following lemma is an immediate consequence of Lemma 2.4 and the definition
of @,

Proposition 2.8
Let G € GL(n,R) be a one-dimensional connected sub-group, and V' € g(G). A vector field f(x)
with components of kth degree homogeneous polynomials is G-invariant, if and only if,

f(x) e @5(V)).

Example 2.9
Recall Example 2.7 again. Let’s consider the ((Dﬁ( 1)) where V is given in (16). Using (17), we

have to solve the following:
A -1 X 0
o 4)\v) \o

Y = AX
A2X =0

Then we have

Using (18)
0
0 0
42— | k(k—=1) 0

0 2x1 0 0

So X =(0,...,aq, b)T, Y=4X=(0,...,0, a)T, where a and b are any two real numbers. Recall
that (col(X),col(Y))" is the coefficient with respect to conventional basis of #%, it follows that

F(x) = (ax X5+ b, )T, k=1 (19)

According to Proposition 2.8, we conclude that such a vector field f(x) has a one-dimensional

symmetry group G as
G 0! (20)
= exp t
0 0

3. SYMMETRY UNDER ROTATION

This section considers ss-symmetry under rotations. The motivation is from the following result.
Consider system (1) and assume n = 2. Then the following result answers when it has
ss-symmetry group SO(2, R).
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Theorem 3.1 (Xie et al. [6])
When n = 2 system (1) has ss-symmetry group SO(2, R), iff

0 N o
S =i <x‘>, A eR, j=0,....m 1)

=0 —b. d X2

We consider when system (1) has an ss-symmetry group SO(n, R). The problem discussed is a
generalization of [6]. Our necessary and sufficient condition is as follows.

Theorem 3.2
System (1) with n>3 has an ss-symmetry group G = SO(n, R), iff

o
fix) =Y dlxPx, deR, j=01,....m (22)
i=0

(The proof is in Appendix A.2.)

Remark 3.3
Comparing Theorem 3.2 with Theorem 3.1, one sees that for n = 2 and n > 3, the corresponding
f(x) are quite different. An intuitive reason may be found from the structures of their Lie
algebras. The centre of 0(2, R) is

a,be [R{}

Z(0(2,R a b
CeR)=3(
Z(o(n,R)) = {rl,|r e R}

while the centre of o(n,R), n=3 is

They are quite different. When n>3 the o(n, R) does not have non-trivial centre. Roughly
speaking, there is no freedom for ‘swap’. For reader’s convenience, recall that the centre Z of a
Lie algebra L is [15]

Z=1{zel|[z]]=0VleL}

4. SYMMETRY OF PLANAR SYSTEMS

This section considers the ss-symmetry of planar systems. The following main result
characterizes all the possible ss-symmetries.

Theorem 4.1
1. Assume system (1) with n = 2 has a connected ss-symmetry group G<GL(2,R). Then G is
conjugated to one of the following four groups:

. 0
= {exp t
: 0
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NONLINEAR SYSTEMS POSSESSING LINEAR SYMMETRY 59

with

A
2= >0, p<o
g

where p and ¢ are two integers, and if p = 0, we set A, = 0.

c 0 1
= 4 €X t
2 p 0 0
0 1
G3 = < exp t
-1 0
1 0 0 1
A; = ,or A; = , eR (26)
0 0 0 0

2. Assume system (1) with n =2 is ss-symmetric with respect to G = TG;T~', for some
T € GL(2,R), then (1) satisfies that

te R} 24)

te R} = SO(2,R) (25)

Gy = { H exp(4;t;)

<00

o0
=Y dp (T ' WIB,T 'y, j=0,...,m, i=1.2.34 (27
n=0

where

P =xrx gl— [ 0
n 1 20 n 0 ﬁn

o P
P =xs, B = !
0 a,

o P
R =xi+x), B = )
_ﬁn On

pﬁ(x) =X, B =1

n

(The proof is in Appendix A.3.)

Remark 4.2

If system (1) satisfies (27), then it is a straightforward verification to show that it has the
corresponding ss-symmetry group 7G;T~'. So Theorem 4.1 gives a complete description for all
planar ss-symmetric systems and their ss-symmetry groups.
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5. LARGEST SS-SYMMETRY GROUP

In this section we will find the largest connected ss-symmetry group for a given system. We need
some preparations.

Given a matrix A(x) € M,,, with smooth function entries a;;(x) (x € R"). We define the
differential of A(x), denoted by DA(x), as a p x ng matrix, obtained by replacing a;; by its
differential (0a;;/0x1, ..., 0a;;/0x,). The higher-order differentials can be defined recursively as

DM A(x) = D(DFA(x)), k=1

The advantage of this notation can be seen from the following observation: for Taylor series
expression (3), the coefficients can be obtained as

|
fi ZEDkf(O), k=0,1,...

Given a matrix 4 = (a;) € M,,xp, its row staking form, V;(4), and column staking form,
V.(A), are defined as

T
Vr(A) = ((111,(112, R aln,a219 e yamn)

T
VC(A) = (all, A5 e o5 Aml> A125 -+ amn)

Using swap matrix W, , (see Appendix A.4 for swap matrix) we define two matrices as

k
Wi = In @ Wyiey)
s=0

El =1 ® Wit < Vel 1)

Then we have

Theorem 5.1
Assume system (1) has an ss-symmetry group G with its Lie algebra g(G). Then o € g(G), iff
& = V() is the solution of the following linear algebraic equations.

(T, k) @ (O DIE! — [T, ()1 ® L,)E =0
k=0,1,2,..., j=0,1,...,m (28)

We refer to (9) for the matrix Ty(n, k).

(See Appendix A.5 for the proof of Theorem 5.1.)

Theorem 5.1 provides a numerical method to calculate the largest connected ss-symmetry
group for system (1).

Example 5.2
Consider the following system:

X=f(x)=fix’, xeR’ (29)
Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2007; 17:51-81
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where f3 = (fjj) € M3x27. Let C = (c;) € Msxo be a parameter set. We set the coeflicient
matrix as

fio=fa=fw=ca fa=fr=fe=c:
Soo=fas=fn=frie=fw=lho=c1 f[e=fs=fr12=/16=/20=/2=C0c:>
fos=hu=fLun=ca1 fis=fHu=13=0a,

Hoo=ha=foas=ca1 fio=/f1=f25=c

fi,j=0 for other (ij)

A careful computation shows that such a group of parameters assure the existence of non-trivial
symmetric group.
According to Theorem 5.1, we can construct the matrix

83 =Tr(3,3) ® (AFY)E; — (Th(3,3)/H) ® I

and we have only to solve & for Sgi =0.

Case 1: Let C be a set of randomly chosen parameters. Particularly, if we choose ¢, = 2 and
€21 = ¢ = ¢31 = ¢3 = 3, and the other ¢; = 1, then a computation via computer shows that S§
is an 30 x 9 matrix. To save space, we listed its non-zero entries only

s1.2=23 51.3=6 s41=3 s45=23 S4.6=6 §50=3 s53=18  s62=06
S6,3=15 8§71 =06 s7.8 =3 57,9 =206 ss2=12  s533=06 S92 =18  s19,4=3
s10,7=-3 s11,1=3 si,5 =3 sie =18 s1,8=-3 s12,1=3 s12,5 =6 s12,6=15
S12,0==3 s13,4=-6 s137=—12 5141 =18 s146=06 sug=-12 s149=18 551 =18
S15,5 =18 85156 = =12 85158 =06 S16,4 = =3 8167 =19 s17,1 =3 S17,5 = —3 817,38 = 15
S17,0 =6 s13,1 =3 S18,6 = —3  Sig,8 =18 5189 =3 §20,4 =3 S21,4 =3 §23,4 = 18
§23,7 =3 54,4 = 18 §24,7 =3 §26,4 = 3 §26,7 =18 27,4 =3 §27,7 =18 529 7=3
§30,7 = 3

The non-trivial solution is
E=(1000 —1000 —1)T

A program shows for random C this ¢ is always the solution.
That is, the largest connected invariant linear group of the system (28) with above parameters

is
1 0 O

G,=<gexp|l 0 -1 0 [fteR

Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2007; 17:51-81
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Case 2: Set ¢; = 1, Vi,j. Then the 30 x 9 matrix S5 has non-zero entries as

5‘1’2:3 S1,3:3 S4’]:3 5‘455:3 S4,6:3 S5’2:3 S5ﬂ3:6 S6,2:6
S6,3 =3 s7,1=73 §7,8=3 $§7,9=3 s8,2=3 s533=06 §9,20=06 §9.3=23
$10,4 =3  S10,7=-3 s1,1=3 s11,5=3  S11,6=6 s11,8=-3 S121=3 S12,5=06
S12,6 =3 S12,9=-—3 Si4,1=6 Si46=6 Si490=06 5551 =6 555=6 s555=06
S16,4=—3 S16,7=3  S17,1=3 s17,5=-3 s17,8=3 Si17,0=6  s151 =3 5136 =—3

s18,8 =60 5189 =3  $204=3 $1,4=3  $34=6 $37=3  $244=06 s547=3
$26,4 =3 S26,7=0  §27,4=3 $27,7=6 S0 7=3 s3,7=23
The solution is

E=0000 —1101 —DF

&H=(=200011010D"

When we convert &; and &, back to matrices, still denote them by &, &, € gl(n, R), then [, &] = 0.
That is they are commutative, which means g = Span{¢&;, &} is a Lie algebra. Then it is ready to
show that the largest connected invariant linear group of the system (28) for this set of
coefficients is

0 0 0 -2 0 0
Gi=<gexp| 0 -1 1 [fHexp| O 1 1 |taiti,eR
0 1 -1 0 1 1

We may explore Case 2 in a little bit more. A careful computation shows that
3x%(xz + Xx3) 1 0 O X1
f(x) =fax* = 3x1%3 4+ 6x1x0x3 + 3x1x3 | =3x1(x2+x3)| 0 1 1 x3 | = px)Kx

3x]x% + 6x1Xx3X3 + 3x1x§ 0 1 1 X3

Then it is easy to verify that the system satisfies (A22)-(A23). That is, p(x) is g(G;) invariant
and

1 0 0
0 1 1| eZgG)
0 1 1

6. SYMMETRY VS CONTROLLABILITY

In this section we briefly discuss some controllability properties of the affine nonlinear systems
possessing symmetry.
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First we consider a linear system
m

X =Ax+ Z biui = Ax+ Bu, xeR", ueR" (30)
i=1

Its linear symmetry can be described by the following proposition.

Proposition 6.1

System (30) has a connected ss-symmetry group G <GL(n, R), iff for any a € g(G)
o4 — Ae =10
(31
aB=0

Proof
(Necessity) Since o € g(G), € € G, Vi € R. Since system is symmetric with respect to G, by
definition we have

(€),(Ax + Bu) = e 4e™*'x+e"B=Ax+Bu VYxeR", uveR"

Hence,
e de " = A
(32)
e”B=8B
Differentiating both sides of the first equation in (32) with respect to #, we have
we de™" — e 4ue™ =0
Set ¢ = 0 yields the first equation of (31). Similarly, we can get the second one.

(Sufficiency) Using Taylor series expansion on e’/, one sees easily that (31) implies (32). The
conclusion follows from the structure (13) of G. O

Expressing (31) into matrix form, we have

Corollary 6.2
System (30) has a non-trivial ss-symmetry group (G # {I,,}), iff the equation

AT®In_In®A
el <=0 (33)

has a non-zero solution.

Corollary 6.3
If system (30) is completely controllable, it doesn’t allow a non-trivial linear ss-symmetry
G<GL(n,R).

Proof
Assume ® € G. Then

OAD ' =4, ®B=B

Copyright © 2006 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2007; 17:51-81
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Hence
®(A"'B,...,B)=(A4""'B,...,B)
which leads to: ® = I,. O

Now assume system (1) has an ss-symmetry group G (G may not be a linear group.) For any
o € G, the mapping 6, : R" —» R" is a diffecomorphism. Denote

_ 0,()
T ox

Using Taylor series expansion on 0, and the system and verifying the linear terms, one can
easily prove the following result:

Iy 0), aeG

Proposition 6.4
Assume system (1) with f,(0) = 0 has an ss-symmetry group G. Then

1. G, = {Jylo € G} <GL(n,R) is a Lie sub-group.
2. Let A = 0fy/0x(0) and b; = fi(0), i = 1,...,m. Then the linear approximate system

m
Z=Az+ Z biui
i=1
has G as its ss-symmetry group.

The following result may be considered as a necessary condition for general symmetry.
(Where the G, 4, B are as in Proposition 6.4.)

Corollary 6.5
Assume system (1) with f5(0) =0 has an ss-symmetry group G and (A4, B) is controllable.
Then

G = {In}

The following result adds some new (but related in certain sense) observation to [9]:

Proposition 6.6
Assume system (1) has a non-trivial ss-symmetry group G <GL(n, R). Then it does not satisfy
accessibility rank condition [17] at the origin.

Proof
Since G is non-trivial, which means there exists 0#V €g(G). Using Lemma 2.4,
we have

[Vx,fi(x)]=0, i=0,1,...,m
Using Jacobi identity, for accessibility Lie algebra
L = {o.J15- - Smira
we also have
[Vx,#]1=0
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Now if dim Span{.#}(0) = n, we can find n,(x),...,7n,(x) € & which are linearly independent at
x = 0. Express

ni(x) =n0)+ O(Ixl}), i=1,....n
Then
0=[Vx,n(x)]=—=Vn0)+ O(Ixl), i=1,....n
which implies that
Vn(0)=0, i=1,...,n

Therefore, V' = 0, which leads to a contradiction. O

Note that in fact the above Proposition says that system (1) does not satisfy accessibility rank
condition at any xy € R" if it is ss-symmetric with respect to a non-trivial G < GL(n, R) about any
point xy. The statement ‘symmetric about point x,” means for any o € G, the system is
ss- invariant under the action 0, : x — xo—o(x — Xo).

7. CONCLUSION

This paper considered linear symmetries of nonlinear control systems. First of all, the state
space (ss) symmetry was investigated from two aspects: Lie group and its Lie algebra. Certain
necessary and sufficient conditions were obtained. Secondly, some special cases were considered:
(1) Assume the Lie group consisted of the rotations (SO(n, R)). Then the only possible form of
symmetric systems was obtained for n>3. (2) The classification of ss-symmetries of planar
systems was obtained. It was shown that planar systems have only four classes of linear
ss-symmetries. Any symmetric planar dynamic systems should be conjugate to one of them.
Then a set of algebraic equations were given to calculate the Lie algebra of the largest
ss-symmetry group for a given system. From this Lie algebra the largest connected ss-symmetry
group of the system is easily constructible. Finally, certain controllability properties of
symmetric control systems were revealed.

Linear symmetry is co-ordinate dependent. Converting the results of linear symmetry to
co-ordinate free symmetries remains for further study.

APPENDIX A

A.l. Semi-tensor product of matrices

Here we briefly introduce the semi-tensor product of matrices. It can be considered as a
notation, and will be used as an auxiliary tool in our computations.

Definition A.1 (Cheng [13])
Let A e M, and Be M,,,. If n = pt, i.e. p is a divisor of n, the left semi-tensor product (right
semi-tensor product) of M and N, denoted by M ><N (M > N), is defined as

A<B=ABQ®1I), (A>=B= A, ® B)) (A1)
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If nt = p, then
Ar<B=(A® I,)B, (A><B= (I, ® A)B) (A2)

In ecither (A1) or (A2) when n = p, Ae< B becomes conventional matrix product. Hence, the
left semi-tensor product is obviously a generalization of the conventional matrix product. So in
the following we assume the default matrix product is the left semi-tensor product and use 4B
for Ac<B. (In fact, the right semi-tensor product is also a generalization of conventional
product. But the left semi-tensor product has more nice properties [13]. It is, therefore, more
useful.)

We cite some fundamental properties of the semi-tensor product, which will be used in the
sequel.

Proposition A.2 (Cheng [13])
1.If A € M,,,,, and either m is a divisor of n or n is a divisor of m, then 4% (4><%) is defined as

Al=4, (A47'=4,)
A = AF o< d,  (A7FD = 47K sq )

Particularly if 7 is a row or column vector, then V* is always well defined.

2. Denote by x = (xi,...,x,) € R". Then x* is a redundant pseudo-basis of the kth
homogeneous polynomials. (A set is called a pseudo-basis if it contains a basis.) Therefore, a kth
homogeneous polynomial pi(x) can be expressed as

p(x) =% where fTeR"

But f is not unique because x* contains linearly dependent components.

3. Let A, B, C be three matrices with proper dimensions such that the involved left (right)
semi-tensor products are well defined, then

Ap<(Br<C) = (Ap<B)p<C (A><(B><C) = (A><B)><C) (A3)
(A+ B)p<C=A<C+ Be<C (A4 B)><C=A4><C+ B>C(C) (A4)
A<(B+ C)=Ap<B+ Av<C (A><(B+C)=A><B+ A><() (A5)

That is, the left (right) semi-tensor product is associative and distributive.
4. If xe R" and 4 € M4, then

xo<A=(U ® A)p<x (A6)

Remark A.3

From the definition one sees that the semi-tensor product can be expressed directly
by tensor product and conventional product. One significant advantage of semi-tensor
product is that the associative rule holds between semi-tensor product and conventional
product because the conventional product can be considered as a particular case of the
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semi-tensor product, while the associativity doesn’t hold between tensor product and
conventional product.

A.2. Proof of Theorem 3.2

Definition A.4
A smooth function p(x) € V(R") is 4 € M, invariant if

Lxp(x) =0 (A7)

The meaning of ‘invariant’ is from the following observation: since L4.p(x) =0, then
L’jlxp(x) =0, k> 1. Using the Taylor series expansion, we have

k
(¢')*P(x) = ple™x) = Z Ly p0 = plo)

That is, p(x) is invariant with respect to the integral curve of Ax.
In some literatures, p(x) is also called a first integral of the linear vector field Ax.

Lemma A.5
Let A = (0 ’1) Then A has no invariant polynomial of odd degrees.

Proof
We have only to prove the claim with respect to homogeneous polynomials. Assume

g p) = S aiyiy3 1 and Lg,g(v1,2) = 0. Then

og 241 241 o
0= Layg(y1,52) _6)/( ) Zlazyﬁ ly3loit 4 Z QL+ 1= papy ™y

j=0

2[-1 2[-1
= - Z(]+2)a;+2)/1+1 ) /+Z(2z+ =Dy = a3+ api™

Comparing the coefficients on both sides yields

ar=0, ay=0 (+2a,=QlI+1-))a, j=12,...,2[-1

Hence,
a; =0, 0<i<2/+1 |

Lemma A.6
Let A be as in Lemma A.5. 4 has no invariant polynomial of even degree with odd powers on
both two variables.
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Proof
-1 i _2i—
Set g(y1,yz) _ Z:n:O aZi+ly%[+ly%m 2i 1’ then

og( =
0= Lagly,»2) =£< )
1

m—1 m—1

B SIS RS S I L
i=0 j=0

m—1 m—1

- Z(Zi + Dagi 22 4 Z (2m — 2 + Dayi_1 2 y2m=2
=1 i=1

— a2 + Ay 1y
Comparing the coefficients yields
ar=0, ayu-1=0, Qi+ Dayy =Cm—2i+ Dayi_y, i=1,2,....m—1
which implies

@i =0, 0<is<m-—1 |

Lemma A.7
Consider o(3,R), and a polynomial

_ iy L I3
g(x1,x2,x3) = E Qi i X X3 X3
i1+i2+i3:2k

If g(x) is o(3, R) invariant, then for the terms with at least one of ij, i, or i3 is odd, we have

ai1i2i3:0
Proof
Let vy, vy, v3 be a set of canonical basis of 0o(3,R) as
0 0 O 0 0 1 0 -1 0
=0 0 -1}, »w=] 0 0 0], »s=|1 0 0
01 0 -1 0 0 0 0 O

Then L,,g=0,i=1,2,3.
Assume i; is odd. From L,,,g = 0, we have

0
g
= —x =0
ox 3
X2
Using Lemma A.S, we have a;,;,;; = 0.
Similarly, when i, or i3 is odd, we also have a;,;,;, = 0. O
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Lemma A.8
Let f e %%k be expressed as
S
f(x) = f2 S fz = Z a;lizizx’ilxgx?, 1= 1, 2, 3
f}) i1 +ih+i3=2k

Assume it is o(3, R) invariant, i.e.
. of i
[vix,f]= lv,«x —vwf=0, i=1,23
ox
Then f(x) = 0.

Proof
Since

0
‘—fvix: vwf, =123
ox

a straightforward computation yields the following;

0 X3 —X2
oh of s
- — _ = = — ) = A
P Bl il B s B (A8)
X2 —X] 0
0 0 X3
0 0 0
Bl =t Ll x|=pn 2| 0 |=-n (A9)
ox ox ox
X2 X2 —X1

Consider (AS8). According to Lemma A.7, every variable in each non-zero term of f; should
have even degree.

Observe (A9). On the left-hand side of the equation, each term has at least one variable with
odd degree, while on the right-hand side the degrees of all variables are even. It follows that

h=h=/£=0, =f=0 O
Lemma A.9
Given a polynomial

g(Xl,X2, X3) = Z al’lizléxll]xl22xl33
i1 +i+i=2k+1
and assume L, g = 0. Then
21 2 L2
g= ( bjljy-le‘“xzjzx{}) X (A10)
1 +h+j3=k
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Proof
Since L, g = 0, we have
0
og
= =0
ox v
X2

If i is even, then i + i3 is odd. From Lemma A.7, we have a;,;,;, = 0.

If i, is odd, then either both i, and i3 are odd, or both i, and i3 are even. In the first case,
according to Lemma A.6, a;;,;, = 0. In the second case assume i; = 2j; + 1,iy = 2j»,i3 = 2js, it
follows that

bjjpjs = a@ji+ 12y, J1 TRt =k
The conclusion follows. O

Remark A.10
If L,,g=0,i=2ori=3, similar argument shows that

2j1 2 2
( E: bjjoji X7 X5 X7 | X;

1+h+3=k

Lemma A.11
Let f(x) € #3! be expressed as
N
J)=|f2
/3

where f1, f2,/3 are 2k + 1 homogeneous polynomials. If

[

o=l =123

then

_ 21 2h 2./3
fi = ( E Ajjrjs X1 X" X537 | X1

Ji+itiz=k

( Z bjlmle xhx%) X2 (A11)

1+h+i3=k

_ 2h (20 2)3
fr= ( E Cmysxl X30X5 | X3

i+ +ja=k
Moreover, if aigy = 0, then

Gjijrjs = 0, bjijpjy =0, ¢jijpjy =0
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Proof
From Equation (A8) and Lemma A.9 we have (Al1). Then using
o (x)
Eaad vif (x)
the following can be deduced directly.
—x
of
af—x X1 =fi (A12)
0
—x
ofi :
Dl ow | =n (A1)
0
It follows from (A12) and (A13), respectively, that
Z ]l]_]z(2]1)x2ﬂ 1 2]2+2 2]3 + Z jUZI}(z]z + 1)x2]l+l 2j> §]3
Jititi=k Jithtia=k
i1+i+i3=k
= ) [F20+ Dbgni-nn + Qi+ Dby 615230 + booxi T (A14)
h+i+iz=k
n<k—1, =1
and
- Z 2 + l)a_,-,_,,,}xf]‘ X?ZH 7+ Z (212)ajjpjs X1 X +2x§ﬁ lxgﬁ
Jithti=k Jithti=k
Z b 211 2h+1 %1;
l|lzl3
i1+i+iz=k
= Y [FQi+ Daiig + 202 + Dag s 5023 + apod™ (A1)
i +i+iz=k
=1, h<k-1
Comparing coefficients on both sides of (A14), we have
(2i2 + l)bi|i2i3 - 2(11 + l)b(f|+1)(1'2*1)i3 = diiris
hW+bh+iz=k 0L[<k-—1  ip>1 (A16)
bkoo = akoo =0
Similarly, (A15) provides
(2 + Dagiyiy — 2(i2 + Dag-1yi+1yi. = biyiiy
h+b+iz =k 0=l bh<k-—1 (A17)
boro = aoko
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Therefore,
200 + Dag —1yi+1is = 2t + Daiiiy — biyisis
(2i2 + Dbiyiiy = aiyiniy + 2001 + Dby 1y 1)is (A18)
akoo = broo =0
It follows that ;0 = biyio =0, i1 + i = k.
Similarly, we have
2(i3 + Dag - nyiis+1) = it + Dainiy — Ciisiy
and
(263 + Deiyigiy = @iy + (281 + D111
and hence
Qiigis = Ciripiy =0, T1+i3=k—i or i1+ibh+i3=k
Similarly, we also have

biiiy =0 O

The following lemma is motivated by the main result of [6].

Lemma A.12
Consider the following system

t
x=f(x)=> p(0Kix, xeR', teZ, (A19)
i=1

where p;(x) is a polynomial and K; € M,,. System (A19) is ss-symmetric with respect to
G<GL(n,R) if

1. pi(x), i =1,...,t are g(G) invariant;
2. K;,i=1,...,t are in the centre of g(G) [15], where g(G) is the Lie algebra of G.

Proof
Let V € g(G).
t
ady [(x) = > (Lyapi(0)Kix + pi(x)ady, Kix)
i=1
t
= Z (Lyxpi(x)Kix — pi(X)[V, Ki]x) = 0
i—1
The conclusion follows from Lemma 2.4. O
Lemma A.13

System (1) with n = 3 has an ss-symmetry group G = SO(3, R), iff

o0
(x) = d|x|¥x, & eR, j=0,1,....,m A20
Ji k k J
i=0
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Proof
(Sufficiency) The sufficiency follows from Lemma A.12.

(Necessity) Consider system (1) with n = 3. Assume it is state space symmetric with respect to
G = SO(3,R), and

£ =3 fl0)
r=0

where f/(x) € #”. Now if r is even, according to Lemma A.8, f/ = 0. So we assume r = 2k + 1.

Denote the coefficient of x2*! in fJ, +1(X) by ar = ako. Set

. . o
o1 (V) = Sy (%) — arellxl ™ x

According to Lemma 2.4, a straightforward computation shows

%vix = vigur1, 1i=1,2,3
Ox
Now Lemma A.9 assures
gau+1(x) =0
It follows that
S (x) = ai|x|*x Il

Proof of Theorem 3.2

From the proof of Lemma A.13 one sees easily that the basic trick used in the proof is
comparing a pair of variables. It is obvious that this method can be extended to the case of n > 3.
Theorem 3.2 follows. O

A.3. Proof of Theorem 4.1

First, we want to show that if system (1) with n = 2 is ss-symmetric, then it can be expressed in a
particular form, satisfying certain conditions. To get a motivation for this form we recall (21). It
is easy to see that (21) has the form as

o0
fix)=>_pPi0Bx, xeR, j=0,....m (A21)
n=0

(Since the following argument is independent of j, for notational ease, j is omitted in the rest of
this proof.) Moreover, for any S € so(2,R), or, equivalently, simply choose a basis as

(4)

we have
Lspn(x) =0 (A22)
[S,B,] =0 (A23)
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According to Lemma A.12, (1) has ss-symmetry group so(2,R) if it has the form (A21),
satisfying (A22)—(A23).

In the following lemma we claim that the aforementioned form and conditions are universal
for all planar ss-symmetric systems.

Lemma A.14
Let VV e gl(2,R) and G = {e"'|t € R}. A planar system

x=f(x), xeR’ (A24)
is symmetric with respect to G, iff

(i) f(x) can be expressed as (A21);
(ii) p, and B, satisfy (A22) and (A23), respectively.

Proof
Note that ady, does not change the degree of each homogeneous component in f(x), so we can
simply assume f(x) is a homogeneous vector field. That is, set

() (271 aix?ixé) (A25)
x) = .
D1 by X
To begin with, we assume V' is in a Jordan canonical form.
Case 1: Assume
At O
V =
0 A
Using Lemma 2.4, [Vx,f] = 0 yields
(n—i— DA +id2)a; =0
. 4 . (A26)
(n=D+(G—Da)b=0, i,j=0,....n
To get non-zero a;, b;, we need
n—i—1 i
det =G—i—-Dmr—-1)=0 (A27)
n—j j-—1

If n=1, f(x) is linear, and the conclusion comes from a straightforward computation. We
consider n > 1 case. From (A27) we have

j—i—1=0 (A28)
From (A26) we also have
(n=pDa+G-1Dk=0 (A29)

Since 4; and /, cannot be zero simultaneously, we may assume 4;#0, and set u = A,/4;.
According to (A29), u is a rational number. First, we assume A, #0. Then there exist two
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co-prime integers p, ¢, such that

u=" (A30)
q

Then (A29) yields that
i=j—1=1tq ¢g>0, p<0
n=tq-p+1, t=12,...
The form of f(x) follows as

a 0 X
Sigmer(x) = x;x( BT (A31)
0 bf X2

On the other hand, consider V-invariant polynomial. Assume
n—1
Poa(¥) =) et
k=0

From Ly,p,_1(x) = 0 we have that
m—k—1DA+kih=0 (A32)

Comparing (A32) with (A29), one sees easily that xf”’ x’zq is the set of solutions of (A22) under
this pair of (4, 4;). Moreover assume A; #4,. Then (A31) presents all the solutions satisfying
(A22)—(A23).

Now assume /; = 0. It is easy to see that the vector fields, satisfying (A26), have the form as

.0
ff(x)zxg—l(c; b)(j) (A33)
t 2

which is the set of solutions of (A22)—(A23) with respect to A, = 0.

Finally, assume 4;, 4; are complex numbers. We may allow f(x) to have complex coefficients.
Then the above argument remains available. Say, 41, = o + pJ, where J = \/—_1 . Then from
(A29)-(A30) we have o = 0, u = —1. It implies that

(o 3)
V= (A34)
0 J

A1
V:
0 2
}u(l’l— 1)a,-+(n—i+ 1)61,;1 —b[ =0

Mn— Db+ (m—i+ Dby =0, i=0,....n+1

where for notational ease, we use a_; = b_| = a,.1 = b,y = 0.

First, we assume A#0. Using the second equation of (A35) and setting i = 0, we get by = 0.
Then we can show recursively that all b; = 0. Then the first equation implies all @; = 0. So there
is no non-trivial solution. Next, let A = 0. The second equation provides non-zero solution as

Case 2: Assume

Lemma 2.4 yields

(A35)
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b,#0 and b; = 0, i#n. Plugging them into the first equation yields: @,#0 and a,_; = b, #0,
a; =0, i<n — 2. Then the non-trivial solution f, becomes

~1
bpx1X57" + a,x5 b, a, ¥
f — — xnfl
n 2

b,,xg 0 bn

(A306)
X2

Similarly, we can prove that it consists of all the solutions of (A22)—(A23).
Finally, we consider the case if ' is not in the Jordan canonical form. Taking a linear
transformation y = Tx, equation (12) becomes

[T.(Vx), T,(f(x)] =0
Now assume f(x) has the form as in (A25). Then
T.Vx)=TVT 'y

S AT,
T.(f(x) = o
n n—
Zj:l bjy, '/y]z
We, therefore, can assume 7V7T~! has a Jordan canonical form. Assume it is symmetric with
respect to a one-dimensional group
G={"""teR}
then the original system is obviously symmetric with respect to
G={e"reR}

because (12) is co-ordinate independent. Moreover, since under y the system has the form of
(A21), then

T'(G0) = T, (pu(0)Buy) = pu(Tx)T ' B, Tx

That is, the original system also has the form of (A19). Since (A22) and (A23) are co-ordinate
independent, they hold for the original system too. The proof is completed. O

The following generalization is an immediate consequence of the proof of Lemma A.14.

Lemma A.15
A planar system

x=f(x), xeR’ (A37)
has a symmetry group G<GL(2,R), iff

(1) f(x) can be expressed as (A21);
(ii) the p, and B, satisfy (A22) and (A23) with respect to any S € g(G).

Next, we consider a possible symmetry group, G, of dimension greater than one. Let 0# A4 €
2(G). g(G) is the Lie algebra of G.
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Case 1: Assume

From Lemma A.14 we have

oY a; 0 X1
f= ; cipi(x) ( 0 b;) <x2>
B (bn b12> e £(G)
by bx £

Lgpi(x) = —tpx; "7 X (b1 x1 + braxa) + tqx; "X (byrx) 4 byxa) = 0 (A38)

where p;(x) = x; "x}. Let

Then

If p#0, it follows that
—b1p+bng=0
by =0y =0
which implies that

bn _p_%

bu 4

That is A and B are linearly dependent, and dim(G) = 1. We have to assume p = 0 for exploring
new elements. It implies that

A1 0 1 0
A= equivalently A =
0 0 0 0

Then from (A38), we have by; = by, = 0. That is,

b b
B =
0 0
a; 0
B, =0
0 b

it is obvious that if b1, #0 then a; = b;. We conclude that

1 0 0 1
S
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and the corresponding system is

) 0 X1
X = Z(; a;x’ X (A40)

X

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1

In Case 1, if A, #0, we can exchange x;, x, to get the required form. In fact, Cases 1, 2, and 4
are discussed in above. The only new thing is Case 3. Previously, it was treated as a special case
of Case 1 with complex eigenvalues. Starting from Case 1 with V" as in (A34), we can do the

following transformation: Set
1 1
x=Ty=
J —J

Then
0 1
T.(Vy)=TVT 'x = X
-1 0
and
— _ a n
(T~ p2u(y) = pon(T™'x) = 2—Z(xf +x3)
which is the required form. 0

A.4. Swap matrix

Definition A.16 (Cheng [13], Magnus and Neudecker [18])
A swap matrix, Wy € Mymxmn, 18 constructed in the following way: index its columns by
(L, 12,...,1n,...,ml,m2,...,mn) and its rows by (11,21,...,ml,...,1n,2n,...,mn). Then the
elements of W}, , are defined as
1 I=i and J=j
J <
w I),(ij) = (S.’. = (A41)
D W { 0 otherwise
(In [18] it is called the permutation matrix. But we reserve this name for general permutation
case.)
We cite some basic properties of the swap matrix here.

Proposition A.17
1.
wT

[m,n]

= Wity = Winmi (A42)

2. Given a matrix 4 € My, with its row staking form V;(4) and column staking form V,(A4).
Then

VC(A) = W[m,n] Vr(A), Vr(A) = W[n,m] VC (A) (A43)
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3. Let VeR and 4 € M,,y,. Then
VA=, Q@ AV (A44)
A.5. Proof of Theorem 5.1
A straightforward computation shows the following lemma:

Lemma A.18
The differential of a product of two matrices of function entries satisfies the following:

D(A(xX)B(x)) = DA(x)>< B(x) + A(X)DB(x) (A45)

Using (A45), we can prove the following differential formula inductively:

Lemma A.19
DY = W (XK ® 1) = W< xF (A46)

Combining (A46) with (A44), it is easy to prove the following formula:
Linfixt = fil®p 1 X W — VixE = fi¥s 1Ty @ VX —VixE, k=1,2,...  (A47)
Now to get unique solution, we convert it back to the conventional basis as
Lyofix = [fi¥e 1y @ V) = VAlTn(k)xe,  k=1,2,... (A48)
Therefore, the derivative is zero, iff
ViPro1Lpr ® V)= V1i]Ty(n, k) =0, k=1,2,... (A49)
To simplify (A49) we need the following formula [13], which can be proved via direct

computation.

Lemma A.20
Let A e M,,xn, Be M), and Z € M,,,. Then the column stacking form of the product is

Ve(AZB) = (B' ® A)V(Z) (A50)
Using (A44) again, (A49) can be converted as

Lyofix* =(Th(n, k) @ (rPr-))Vellyr @ V) — (Th(n, b)) @ L)V(V) =0
k=1,2,... (AS])

To convert (A51) to a standard linear equation, we need one more formula, which itself is
important.

Proposition A.21
Let A e M,,«, and B e M., Then

V(A ® B) = (I, ® Wipg)o<Ve(A)i< Ve(B)
= (In ® W[m,q]) < W[pq,mn] B< VC(B) B< VC(A) (A52)
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Vr(A @ B) = W[mp,nq](]n ® W[m,q])[>< I/V[ni,lz]l><(lmn @ W/J,q)
< Vi(A)<Vi(B)
= W[mp,nq](ln ® W[m,q])l>< W[m,n] l><(Imn ® Wp,q)
D< Wipgmn) >< Vi(B) < Vi(4) (A53)

Proof
We prove the first formula of (A52) only. The others are the immediate consequences of it.
To begin with, we assume n = 1. Then it is obvious that

Ve(A)p<Ve(B) = col(an By, ...,anBy,....amBi,...,am By)

and
V(A ® B) = col(an By,...,amBi,. .. ,Cllqu, .- 'aamqu)

Note that they consist of the same set of p-dimensional vectors but with different order of
double indexes. A straightforward computation shows that

VL(A ® B) = W[m,q] B< VL(A)[>< VC(B)

Now for general case, we have only to do the swap for n blocks. The first formula of (A52)
follows immediately.
Denote by

1= Lot ® Wi o< Vellyr)
Then using (A52), we have
Vely)) ® V = En<V (V)
Plugging it into (A51) yields Theorem 5.1. O
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