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Abstract

The key in applying energy-based control approach is to be able to express the system under consideration as a dissipative Hamiltonian
system, i.e., to obtain Dissipative Hamiltonian Realization (DHR) for the system. In general, the precise DHR form is hard to obtain for
nonlinear dynamic systems. When a precise DHR does not exist for a dynamic system or such a precise realization is difficulty to obtain, it
is necessary to consider its approximate realization. This paper investigates approximate DHR and construction of local Lyapunov functions
for time-invariant nonlinear systems. It is shown that every nonlinear affine system has an approximate DHR if linearization of the system
is controllable. Based on the diagonal normal form of nonlinear dynamic systems, a new algorithm is established for the approximate DHR.
Finally, we present the concept of kth degree approximate Lyapunov function, and provide a method to construct such a Lyapunov function.
Example studies show that the methodology presented in this paper is very effective.
© 2006 Elsevier B.V. All rights reserved.

Keywords: kth degree approximate DHR; kth degree approximate Lyapunov function; Diagonal normal form; Algorithm

1. Introduction

Energy-based control and stability analysis have been ex-
tensively studied for a wide range of physical systems, which
include robotic manipulators [10,15], surface vehicles [11],
space crafts [26], mechanical systems [27,2], and electrical
systems [20,9], etc. While much research work in the area
of robotics leads to a good understanding of this approach,
its recent successful applications to power systems require
new problem formulations and new insights into this approach
[14,28]. In recent years, port-controlled Hamiltonian systems
[32,31,18] have been well investigated in a series of works
[19,7,17,21–23,12,13]. A constructive procedure was pro-
posed in [19] to modify the Hamiltonian function of forced
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Hamiltonian systems with dissipation to generate a Lyapunov
function for non-zero equilibria. In [7], through the fundamen-
tal concept of a generalized Dirac structure [6] defined on the
space of energy variables, it was shown that a power-conserving
interconnection of port-controlled generalized Hamiltonian sys-
tems leads to an implicit generalized Hamiltonian system, and
a power-conserving partial interconnection to an implicit prot-
controlled Hamiltonian system. The Hamiltonian function, the
sum of potential energy (excluding gravitational potential en-
ergy) and kinetic energy in physical systems, is a good candi-
date of Lyapunov functions for many physical systems, which
makes it very easy for stability analysis and control design for
the systems. Up to now, the port-controlled Hamiltonian ap-
proach has been used in various control problems [17,9,23].
In particular, it has been successfully applied to the control of
power systems in a series of works [3,24,14,28].

In order to apply the energy-based approach, it is important
to be able to express the system under consideration as a dissi-
pative Hamiltonian system, i.e., to obtain the dissipative Hamil-
tonian realization (DHR) for the system [4,29]. In general,
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to obtain the DHR, we first need to express the system as a
generalized Hamiltonian system, which is the so-called gener-
alized Hamiltonian realization (GHR) [4,29], and then elimi-
nate the non-dissipative part of the obtained GHR by a suitable
state feedback. GHR/DHR is a very difficult issue for general
nonlinear systems, since it involves solving certain partial dif-
ferential equations [30] which is usually very difficult to solve.
For time-invariant nonlinear systems, the GHR/DHR problem
has been studied in some recent works [4,29,23,25,30]. Indeed,
there are many results on GHR/DHR of nonlinear systems.
However, most of the results only establish sufficient condi-
tions for the existence of Hamiltonian realization, and cannot
provide any applicable algorithm to compute an explicit GHR
or DHR for general nonlinear systems. In [29,23], it was shown
that the input-state part of every asymptotically stable system
can be expressed as a port-controlled Hamiltonian system with
dissipation. But, these papers completed their proofs by using
the inverse Lyapunov theorem [16], i.e., under the assumption
that there exists a Lyapunov function for every asymptotically
stable system. As it is well known, Lyapunov functions are hard
to obtain for general nonlinear systems, and thus the results pre-
sented in [29,23] are hard to use to construct an explicit GHR
or DHR form for general asymptotically stable systems. This
is the very fact that motivates us to investigate the method of
constructing explicit DHRs.

In fact, without the explicit DHR form, it is impossible to
handle the control design problem based on Hamiltonian frame-
work, even if it is known that a DHR form exists for the system
under consideration. As mentioned earlier, DHR is a very dif-
ficult issue for nonlinear systems. In general, the precise form
of Hamiltonian realization is very hard to obtain for nonlin-
ear systems. This is because, on one hand, there is no precise
DHR for some systems and, on the other hand, it is impossible
to construct it analytically for many systems, even though it is
known that the DHR exists for the systems. When a precise
DHR does not exist for a dynamic system or such a precise re-
alization is difficult to obtain, we may consider its approximate
realization. Its approximate realization up to certain degree may
be enough for practical control problems. Thereby, it is neces-
sary to formulate approximate Hamiltonian realization. In [4],
the Carleman linearization procedure was applied to study the
approximate GHR problem of nonlinear systems, and an algo-
rithm was proposed for the GHR. However, the algorithm is not
applicable to the approximate DHR, which is really the case we
concern about. To the authors’ best knowledge, there are few
results on the approximate DHR of nonlinear systems thus far.

In this paper, we investigate the approximate DHR problem
of time-invariant nonlinear systems, and present a new algo-
rithm for the approximate DHR. The concept of kth degree ap-
proximate DHR is proposed first, and then, based on the diago-
nal normal form of dynamic systems [5], it is shown that every
nonlinear affine system has a kth degree approximate DHR if
linearization of the system is controllable, where k is an arbi-
trary natural number. Finally, we give a new algorithm for the
kth degree approximate DHR of time-invariant nonlinear sys-
tems. The new algorithm, which is first presented in this pa-
per, is established through a comparatively standard procedure.

This can bring some facilities to calculation of the explicit re-
alization. The new algorithm is very easy and practical to ap-
ply, and has the following advantages in handling approximate
DHR and correlative control problems:

(1) The condition required in the new algorithm is less de-
manding and can be satisfied by most practical systems.
Therefore, the proposed algorithm will have a wide range
of applications.

(2) It can give approximate DHR up to any degree for non-
linear systems, which can make the approximation meet
practical requirements for most nonlinear systems.

(3) Based on the new algorithm, it can be shown that every
polynomial system has a precise DHR, and moreover, the
precise DHR can be explicitly given by the new algorithm
(See Corollary 3.11 for details).

(4) The new algorithm not only can yield an approximate DHR
for the system whose linearization is controllable, but also
can provide a useful method to construct local Lyapunov
function for the system.

Another aim of this paper is to apply the new algorithm to
investigate construction of local Lyapunov functions. Lyapunov
functions play a key role in stability analysis and control design.
As mentioned earlier, such a function is very hard to obtain
for general nonlinear systems. Thereby, it should be a feasible
way to construct an approximate Lyapunov function for the
systems whose Lyapunov function cannot be obtained by using
the existing methods. In this paper, we present the concept of
kth degree approximate Lyapunov function, which is a kind of
local Lyapunov function, and then, based on the approximate
DHR algorithm obtained in this paper, we provide a method
of constructing the kth degree approximate Lyapunov function.
The presented example shows that the algorithm proposed in
this paper is very feasible.

The rest of the paper is organized as follows: Section 2 gives
some preliminary results. In Section 3, we deal with the kth
degree approximate DHR and give the new algorithm for the
approximate DHR. Section 4 investigates the construction of the
kth degree approximate Lyapunov function. Section 5 presents
an illustrative example, which is followed by the conclusion in
Section 6.

2. Preliminaries

To facilitate the analysis, some fundamental concepts and
main properties are listed in this section for the Hamiltonian
realization under study.

Consider dynamic system

ẋ = f (x), x ∈ M, (2.1)

where M is an n-dimensional manifold and f (x) is an n-
dimensional vector field with f (0) = 0.

Definition 2.1 (Cheng et al. [4]). System (2.1) is said to have
a Generalized Hamiltonian Realization (GHR) if there exists a
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suitable coordinate chart and a Hamiltonian function H such
that system (2.1) can be expressed as

ẋ = T (x)∇H , (2.2)

where ∇H = �H/�x. If the structure matrix T (x) can be ex-
pressed as T (x) = J (x) − R(x), with skew-symmetric J (x)

and positive semi-definite symmetric R(x), then system (2.2)
is called a DHR. Furthermore, if R(x) > 0, (2.2) is called a
strictly DHR.

Definition 2.2 (Cheng et al. [4]). A controlled dynamic system

ẋ = f (x) + g(x)u, f (0) = 0, x ∈ M, u ∈ Rm (2.3)

is said to have a state feedback Hamiltonian realization if there
exists a suitable state feedback law u = �(x) + v such that the
closed-loop system can be expressed as

ẋ = T (x)∇H + g(x)v. (2.4)

If T (x) can be expressed as T (x) = J (x) − R(x), with J (x)

skew-symmetric and R(x)�0(> 0), then (2.4) is called a feed-
back (strictly) DHR.

From Definition 2.1, it is easy to know that system (2.2)
is a (strictly) dissipative realization if and only if T (x) +
T T(x)�0 (< 0).

Assume that y =�(x) is a coordinate transformation. Under
the new coordinate frame, the structure matrix T (x) takes the
form of the following: T (y)=Jy(x)T (x)J T

y (x)|
x=�−1(y)

, where
Jy(x) is the Jacobian matrix of y = �(x). Based on this, we
know that the following result holds.

Proposition 2.3. The dissipativity of system (2.2) is invariant
under coordinate transformations.

Definition 2.4 (Arnold [1]). Let �= (�1, . . . , �n) be the eigen-
values of a given matrix A ∈ Rn×n. A is said to be a resonant
matrix if there exists m=(m1, . . . , mn) ∈ Zn+, and |m|�2, i.e.,
mi �0 and

∑n
i=1mi �2, such that for some s ∈ {1, 2, . . . , n},

�s = 〈m, �〉 = m1�1 + · · · + mn�n. (2.5)

We call (2.5) the resonance condition, which is an essential
concept for our further development.

Proposition 2.5 (Devanathan [8]). Let �(A)={�1, . . . , �n} be
the eigenvalues of a given Hurwitz matrix A ∈ Rn×n. If

max{|Re(�i )| : �i ∈ �(A)}�2 min{|Re(�i )| : �i ∈ �(A)}
(2.6)

holds, then A is non-resonant.

3. Approximate DHR

In general, it is hard to obtain the precise DHR form for
nonlinear systems. When a precise DHR does not exist for a
dynamic system or such a precise realization is difficulty to

obtain, it is necessary to consider its approximate realization.
This section investigates approximate DHR. We will propose
the main result of the paper in this section, and establish a new
algorithm for the realization. First, we present the concept of
kth degree approximate DHR.

3.1. Basic concepts

Definition 3.1. System (2.1) is said to have a kth degree ap-
proximate DHR (k�1) if there exists a suitable coordinate chart
and a Hamiltonian function H such that system (2.1) can be
expressed as

ẋ = [J (x) − R(x)]∇H + O(‖x‖k+1), (3.1)

where J (x) ∈ Rn×n is skew-symmetric and R(x) ∈ Rn×n is
positive semi-definite.

Definition 3.2. System (2.3) is said to have a state feedback kth
degree approximate DHR (k�1) if there exists a suitable state
feedback law u = �(x) + v such that the closed-loop system
can be expressed as

ẋ = [J (x) − R(x)]∇H + O(‖x‖k+1) + g(x)v, (3.2)

where J (x) ∈ Rn×n is skew-symmetric, and R(x) ∈ Rn×n is
positive semi-definite.

From Definition 3.1, we obtain the following proposition.

Proposition 3.3. If the Hamiltonian function H(x) has a local
minimum at the origin, and if R(x)∇H ∼ O(‖x‖l ) (as x → 0),
0� l�k, then system (3.1) is locally stable.

Proof. Choosing H(x) as the Lyapunov function, we obtain

Ḣ = −dHR(x)∇H + dH · O(‖x‖k+1),

where dH = ∇TH . Since R(x)∇H ∼ O(‖x‖l ), l�k, there
exist a neighborhood, �, of the origin such that Ḣ �0 in �.
Therefore, the approximate DHR (3.1) is locally stable. �

3.2. Main result

This subsection studies kth degree approximate DHR and
proposes the main result of this paper. First, we present a
lemma, which will be used in the derivation of the main result.

Given a constant matrix A ∈ Rn×n, for clarity we make the
following assumption:

A1. Matrix A is a constant diagonal matrix with distinct
diagonal elements and is non-resonant.

With this A, define LAxX := [Ax, X] = (�X/�x)Ax − AX,
where x ∈ Rn, [·, ·] is the Lie bracket, X ∈ Rn is a vector
field, and �X/�x is the Jacobian matrix of X. Then, we have
the following lemma.

Lemma 3.4. Assume that matrix A ∈ Rn×n satisfies A1 and
�(x) is a kth degree homogeneous vector field, k�2. Then there
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exist a kth degree homogeneous vector field � such that

LAx� = �(x). (3.3)

Proof. Assume that �(x) = [�1(x), . . . ,�n(x)]T, where

�j (x) =
∑

i1+···+in=k

a
(j)
i1···inx

i1
1 · · · xin

n , j = 1, 2, . . . , n.

Then, a straightforward computation shows that LAx�(x) =
[	1(x), . . . ,	n(x)]T, where

	j (x) =
∑

i1+···+in=k

a
(j)
i1···in · 
(j)

i1···inx
i1
1 · · · xin

n ,


(j)
i1···in = i1�1 + · · · + in�n − �j , j = 1, 2, . . . , n.

Since A is non-resonant, 
(j)
i1···in 
= 0. Define � = [�1, . . . , �n]T,

with

�j =
∑

i1+···+in=k

a
(j)
i1···in


(j)
i1···in

x
i1
1 · · · xin

n .

Then, it follows that LAx� = �(x). �

Corollary 3.5. Assume that matrix A ∈ Rn×n satisfies A1 and
a vector field �(x) = O(‖x‖k). Then, there exists a vector field
� = O(‖x‖k) such that LAx� = �(x).

Proof. Expand �(x) as �(x) = ∑
i �k�i xi . Then, using

Lemma 3.4 to each term can yield �. �

Denote by Hk the set of kth degree homogeneous polyno-
mial vector fields. Then LAx : Hk → Hk is a linear map. Par-
ticularly, if A is non-resonant, this map is surjective. Under the
non-resonant assumption on A, the notation L−1

Ax can be used,
that is, L−1

Axg = � ⇐⇒ LAx� = g.
In the following, we study the kth approximate DHR for

system (2.3). In system (2.3), let A := Jf (0) and B = g(0),
where Jf (x) is the Jacobian matrix of f (x). We assume that A
and B satisfy Assumption A2:

A2. (A, B) is a completely controllable pair.
Hereafter, we assume that all the vector fields and functions

used in this paper are analytic, which implies that all the func-
tions and their derivatives have convergent Taylor expansions.

Now, we are ready to present the main result of the paper.

Theorem 3.6. Assume that A2 holds for system (2.3). Then,
for an arbitrary natural number k�1, system (2.3) has a kth
degree approximate DHR.

In the following, we apply the diagonal normal form in [5]
to give a constructive proof for the theorem. The proof itself
will provide a useful algorithm to find kth degree approximate
DHR for system (2.3).

Proof. Using Taylor expansion, system (2.3) can be expressed
as

ẋ = Ax +
∑
i � 2

Fix
i + g(x)u, (3.4)

where xi =x ⊗ x ⊗ · · · ⊗ x︸ ︷︷ ︸i , i�2, ⊗ is the Kronecker product,

and Fi is an n × ni matrix, i = 2, 3, . . . .
Since Assumption A2 holds, without loss of generality, we

can assume that matrix A is a diagonal matrix with distinct
diagonal elements �i < 0 and is non-resonant (or else, a state
feedback will do).

When k=1, let R=−A and H(x)= 1
2

∑n
i=1x

2
i . Then, system

(3.4) can be rewritten as

ẋ = −R∇H + O(‖x‖2) + gu, (3.5)

which means that it holds for k = 1.
When k > 1, by setting

z1 = x − L−1
Ax(F2x

2), (3.6)

system (3.4) can be expressed as (for convenience of analysis,
let u = 0 temporarily)

ż1 =
⎡
⎣Ax +

∑
i � 2

Fix
i

⎤
⎦− �L−1

Ax(F2x
2)

�x

⎡
⎣Ax +

∑
i � 2

Fix
i

⎤
⎦

= − R
�H1

�z1
+
[
AL−1

Ax(F2x
2) + F2x

2 − �L−1
Ax(F2x

2)

�x
Ax

]

+
[
F3x

3 − �L−1
Ax(F2x

2)

�x
F2x

2

]

+
[
F4x

4 − �L−1
Ax(F2x

2)

�x
F3x

3

]
+ · · ·

= − R
�H1

�z1
+ [F2x

2 − LAx(L
−1
Ax(F2x

2))]

+
[
F3x

3 − �L−1
Ax(F2x

2)

�x
F2x

2

]

+
[
F4x

4 − �L−1
Ax(F2x

2)

�x
F3x

3

]
+ · · ·

:= − R
�H1

�z1
+
∑
i �3

F
(1)
i xi = −R

�H1

�z1
+ O(‖x‖3), (3.7)

where H1 = 1
2zT

1 z1, and

F
(1)
i xi := Fix

i − �L−1
Ax(F2x

2)

�x
Fi−1x

i−1, i�3. (3.8)

It can be seen that system (3.7) is a second degree approxi-
mate DHR. If the approximation degree of (3.7) does not meet
the requirement, i.e., 2 < k, then we go on to set

z2 = z1 − L−1
Ax(F

(1)
3 x3). (3.9)
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From (3.9), (3.7) and (3.4), we have

ż2 = − R
�H1

�z1
+
∑
i �3

F
(1)
i xi − �L−1

Ax(F
(1)
3 x3)

�x

×
⎡
⎣Ax +

∑
i �2

Fix
i

⎤
⎦

= − R
�H2

�z2
+
[
R

(
�H2

�z2
− �H1

�z1

)
+ F

(1)
3 x3

−�L−1
Ax(F

(1)
3 x3)

�x
Ax

]

+
[
F

(1)
4 x4 − �L−1

Ax(F
(1)
3 x3)

�x
F2x

2

]

+
[
F

(1)
5 x5 − �L−1

Ax(F
(1)
3 x3)

�x
F3x

3

]
+ · · ·

:= −R
�H2

�z2
+
∑
i �4

F
(2)
i xi = −R

�H2

�z2
+O(‖x‖4), (3.10)

where H2 = 1
2zT

2 z2, and

F
(2)
i xi := F

(1)
i xi − �L−1

Ax(F
(1)
3 x3)

�x
Fi−2x

i−2, i�4. (3.11)

Recursively, setting

zk = zk−1 − L−1
Ax(F

(k−1)
k+1 xk+1), (3.12)

we obtain

żk = − R
�Hk

�zk

+ F
(k)
k+2x

k+2 + F
(k)
k+3x

k+3 + · · ·

= − R
�Hk

�zk

+ O(‖x‖k+2), (3.13)

where

F
(k)
i xi := F

(k−1)
i xi − �L−1

Ax(F
(k−1)
k+1 xk+1)

�x
Fi−kx

i−k ,

i�k + 2, (3.14)

z0 := x, F
(0)
i := Fi, Hk = 1

2
zT
k zk, k = 1, 2, . . . .

Using (3.12) repeatedly, we have

zk = x −
k+1∑
i=2

L−1
Ax(F

(i−2)
i xi) := 	k(x). (3.15)

Because (�	k/x)(0) = In, Eq. (3.15) can serve as a coordinate
transformation in some neighborhood, �, of the origin.

From (3.15) and (3.13), we obtain

żk = �	k

�x
ẋ = −R

�Hk

�zk

+ O(‖x‖k+2)

= − R

(
�	−1

k

�zk

)T
�Hk(x)

�x
+ O(‖x‖k+2),

which implies

ẋ =
[
−
(

�	k

�x

)−1

R

(
�	k

�x

)−T
]

�Hk(x)

�x
+
(

�	k

�x

)−1

× O(‖x‖k+2).

Thus, system (2.3) has a kth degree approximate DHR as
follows:

ẋ = −Rk−1
�Hk−1(x)

�x
+ O(‖x‖k+1) + g(x)u, (3.16)

where

Rk−1 =
(

�	k−1

�x

)−1

R

(
�	k−1

�x

)−T

> 0, (3.17)

Hk−1(x) = 1

2
	T

k−1(x)	k−1(x)

= 1

2

(
x −

k∑
i=2

L−1
Ax(F

(i−2)
i xi)

)T

×
(

x −
k∑

i=2

L−1
Ax(F

(i−2)
i xi)

)
. � (3.18)

Based on the proof of Theorem 3.6, we can establish the
following algorithm of finding kth degree approximate DHR
for system (2.3).

Algorithm 3.7. Assume that A2 holds for system (2.3). Then,
the kth degree approximate DHR of system (2.3) can be ob-
tained in four steps as follows (k�2):

Step 1: Express system (2.3) as (3.4), such that A =
Diag{�1, . . . , �n} < 0 satisfies Assumption A1.

Step 2: Find �i := L−1
Ax(F

(i−2)
i xi), i = 2, 3, . . . , k, where

F
(0)
i = Fi .
From the proof of Lemma 3.4, we know

�2 = L−1
Ax(F2x

2)

=

⎡
⎢⎢⎢⎢⎢⎣

1
2�1−�1

1
�1+�2−�1

· · · 1
�n+�n−1−�1

1
2�n−�1

1
2�1−�2

1
�1+�2−�2

· · · 1
�n+�n−1−�2

1
2�n−�2

· · · · · ·
1

2�1−�n

1
�1+�2−�n

· · · 1
�n+�n−1−�n

1
2�n−�n

⎤
⎥⎥⎥⎥⎥⎦

n×n2

� F2x
2, (3.19)
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where � is the Hadamard product of matrices [15], which is
defined as follows. Assume that P =[pij ] ∈ Rm×n, Q=[qij ] ∈
Rm×n are two matrices. Then, P � Q is defined as P � Q =
[pij qij ]m×n. Using (3.14) repeatedly yields

F
(i−2)
i xi = Fix

i −
i−2∑
s=1

��s+1

�x
Fi−sx

i−s ,

i = 3, 4, . . . , k. (3.20)

From the proof of Lemma 3.4 again, we have

�i = L−1
Ax

(F
(i−2)
i

xi )

=

⎡
⎢⎢⎢⎢⎢⎢⎣

1
i�1−�1

1
(i−1)�1+�2−�1

· · · 1
(i−1)�n+�n−1−�1

1
i�n−�1

1
i�1−�2

1
(i−1)�1+�2−�2

· · · 1
(i−1)�n+�n−1−�2

1
i�n−�2

· · · · · ·
1

i�1−�n

1
(i−1)�1+�2−�n

· · · 1
(i−1)�n+�n−1−�n

1
i�n−�n

⎤
⎥⎥⎥⎥⎥⎥⎦

n×ni

� F
(i−2)
i

xi , i = 3, 4, . . . , k. (3.21)

Eqs. (3.19)–(3.21) are the recursive formula of finding �i .
Step 3: Find the coordinate transformation zk−1 = 	k−1(x).
Using (3.15), we obtain

zk−1 = 	k−1(x) = x −
k∑

i=2

�i . (3.22)

Step 4. Calculate Rk−1 = −(�	k−1/�x)−1A(�	k−1/�x)−T

> 0, Hk−1= 1
2	T

k−1(x)	k−1(x), and give the form of kth degree
approximate DHR as follows:

ẋ = −Rk−1
�Hk−1

�x
+ O(‖x‖k+1) + g(x)u. (3.23)

Remark 3.8. In Step 1, if A does not satisfy Assumption A1,
we can add a state feedback law to system (2.3) such that
Assumption A1 holds for the system. This can be guaranteed
by Assumption A2.

Remark 3.9. It is easy to see that Hk−1 has a strictly local min-
imum at the origin, and the degree of the lowest-degree non-
zero terms in −Rk−1∇Hk−1 is no more than k. From Propo-
sition 3.3, the kth degree approximate DHR (3.23) is locally
stable (when u = 0).

In Section 5, we will give an example to show how to apply
Algorithm 3.7 to find a kth degree approximate DHR.

Now, let k → ∞ in (3.15), then we obtain

z = x −
∞∑
i=2

�i := 	(x). (3.24)

Since 	(0) = 0, the convergent domain of (3.24), denoted by
�, is not empty, with which we have the following result.

Corollary 3.10. If � contains a neighborhood, �, of the origin,
then system (2.3) has a DHR as follows:

ẋ = −R̄
�H

�x
+ g(x)u, x ∈ �, (3.25)

where

R̄ = −
(

�	

�x

)−1

A

(
�	

�x

)−T

> 0

and

H = 1

2
	T(x)	(x) = 1

2

(
x −

∞∑
i=2

�i

)T (
x −

∞∑
i=2

�i

)
.

In system (2.3), if f (x) is a polynomial vector field, we can
obtain a much more elegant result as follows.

Corollary 3.11. If f (x) is a kth degree polynomial vector field,
then system (2.3) has the following DHR:

ẋ = −R̄
�H

�x
+ g(x)u, (3.26)

where

R̄ = −
(

�	k−1

�x

)−1

A

(
�	k−1

�x

)−T

> 0

and

H = 1

2
	T

k−1(x)	k−1(x) = 1

2

(
x −

k∑
i=2

�i

)T (
x −

k∑
i=2

�i

)
.

Corollary 3.11 shows that every polynomial system has a
precise DHR, which can be given by (3.26).

4. kth degree approximate Lyapunov function

This section investigates construction of local Lyapunov
functions. First, we propose the concept of kth degree approx-
imate Lyapunov function, and then, based on the approximate
DHR algorithm obtained in Section 3, we provide a method of
constructing the kth degree approximate Lyapunov function.

Consider system

ẋ = f (x), f (0) = 0, x ∈ Rn. (4.1)

Definition 4.1. A scalar function V (x) is called a kth degree
approximate Lyapunov function of system (4.1) if

(1) V (x) is positive definite; and
(2) V̇ (x) + O(‖x‖k+1) = �k(x)�0 holds along the trajec-

tory of system (4.1), where �k(x) ∼ O(‖x‖l ) (as x →
0), 0� l�k.

Example 4.2. V (x)= 1
2x2

1 +x2
2 is a second degree approximate

Lyapunov function of the following system:[
ẋ1

ẋ2

]
=
[−x1 + x2

2

−x2 + x3
1

]
:= f (x). (4.2)
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In fact,

V̇ (x) = Lf V (x) = −x2
1 − 2x2

2 + x1x
2
2 + 2x3

1x2

:= �2(x) + O(‖x‖3),

where �2(x) = −x2
1 − 2x2

2 is negative definite and �2(x) ∼
O(‖x‖2). From Definition 4.1, V (x) is a second degree approx-
imate Lyapunov function of system (4.2).

From Definition 4.1, it can be seen that the following result
holds.

Proposition 4.3. If V (x) is a kth degree approximate Lyapunov
function of system (4.1), then V (x) is a local Lyapunov function
of the system.

Next, we present a method of constructing kth degree ap-
proximate Lyapunov function for system (2.3).

Proposition 4.4. Algorithm 3.7 provides an algorithm to obtain
kth degree approximate Lyapunov function for system (2.3).

Proof. Consider the kth degree approximate DHR (3.23). It
is easy to see that Hk−1(x) = 1

2	T
k−1	k−1 is positive definite.

When u = 0,

Ḣk−1 =
(

�Hk−1

�x

)T (
−Rk−1

�Hk−1

�x
+ O(‖x‖k+1)

)

= 	T
k−1

�	k−1

�x

[(
�	k−1

�x

)−1

A

(
�	k−1

�x

)−T
]

×
(

�	k−1

�x

)T

	k−1 + 	T
k−1

�	k−1

�x
· O(‖x‖k+1)

= 	T
k−1A	k−1 + O(‖x‖k+2) := �k+1(x) + O(‖x‖k+2),

where �k+1(x) = 	T
k−1A	k−1 is negative definite and

�k+1(x) ∼ O(‖x‖2) (as x → 0). From Definition 4.1, we
know that Hk−1 is a (k + 1)th degree approximate Lyapunov
function of system (2.3). �

Remark 4.5. When using Algorithm 3.7 to find sth degree
approximate Lyapunov function (s�2), we should let k= s −1
in Steps 2–4 and find Hs−2, which is the desired sth degree
approximate Lyapunov function.

Remark 4.6. With the method presented in this paper, we can
easily obtain an explicit DHR form (approximate form) as well
as a kind of local Lyapunov function for the system whose
linearization is controllable. Once the DHR form is obtained,
all the existing results on control design based on Hamiltonian
systems in the literature can be used for the system under con-
sideration. This is yet another objective of the paper to bridge
the gap of existing energy-based control design results for this
class of systems by providing explicit algorithms to construct
the DHR, and thus bringing the related methods more close to
reality.

5. An illustrative example

In this section, we give an example, which cannot be provided
a DHR by using the results in [29,23], to show how to apply
Algorithm 3.7 to find kth degree approximate DHR and kth
degree approximate Lyapunov function for nonlinear systems.

Example 5.1. Find a fourth degree approximate DHR and a
fifth degree approximate Lyapunov function for the following
system:

ẋ =
⎡
⎢⎣

1 − e3x1

−x2
1 − 4x2 − x2

3

x3
1 + x3

⎤
⎥⎦+

⎡
⎢⎣

0

0

1

⎤
⎥⎦ u

:= f (x) + gu, x ∈ R3. (5.1)

It is easy to see that f (x) is an analytic vector field. A
straightforward computation shows that Jf (0) = Diag{−3,

−4, 1} and g(0)=[0, 0, 1]T. It can be checked that (Jf (0), g(0))

is a controllable pair. Notice that Jf (0) does not satisfy As-
sumption A1. We first choose a state feedback

u = −6x3 + v, (5.2)

and substitute it into (5.1). Then, we have

ẋ =
⎡
⎢⎣

1 − e3x1

−x2
1 − 4x2 − x2

3

x3
1 − 5x3

⎤
⎥⎦+

⎡
⎢⎣

0

0

1

⎤
⎥⎦ v. (5.3)

In the example, k = 4. Using Taylor expansion, we express
system (5.3) as follows:

ẋ = Ax + F2x
2 + F3x

3 + F4x
4 + O(‖x‖5) + gv, (5.4)

where

A =
⎡
⎢⎣

−3 0 0

0 −4 0

0 0 −5

⎤
⎥⎦ ,

F2 =
⎡
⎢⎣

− 9
2 0 0 0 0 0 0 0 0

−1 0 0 0 0 0 0 0 −1

0 0 0 0 0 0 0 0 0

⎤
⎥⎦ ,

F3 =
⎡
⎢⎣

− 27
3 0 · · · 0

0 0 · · · 0

1 0 · · · 0

⎤
⎥⎦

3×27

,

F4 =
⎡
⎢⎣

− 27
8 0 · · · 0

0 0 · · · 0

0 0 · · · 0

⎤
⎥⎦

3×81

,

x2 = [x2
1 , x1x2, x1x3, . . . , x3x2, x

2
3 ]T, x3 = [x3

1 , x2
1x2, x

2
1x3,

. . . , x2
3x2, x

3
3 ]T and x4 = [x4

1 , x3
1x2, x3

1x3, . . . , x
3
3x2, x

4
3 ]T.
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It is easy to see from Proposition 2.5 that Assumption A1
holds for the system. Now, we find �i , i =2, 3, 4. Since F2x

2 =[
− 9

2x2
1 , −x2

1 − x2
3 , 0

]T
, from (3.19) we obtain

�2 = L−1
Ax(F2x

2) =
[

3

2
x2

1 ,
1

2
x2

1 + 1

6
x2

3 , 0

]T

.

From (3.20) and (3.21), we have

F
(1)
3 x3 = F3x

3 − ��2

�x
F2x

2

=
[

9x3
1 ,

9

2
x3

1 + 1

3
x2

1x3 + 1

3
x3

3 , x3
1

]T

,

�3 = L−1
Ax(F

(1)
3 x3)

=
[
−3

2
x3

1 , − 9

10
x3

1 − 1

21
x2

1x3 − 1

33
x3

3 , −1

4
x3

1

]T

.

From (3.20) and (3.21) again,

F
(2)
4 x4 = F4x

4 − ��2

�x
F3x

3 − ��3

�x
F2x

2

=
[
−81

8
x4

1 , −153

20
x4

1 − 16

21
x3

1x3, −27

8
x4

1

]T

,

�4 = L−1
Ax(F

(2)
4 x4) =

[
9

8
x4

1 ,
153

160
x4

1 + 8

105
x3

1x3,
27

56
x4

1

]T

.

By (3.22), we obtain the desired coordinate transformation as
follows:

z3 = 	3(x) = x −
4∑

i=2

�i

=

⎡
⎢⎢⎢⎣

x1 − 3
2 x2

1 + 3
2 x3

1 − 9
8 x4

1

x2 − 1
2 x2

1 − 1
6 x2

3 + 9
10 x3

1 + 1
21 x2

1x3 + 1
33 x3

3 − 153
160 x4

1 − 8
105 x3

1x3

x3 + 1
4 x3

1 − 27
56 x4

1

⎤
⎥⎥⎥⎦ .

(5.5)

Thus, according to (3.23), system (5.1) has the following
fourth degree approximate DHR:

ẋ = −R3
�H3

�x
+ gv + O(‖x‖5), (5.6)

where

R3 = −
(

�	3

�x

)−1

A

(
�	3

�x

)−T

> 0,

H3(x) = 1

2
	T

3 (x)	3(x). (5.7)

Moreover, from Proposition 4.4, the Hamiltonian function
H3(x) is just the desired fifth degree approximate Lyapunov
function of system (5.1).

6. Conclusion

Using the diagonal normal form of dynamic systems, we
have investigated the kth degree approximate DHR of nonlin-
ear systems and set up a new algorithm for the realization. It
was shown that every nonlinear affine system has an approx-
imate DHR if linearization of the system is controllable. We
have also given the concept of kth degree approximate Lya-
punov function and proposed a method of constructing the ap-
proximate Lyapunov function. The presented example shows
that the algorithm proposed in this paper is very feasible.
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