
Systems & Control Letters 55 (2006) 558–565
www.elsevier.com/locate/sysconle

Optimal impulsive control in periodic ecosystem

Yanni Xiaoa,∗, Daizhan Chengb,1, Huasu Qinb

aDepartment of Mathematical Sciences, The University of Liverpool, Liverpool L69 3BX, UK
bAcademy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100080, PR China

Received 21 April 2003; received in revised form 28 June 2005; accepted 14 December 2005
Available online 20 March 2006

Abstract

In this paper, the impulsive exploitation of single species modelled by periodic Logistic equation is considered. First, it is shown that the
generally periodic Kolmogorov system with impulsive harvest has a unique positive solution which is globally asymptotically stable for the
positive solution. Further, choosing the maximum annual biomass yield as the management objective, we investigate the optimal harvesting
policies for periodic logistic equation with impulsive harvest. When the optimal harvesting effort maximizes the annual biomass yield, the
corresponding optimal population level, and the maximum annual biomass yield are obtained. Their explicit expressions are obtained in terms
of the intrinsic growth rate, the carrying capacity, and the impulsive moments. In particular, it is proved that the maximum biomass yield is
in fact the maximum sustainable yield (MSY). The results extend and generalize the classical results of Clark [Mathematical Bioeconomics:
The Optimal Management of Renewable Resources, Wiley, New York, 1976] and Fan [Optimal harvesting policy for single population with
periodic coefficients, Math. Biosci. 152 (1998) 165–177] for a population described by autonomous or nonautonomous logistic model with
continuous harvest in renewable resources.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The optimal management of renewable resources, which has
a direct relationship to sustainable development, has received
much attention for a long time [8,1,11]. In the simplest sense,
sustainable use of a resources means that the resource can be
used indefinitely. Moreover, one always hopes to achieve sus-
tainability at a high level of productivity. Fish resources are
very important renewable resources. Sustainability of fisheries
at a good level of productivity and of the economic results re-
quires a relatively broad understanding of appropriate and ef-
fective management. In practice, the management of fishing is
a decision with multiple objectives [11]. Some of the desirable
objectives in the management of fish resources are as follows:
(1) the provision of good biomass yield, (2) the conservation
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of fish population, (3) the provision of good economic returns,
(4) the conservation of genetic variability of the fish population,
and so on. The formulation of good harvesting policies which
take into account these objectives is a complex and difficult task
even if the dynamics of a fish population is known accurately
and the objectives are fully quantified. One practical way to
overcome the mathematical difficulties in this complex problem
is to convert tentatively all the objective functions except one
into constraints and to optimize the only remaining objective
function.

Managing single-species fisheries with above objectives has
been studied systemically. Suppose that x(t), the density of
the fish population at time t, satisfies the well known logistic
equation

ẋ = rx
(

1 − x

K

)
, (1.1)

where r, as a positive constant, is called the intrinsic growth
rate, the positive constant K is usually referred to as the
environment carrying capacity, or saturation level. Now,
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suppose that the resource population described by the logistic
Eq. (1.1) is subject to exploitation, under the catch-per-unit-
effort hypothesis

h = Ex.

The equation of the harvested population reads

ẋ = rx
(

1 − x

K

)
− Ex, (1.2)

where the positive constant E denotes the harvesting effort. In
order to gain the maximum biomass yield, Clark [8] considered
this optimal harvesting problem, and obtained the optimal har-
vesting effort, the corresponding optimal population level, re-
spectively. Later Fan et al. [10] considered the optimal harvest
problem for the modified model (1.2) with periodic coefficients

ẋ = r(t)x

(
1 − x

K(t)

)
− E(t)x, (1.3)

and generalized the classical results of Clark.
A common assumption for both model (1.2) and model

(1.3) is that the human exploit activities occur continuously.
However, this is not how the thing looks like. Mostly, the
harvesting of species is seasonal or it occurs in regular pulses.
The continuous human’s exploit action is then removed from
the model, and replaced by an impulsive perturbation. These
models are subject to short-term perturbations which are of-
ten assumed to be in the form of impulses in the modelling
process. Consequently, the impulsive differential equations
provide a natural description of such systems [4,5,16]. Equa-
tions of this kind appear in almost every domain of applied
sciences. Some numerous examples were given in Bainov’s
and his collaborators’ books [4,5]. Some impulsive equa-
tions have been recently introduced in population dynamics
which are related with population ecology [17,6,2,9,21,22] and
chemotherapeutic treatment of disease [15,19], etc.

The purpose of this paper is to investigate the effect of im-
pulsive perturbation on the growth of population and further to
study what impulsive harvesting policies can be used to maxi-
mize the biomass yield and to make the population sustainable
development. The rest of the paper is organized as follows:
in the following section, we first discuss the general nonlin-
ear differential equation with impulsive harvest and show that
there exists a unique periodic solution which globally attracts
all other positive solutions, that is, system is permanent (see
definition in [6]). Section 3 focuses on the optimal harvesting
problem for periodic logistic equation with impulsive effect.
The optimal harvesting effort that maximizes the biomass yield,
and the corresponding optimal population level are determined.
In particular, it is shown that the optimal population level is
truly the positive periodic solution of the considered system,
and hence it is globally asymptotically stable. Moreover, the
corresponding maximum biomass yield is the maximum sus-
tainable yield (MSY). In Section 4, we compare the optimal
impulsive harvesting policy with optimal continuous harvesting
policy by using both theoretical analysis and numerical method,

which demonstrate the advantage of optimal impulsive harvest-
ing policy.

2. Existence and uniqueness of periodic solution

Let �1 < �2 < · · · be sequence of positive numbers. We define
PC = {� : R → R, � is continuous for t �= �k, �(�+

k ) and
�(�−

k ) exist and �(�k)=�(�−
k ), k=1, 2, . . .}; PC′={� ∈ PC :

� is differentiable at t �= �k, k = 1, 2, . . .}, where �(�+
k ) =

limh→0+ �(�k + h). Denote PCT (respectively, PC′
T ) = {� ∈

PC (respectively, PC′) : �(t + T ) = �(t), t ∈ R}.
Consider the following Kolmogorov-type equation with

impulsive harvest:

ẋ(t) = x(t)F (t, x(t)), t �= �k, k ∈ N , (2.1)

x(�+
k ) = x(�k)(1 − Ek), t = �k, k ∈ N , (2.2)

where F : R × R → R is a continuous function and
N = {1, 2, . . .}. From the point view of biology, we assume
0 < Ek < 1, k = 1, 2, . . . . The systems (2.1) and (2.2) are
said to be periodic with period T > 0 if there exists a positive
integer q such that

F(t+T , x)=F(t, x), Ek+q=Ek, �k+q=�k+T . (2.3)

Further, we assume that F is locally Lipschitz with respect
to the second variable. Then we can prove the existence and
uniqueness of the solution of systems (2.1) and (2.2) with a
given initial value.

Theorem 2.1. Suppose systems (2.1) and (2.2) satisfy (2.3). In
addition,

(a) F(t, x) > F(t, y) if 0�x < y;
(b) there exists a positive constant M such that F(t, M)�0

for all t;

(c) [∏q
k=1(1 − Ek)]e

∫ T
0 F(t,0) dt > 1.

Then systems (2.1) and (2.2) have exactly a T-periodic and
positive solution xp(t) ∈ PC′

T , with xp(t)�M . Moreover, the
solution u(t)�u(t; 0, x0) of Eqs. (2.1) and (2.2) with the initial
value x0 > 0 at t = 0 is defined on [0, +∞) and

lim
t→+∞ |u(t) − xp(t)| = 0. (2.4)

Proof. Let u(t) ∈ PC′ be a solution of (2.1) and (2.2), then
u(t) > 0 for all t in the domain Dom(u) of u. On the other hand,
it is easy to prove that

u(t)� max{u(0), M}, t ∈ [0, +∞) ∩ Dom(u). (2.5)

Thus, u(t) is bounded on t ∈ [0, +∞) ∩ Dom(u) and, hence,
u(t) is defined in [0, +∞).

For x�0, let u(t, x) be the solution of the systems (2.1)
and (2.2) such that u(0, x) = x. Define the Poincaré map
(for properties of the Poincaré map of impulsive differential
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equation, see for instance [12,20]): P : [0, +∞) → [0, +∞)

by P(x)=u(T , x). Then we have P(0)=0, Ṗ (0)=[∏q
k=1(1−

Ek)]e
∫ T

0 F(t,0) dt > 1, and by (2.2), P(M)�M . Hence, P has at
least one fixed point z ∈ (0, M] such that u(T , z) = z, which
implies that xp(t) := u(t, z) is a T-periodic and positive solu-
tion of the systems (2.1) and (2.2).

Let V, W be positive and T-periodic solutions of the systems
(2.1) and (2.2) and let h=V/W − 1. Then, h is T-periodic and

ḣ(t) = V (t)

W(t)
[F(t, V (t)) − F(t, W(t))], t �= �k, k ∈ N ,

h(�+
k ) = V (�k)

W(�k)
− 1 = h(�k), t = �k, k ∈ N . (2.6)

If V (t) �= W(t), without loss of generality, we can assume
that V (t) < W(t) due to the uniqueness of solutions of systems
(2.1) and (2.2). By condition (a) of Theorem 2.1 and (2.6),
we get ḣ(t) > 0, t �= �k and h(�+

k ) = h(�k), which implies that
h cannot be periodic and this contraction proves that systems
(2.1) and (2.2) have exactly a T-periodic and positive solution.
Equivalently, z is the unique fixed point of P in (0, +∞).

Let u(t) = u(t, x0) be a solution of (2.1) and (2.2). It is easy
to see that u(t +T ) is also a solution of (2.1) and (2.2). In fact,
let y(t) = u(t + T ), we have for all k ∈ N ,

ẏ(t) = u̇(t + T ) = u(t + T )F (t + T , u(t + T ))

= y(t)F (t, y(t)), t �= �k ,

y(�+
k ) = u(�+

k + T ) = u(�+
k+q) = u(�k+q)(1 − Ek+q)

= y(�k)(1 − Ek), t = �k ,

which shows that u(t + T ) is also a solution of (2.1) and (2.2),
and we can see that {u(nT ), n = 1, 2, . . .} is a positive mono-
tonic sequence of R. In particular, u(nT ) → u0 as n → +∞,
for some u0 �0.

We claim that u0 > 0. Otherwise, assume u0 = 0, then
{u(nT )} is strictly decreasing and u(t) → 0 as t →
+∞. Now, let us choose � > 0 sufficiently small such that

[∏q
k=1(1 − Ek)]e

∫ T
0 F(t,�) dt > 1 and there exists t1 > t0 such

that u(t)�� for all t � t1. Integrating Eq. (2.1) from nT to
nT + �1, nT + �k−1 to nT + �k (k = 2, . . . , q) and from
nT + �q to nT + T we get

ln
u(nT + �1)

u(nT )
=

∫ nT +�1

nT

F (t, u(t)) dt ,

ln
u(nT + �2)

u(nT + �+
1 )

=
∫ nT +�2

nT +�1

F(t, u(t)) dt ,

...

ln
u(nT + �q+1)

u(nT + �+
q )

=
∫ nT +T

nT +�q

F (t, u(t)) dt .

Then we have

0 > ln
u(nT + T )

u(nT )
= ln

[
q∏

k=1

(1 − Ek)

]

+
∫ nT +T

nT

F (t, u(t)) dt

� ln

{[
q∏

k=1

(1 − Ek)

]
e
∫ T

0 F(t,�) dt

}
> 0

for all integers n� t1. This contradiction proves the Claim.
From this, u0 is a positive fixed point of P since P n(x0) =

u(nT ) → u0. Consequently, u0 = z and then u(t) → xp(t) as
t → +∞. The proof is complete. �

If F(t, x((t)) = r(t)(1 − x(t)/K(t)), then systems (2.1) and
(2.2) are in the following form

ẋ(t) = r(t)x(t)

[
1 − x(t)

K(t)

]
, t �= �k, k ∈ N , (2.7)

x(�+
k ) = x(�k)(1 − Ek), t = �k, k ∈ N , (2.8)

where r(t) and K(t) are continuous functions and satisfy

r(t + T ) = r(t), K(t + T ) = K(t),

�k+q = �k + T , Ek+q = Ek, 0 < Ek < 1, (2.9)

and Ek is called impulse harvesting effort. The intrinsic rate of
change r(t) is related to the periodically changing possibility
of regeneration of the species, and the carrying capacity of the
system K(t) is related to the periodic change of the resources
maintaining the evolution of the population. The jump condition
(2.8) reflects the impulse harvesting effect on the population.
Let x(t) be a solution of (2.7) and (2.8) with positive initial
value x0 = x(0) > 0, then x(t) > 0 for all t �0. Further, it is
bounded, that is,

x(t) < max{x(0), M}, (2.10)

where M = maxt∈[0,T ]K(t).
Further, if we assume

[
q∏

k=1

(1 − Ek)

]
e
∫ T

0 r(�) d� > 1 (2.11)

then the conclusions of Theorem 2.1 imply the following
results.

Theorem 2.2. Assume that (2.9) and (2.11) hold, then there
exists a unique positive T-periodic solution xp(t) ∈ PC′

T
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to systems (2.7) and (2.8), which is expressed as

xp(t) =
[

e
∫ T

0 r(�) d�
q∏

k=1

(1 − Ek) − 1

]

×
⎡
⎣ ∫ t+T

t

r(s)

K(s)
exp

(
−

∫ t

s

r(�) d�

)

×
∏

t ��k<s

(1 − Ek) ds

⎤
⎦

−1

. (2.12)

In addition, xp(t) is globally asymptotically stable for x(t) with
positive initial value x(t0) = x0 > 0 in the sense that

lim
t→+∞ |x(t) − xp(t)| = 0. (2.13)

Proof. It is easy to verity that Eq. (2.12) is a T-period solution
of Eqs. (2.7) and (2.8). From Theorem 2.1, we can see that
(2.13) holds. �

Remark. In Theorem 2.2 if r(t), K(t) ∈ PCT , the conclusions
are also true. Moreover, the solution of systems (2.7) and (2.8)
with initial value x(t0) = x0 can be expressed as

x(t) =
⎛
⎝ 1

x0
e(− ∫ t

t0
r(�) d�) ∏

t0 ��k<t

1

1 − Ek

+
∫ t

t0

r(s)

K(s)
e(− ∫ t

s r(�) d�)
∏

s ��k<t

1

1−Ek

ds

⎞
⎠
−1

. (2.14)

Let �1, �2 with �1 ��2 be positive constants. In particular,
we can choose �1 = mint∈[0,T ] xp(t), �2 = maxt∈[0,T ] xp(t). It
follows from Theorem 2.2 that there exists a t̄ > 0 such that for
any solution given by (2.14) we have

�1 − �0 �x(t)��2 + �0, t > t̄ ,

where �0 > 0 is sufficiently small. That is, we have the following
result.

Corollary 2.1. Assume (2.9) and (2.11) hold true, then the sys-
tems (2.7) and (2.8) are permanent, that is, the exploited popu-
lation modelled by (2.7) and (2.8) is sustainable development.

3. Optimal impulsive harvesting policy

In this section, taking a fishery management as an example,
we show how to plan harvesting policy in order to sustain fish
population at high levels of productivity or economic results,
that is, we consider the problem of optimal harvest policy for
periodic logistic equation. For this purpose, we first choose the
maximum annual biomass yield as the management objective,
and assume that r(t), K(t) ∈ PCT , and are 1-period functions
(that is, T = 1).

In the rest of paper, we choose the harvesting effort Ek, k =
1, 2, . . . , q as control variables. Define the admissible set S=

{Ek|Ek+q=Ek, 0�Ek �1, k=1, 2, . . . , q}. We note that Ek=0
implies that there is no harvest at time �k , and consequently
there exists a unique T-period solution of the systems (2.7) and
(2.8) which is globally asymptotically stable (see Fan [10]).
Ek =1 means that from time �k the population becomes extinc-
tion. Without loss of generality, we only investigate the optimal
harvesting policy in a system period (e.g., in one year). For the
sake of computation, from now on we denote

�0 < n < �1 < �2 < · · · < �q < n + 1 < �1 + 1,

where n is a positive integer. So the annual impulsive harvesting
yield can be expressed as

Y{Ek}qk=1
=

q∑
k=1

Ekx(�k). (3.1)

What we wish to do is to find E∗
k ∈ S(k = 1, 2, . . . , q) such

that Y{Ek}qk=1
reaches its maximum, namely to find the optimal

impulsive harvesting effort, which is a dynamic optimization
problem of a functional. It is only necessary to solve

Y{E∗
k }qk=1

= max
Ek∈S

Y{Ek}qk=1
, (3.2)

with constraints

ẋ(t) = r(t)x(t)

[
1 − x(t)

K(t)

]
, t �= �k ,

x(�+
k ) = x(�k)(1 − Ek), t = �k, k = 1, 2, . . . , q.

Since the solutions of Eqs. (2.7) and (2.8) with positive ini-
tial values, which exist uniquely, are positive and uniformly
bounded for all impulsive harvesting effort Ek, k =1, 2, . . . , q,
we can take use of Theorem 5.1 in chapter III of Berkovtiz
[7] to see the existence of an optimal control in the class of
bounded measurable functions.

Definition 3.1 (Artstein [3]). If the control policy {Ek, k =
1, 2, . . . , q} is such that Eqs. (2.7) and (2.8)) have an asymptot-
ically stable periodic solution or equilibrium, then the biomass
yield (3.1) is said to be a sustainable yield.

Integrate Eq. (2.7) in any impulsive internal, for example,
t ∈ (�k, �k+1], gives

x(t) =
[

1

x(�+
k )

e
− ∫ t

�k
r(�) d� +

∫ t

�k

r(s)

K(s)
e− ∫ t

s r(�) d� ds

]−1

.

(3.3)

Using Eq. (2.8) yields

x(�k+1) =
[

1

(1 − Ek)x(�k)
e
− ∫ �k+1

�k
r(�) d�

+
∫ �k+1

�k

r(s)

K(s)
e− ∫ �k+1

s r(�) d� ds

]−1

.

For convenience, denote x(k)�x(�k), k = 1, . . . , q. Then the
optimal impulsive problem (3.2) can be converted into the
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following discrete optimization problem subject to certain
contains, namely

max
Ek∈S

Y{Ek}qk=1
=

q∑
k=1

Ekx(k), (3.4)

subject to

x(k + 1) =
[

1

(1 − Ek)x(k)
e
− ∫ �k+1

�k
r(�) d�

+
∫ �k+1

�k

r(s)

K(s)
e− ∫ �k+1

s r(�) d� ds

]−1

. (3.5)

In the following, we investigate the optimal harvest prob-
lem (3.4)–(3.5) using discrete time optimal control theory. For
convenience, denote

A = e(
∫ 1

0 r(�) d�), D(�k) = e
(− ∫ �k

�k−1
r(�) d�)

,

B(�k) =
∫ �k

�k−1

r(s)

K(s)
e(− ∫ �k

s r(�) d�) ds.

By applying discrete time optimal control theory, we can obtain
the following theorem.

Theorem 3.1. If

D1/2(�k+1)(1 − D1/2(�k+1))

1 − D1/2(�k)

B(�k)

B(�k+1)
�1,

then there exists a unique optimal impulsive harvest effort
{E∗

k }qk=1, namely,

E∗
k = 1 − D1/2(�k+1)(1 − D1/2(�k+1))

1 − D1/2(�k)

B(�k)

B(�k+1)
, (3.6)

which solves uniquely the dynamic optimization problem (3.2).
Moreover, the corresponding optimal population level is

x∗p(t) =
[

e
− ∫ t

�k
r(�) d�

B(�k+1)[D1/2(�k+1) − D(�k+1)]−1

+
∫ t

�k

r(s)

K(s)
e(− ∫ t

s r(�) d�) ds

]−1

, (3.7)

where t ∈ (�k, �k+1], k = 1, 2, . . . , q.
The maximum annual harvesting yield reads

Y{E∗
k }qk=1

=
q∑

k=1

(1 − D1/2(�k))
2

B(�k)
, (3.8)

and further, which is the maximum annual-sustainable yield.

Proof. In order to utilize optimal control theory (see [11,14])
directly, we shall minimize the function

Ȳ{Ek}qk=1
= −

q∑
k=1

Ekx(k).

Then solving (3.2) is equivalent to solve the equation

Ȳ{E∗
k }qk=1

= min
Ek∈S

Ȳ{E∗
k }qk=1

.

The Hamilton function is

H(x(k), Ek, �(k + 1), �k) = −Ekx(k) + �(k + 1)[
D(�k+1)

(1 − Ek)x(k)
+ B(�k+1)

]−1

,

where �(k + 1) is the costate variable.
If {E∗

k , k = 1, 2, . . . , q} is an optimal control sequence and
{x∗(k), k =1, 2, . . . , q} is the corresponding optimal trajectory
(the optimal population level). Then it follows from [11, The-
orem 2.6.1] that the necessary conditions for optimality are

�(k) = �H

�x∗(k)
,

�H

�E∗
k

= 0,

which gives

�(k) = − E∗
k + �(k + 1)

[
D(�k+1)

(1 − E∗
k )x∗(k)

+ B(�k+1)

]−2

× D(�k+1)[(1 − E∗
k )(x∗(k))2]−1,

x∗(k) = − �(k + 1)

[
D(�k+1)

(1 − E∗
k )x∗(k)

+ B(�k+1)

]−2

× D(�k+1)[x∗(k)(1 − E∗
k )2]−1. (3.9)

It follows form the second equation of (3.9) that we have

�(k + 1) = −
[

D(�k+1)

(1 − E∗
k )x∗(k)

+ B(�k+1)

]2

× (D(�k+1))
−1[x∗(k)(1 − E∗

k )]2.

Substituting above equality into the first equation of (3.9) yields
�(k) = −1. Again, combining with (3.5) gives

(1 − E∗
k )x∗(k)

x∗(k + 1)
= e

(−(1/2)
∫ �k+1
�k

r(�) d�)

= D1/2(�k+1), k = 1, 2, . . . , q. (3.10)

Difference Eq. (3.5) gives

1

x∗(k + 1)
= D(�k+1)

(1 − E∗
k )x∗(k)

+ B(�k+1). (3.11)

It follows from (3.10) and (3.11) that

x∗(k) = 1 − D1/2(�k)

B(�k)
, k = 1, 2, . . . , q. (3.12)

Substituting x∗(k) into (3.10) gives

E∗
k = 1 − D1/2(�k+1)

x∗(k + 1)

x∗(k)

= 1 − D1/2(�k+1)(1 − D1/2(�k+1))

D1/2(�k)

B(�k)

B(�k+1)
,

k = 1, 2, . . . , q (3.13)
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which implies that E∗
k is unique and less than one. The assump-

tion of the theorem implies that E∗
k �0, then E∗

k ∈ S.
Therefore, by the uniqueness of solution of Eq. (3.9), E∗

k is
the unique solution of Eq. (3.4), which is the optimal impulsive
harvesting effort.

Further, (3.10) and (3.12) give

(1 − E∗
k )x∗(k) = D1/2(�k+1)x

∗(k + 1)

= D1/2(�k+1)(1 − D1/2(�k+1))

B(�k+1)
. (3.14)

For any t > 0, say, t ∈ (�k, �k+1], then from (3.3) we get

x∗(t) =
[

1

(1 − E∗
k )x∗(k)

e
(− ∫ t

�k
r(�) d�)

+
∫ t

�k

r(s)

K(s)
e(− ∫ t

s r(�) d�) ds

]−1

. (3.15)

Substituting (3.14) into (3.15) yields the optimal population
level

x∗(t) =
[

e
(− ∫ t

�k
r(�) d�)

B(�k+1)[D1/2(�k+1) − D(�k+1)]−1

+
∫ t

�k

r(s)

K(s)
e(− ∫ t

s r(�) d�) ds

]−1

,

t ∈ (�k, �k+1], k = 1, 2, . . . , q. (3.16)

It is easy to show B(�k + 1)=B(�k), D(�k + 1)=D(�k) for
any �k from the definitions of B(�k) and D(�k). Observing the
periodicity of �k given by (2.9) yields

D(�q+1) = D(�1 + 1) = D(�1),

B(�q+1) = B(�1 + 1) = B(�1),

then the maximum annual biomass yield is

Y{E∗
k }qk=1

=
q∑

k=1

E∗
k x∗(k)

=
q∑

k=1

[
1 − D1/2(�k)

B(�k)

−D1/2(�k+1)(1 − D1/2(�k+1))

B(�k+1)

]

=
q∑

k=1

(1 − D1/2(�k))
2

B(�k)
. (3.17)

In addition, it is easy to prove the optimal population level
x∗(t) corresponding to the optimal impulsive harvesting effort
E∗

k is the unique positive 1-period solution of systems (2.7)

and (2.8). In fact, for any t ∈ (�k, �k+1], then t + 1 ∈ (�k +
1, �k+1 + 1], it follows from (3.16) that

x∗(t + 1) =
[

e
(− ∫ t+1

�k+1 r(�) d�)
B(�k+1 + 1)[D1/2(�k+1 + 1)

− D(�k+1 + 1)]−1 +
∫ t+1

�k+1

r(s)

K(s)

× e(− ∫ t+1
s r(�) d�) ds

]−1

=
[

e
(− ∫ t

�k
r(�) d�)

B(�k+1)[D1/2(�k+1) − D(�k+1)]−1

+
∫ t

�k

r(s)

K(s)
e(− ∫ t

s r(�) d�) ds

]−1

= x∗(t).

Further,

e(
∫ 1

0 r(�) d�)
q∏

k=1

(1 − E∗
k )

= A

q∏
k=1

D1/2(�k+1)(1 − D1/2(�k+1))

1 − D1/2(�k)

B(�k)

B(�k+1)

= Ae(−(1/2)
∫ �q+1
�1

r(�) d�) = Ae(−(1/2)
∫ �1+1
�1

r(�) d�)

= A1/2 > 1,

which implies (2.11) holds true. It follows from Theorem 2.2
that there exists a unique positive 1-period solution of Eqs. (2.7)
and (2.8) which is globally asymptotically stable. The optimal
population level x∗(t) corresponding to the optimal harvest
effort E∗

k (k=1, 2, . . . , q) is the 1-period solution of Eqs. (2.7)
and (2.8), hence it is globally asymptotically stable. Thus from
Definition 3.1, the maximum annual biomass yield Y{E∗

k }qk=1
given by (3.17) is the maximum annual-sustainable yield. This
completes the proof. �

The results show that the optimal harvesting policy obtained
here can not only maximize the annual biomass yield but also
make the fish population permanent (since the optimal popula-
tion level x∗(k) corresponding to optimal impulsive harvesting
effort {E∗

k }qk=1 is truly the periodic solution of (2.7) and (2.8)
which is globally asymptotically stable), then the maximum
biomass yield is in fact the MSY. Hence, this type of harvesting
policy has a built-in stability mechanism, and is of higher prior-
ity to help reduce overfishing, which is of biological meanings.

Remark 3.1. For an optimal impulsive harvesting problem, it
must be noted that there are two kinds of variable vectors, im-
pulsive functions (x(�k)(1−Ek) given in Eq. (2.8)) and impul-
sive moments (�k, k=1, 2, . . . , q in Eqs. (2.7) and (2.8)), could
be controlled. When choosing impulsive functions as control
variables (at the same time, assuming �k, k = 1, 2, . . . , q are
fixed), and the maximum annual-sustainable yield as manage-
ment objective, we have investigated the optimal harvesting
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policy for periodic logistic equation. While choosing impul-
sive moments as control variable (assuming Ek, k=1, 2, . . . , q

are fixed), and the same management objective, it is not dif-
ficult to see that we can also work out the optimal impulsive
moments, the optimal population level and the corresponding
annual-sustainable yield by using the ideas and methods simi-
lar to the above arguments.

Remark 3.2. For the computation of an optimal control prob-
lem (3.2) or (3.4)–(3.5), we note that the optimal control soft-
ware package, MISER 3.2 can be used (see Jennings et al. [13]
for more details). In addition, Liu et al. [18] provided a compu-
tational method for solving a general continuous time impulsive
optimal control problem.

4. Comparing the results with those in continuous optimal
harvesting policy

It is interesting to compare the periodic logistic equation
with impulsive harvest analyzed here with the analogous ordi-
nary differential equation with continuous harvest analyzed in
[10], which is modelled by system (1.3). From the point view
of constructing model, the models here are more natural and
realistic due to taking the discontinuity of human exploit ac-
tivities into account. It was shown in [10] that, in order to gain
the maximum annual-sustainable yield, the optimal harvesting
effort should be

E∗ = r(t)

2
− K̇(t)

K(t)

(
if r(t)� 2K̇(t)

K(t)

)
.

The maximum annual-sustainable yield, corresponding to E∗ is

Y∗ = 1

4

∫ 1

0
r(t)K(t) dt ,

and the corresponding optimal population level is given by

x∗(t) = 1
2K(t).

In the following, we try to compare the optimal results of
impulsive system with the results of continuous system. It must
be noted that the impulsive differential equation can be reduced
the corresponding ordinary differential equation if the length
of the maximum impulsive intervals

�� = max{��k : ��k = �k+1 − �k, k = 0, 1, 2, . . . , q}
tends to zero (which implies impulsive times in a period q →
+∞). For this purpose, we assume that r(t), K(t) are contin-
uous functions and then investigate how the maximum annual-
sustainable yield Y{E∗

k }qk=1
and the corresponding optimal

population level x∗(t) change as �� → 0.
Formula (3.12) can be written as

x∗(�k + ��k) = 1 − D1/2(�k + ��k)

B(�k + ��k)

= 1 − e
(−(1/2)

∫ �k+��k
�k

r(�) d�)

∫ �k+��k

�k

r(s)
K(s)

e(− ∫ �k+��k
s r(�) d�) ds

.

Then

lim
��k→0

x∗(�k + ��k)

= lim
��k→0

1 − e
(−(1/2)

∫ �k+��k
�k

r(�) d�)

∫ �k+��k

�k

r(s)
K(s)

e(− ∫ �k+��k
s r(�) d�) ds

= lim
��k→0

e
(−(1/2)

∫ �k+��k
�k

r(�) d�) 1
2 r(�k + ��k)

− ∫ �k+��k

�k

r(s)
K(s)

e(− ∫ �k+��k
s r(�) d�)r(�k + ��k) ds + r(�k+��k)

K(�k+��k)

= K(�k)

2
. (4.1)

Moreover, as ��k tends to zero and q tends to infinity in one
period, (3.17) becomes

∞∑
k=1

lim
��k→0

(1 − D1/2(�k + ��k))
2

B(�k + ��k)

=
∞∑

k=1

lim
��k→0

1 − D1/2(�k + ��k)

B(�k + ��k)

1 − D1/2(�k + ��k)

��k

��k

=
∞∑

k=1

1

4
K(�k)r(�k)��k

= 1

4

∫ 1

0
K(t)r(t) dt , (4.2)

which implies that the maximum annual-sustainable yield and
the correspond optimal population level tend to their counter-
parts of periodic logistical model with continuous harvest as
the length of the maximum impulsive intervals tend to zero in
one period. This shows that the results obtained in this paper
extend and generalize the classical results of Fan and Clark for
renewable resources management.

In fact, in practice we can only take up a finite times impul-
sive harvest in a period (e.g., in one year) so as to obtain the
maximum annual-sustainable yield which closely equals that of
continuous harvesting policy, and also obtain the correspond-
ing optimal population level which approximately equals that
of continuous harvesting policy (see Fig. 1) in the sense of
mean. As a numerical example, we let

r(t) = 2 + 1
5 cos(2�t), K(t) = 5 + 1

5 sin(2�t),

which are continuous functions with 1-period. According to the
results of Fan et al. [10], the maximum annual-sustainable yield
is 1

4

∫ 1
0 r(t)K(t) dt = 2.5, the corresponding optimal popula-

tion level is 1
2K(t). If we assume that there are 40 impulsive

moments in (4, 5] with the equivalent length of all impulsive
intervals, then the optimal impulsive harvesting efforts can be
obtained step by step in Maple, the corresponding maximum
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Fig. 1. The optimal population level L1 = K(t)/2 under the continuous
harvesting policy and the optimal population level L2 = x∗(t) under the
impulsive harvesting policy.

annual-sustainable yields Y{E∗
k }40

k=1
≈ 2.49987 , which supports

the above conclusion. Hence, impulsive harvesting policy can
reduce the cost of harvest. Fig. 1 describes the case of eighties
impulsive moments in (4, 6]. In Fig. 1, the continuous curve L1
denotes the optimal population level under continuous harvest
policy, that is, L1 =K(t)/2. The optimal population level x∗(t)
given by (3.16) corresponding to optimal impulsive harvesting
policy yields the following piece-wise continuous function

x∗(t)=
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x∗(t; �0, x∗(�+
0 ))�L1

2, t ∈ (�0, �1] =
(

4 − 1
80 , 4 + 1

80

]
,

x∗(t; �1, x∗(�+
1 ))�L2

2, t ∈ (�1, �2] =
(

4 + 1
80 , 4 + 3

80

]
,

...
...

x∗(t; �40, x∗(�+
40))�L41

2 , t∈(�40, �1+1]=
(

4+ 79
80 , 5+ 1

80

]
.

It follows from Fig. 1 that each graph Lk
2 in subinterval

(�k−1, �k] (k=1, 2, . . . , 41) are symmetrically distributed near
the curve L1, which confers to reality.

Acknowledgements

The authors thank the referees for their careful reading of
the original manuscript and many valuable comments and
suggestions.

References

[1] T.T. Agnew, Optimal exploitation of a fishery employing a non-linear
harvesting function, Ecol. Modelling 6 (1979) 47–57.

[2] J. Angelova, A. Dishliev, Optimization problems for one-impulsive
models from population dynamics, Nonlinear Anal. 39 (2000) 483–497.

[3] Z. Artstein, Chattering limit for a model of harvesting in a rapidly
changing environment, Appl. Math. Optim. 28 (1993) 133–147.

[4] D. Bainov, P. Simeonov, Impulsive Differential Equations: Periodic
Solutions and Applications, Pitman Monographs and Surveys in Pure
and Applied Mathematics, vol. 66, 1993.

[5] D.D. Bainov, P.S. Simeonov, Systems with Impulse Effect, Ellis,
Horwood Ltd., Chichester, 1982.

[6] G. Ballinger, X. Liu, Permanence of population growth models with
impulsive effects, Math. Comput. Modelling 26 (1997) 59–72.

[7] L.D. Berkovitz, Optimal Control Theory, Springer, New York,
Heidelberg, Berlin, 1974.

[8] C.W. Clark, Mathematical Bioeconomics: The Optimal Management of
Renewable Resources, Wiley, New York, 1976.

[9] Y. Cohen, Application of optimal impulse control to optimal foraging
problems, in: Applications of Control Theory in Ecology, Lecture Notes
in Biomathematics, vol. 73, Springer, Berlin, 1987, pp. 39–56.

[10] M. Fan, K. Wang, Optimal harvesting policy for single population with
periodic coefficients, Math. Biosci. 152 (1998) 165–177.

[11] B.S. Goh, Management and Analysis of Biological Populations, Elsevier
Scientific Publishing Company, Amsterdam, 1980.

[12] S.C. Hirstova, D.D. Bainov, Existence of periodic solutions of nonlinear
systems of differential equations with impulsive effect, J. Math. Anal.
Appl. 125 (1987) 192–202.

[13] L.S. Jennings, K.L. Teo, C.J. Goh, MISER3.2 Optimal Control Software:
Theory and User Manual, Department of Mathematics, the University of
Western Australia, Australia, 1997 〈http://www.cado.uwa.edu.au/miser/〉.

[14] T.L. John, Variational Calculus and Optimal Control, Springer, New
York, 1996.

[15] A. Lakmeche, O. Arino, Bifurcation of non-trivial periodic solutions
of impulsive differential equations arising chemotherapeutic treatment,
Dynamics continuous, Discrete Impulsive Systems 7 (2000) 165–287.

[16] V. Laksmikantham, D.D. Bainov, P.S. Simeonov, Theory of Impulsive
Differential Equations, World Scientific, Singapore, 1989.

[17] X. Liu, Impulsive stabilization and applications to population growth
models, Rocky Mountain J. Math. 25 (1995) 381–395.

[18] Y. Liu, K.L. Teo, L.S. Jennings, S. Wang, On a class of optimal control
problems with state jumps, J. Optim. Theory Appl. 98 (1998) 65–82.

[19] J.C. Panetta, A mathematical model of periodically pulsed chemotherapy:
tumor recurrence and metastasis in a competition environment, Bull.
Math. Biol. 58 (1996) 425–447.

[20] S.Y. Tang, R.A. Cheke, State-dependent impulsive models of Integrated
Pest Management (IPM) strategies and their dynamic consequences,
J. Math. Biol. 50 (2005) 257–292.

[21] S.Y. Tang, L.S. Chen, Density-dependent birth rate, birth pulses and their
population dynamic consequences, J. Math. Biol. 44 (2002) 185–199.

[22] S.Y. Tang, L.S. Chen, Multiple attractors in stage-structured population
models with birth pulses, Bull. Math. Biol. 65 (2003) 479–495.

http://www.cado.uwa.edu.au/miser/

	Optimal impulsive control in periodic ecosystem
	Introduction
	Existence and uniqueness of periodic solution
	Optimal impulsive harvesting policy
	Comparing the results with those in continuous optimal harvesting policy
	Acknowledgements
	References


