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Stabilization of Time-Varying Hamiltonian Systems
Yuqian Guo and Daizhan Cheng, Fellow, IEEE

Abstract—This paper investigates the stabilization problem of
time-varying port-controlled Hamiltonian (PCH) systems through
energy-shaping. First, the closed-loop form of a time-varying
PCH system (with certain feedback) is embedded into an ex-
tended system. Then by restricting the extended system to its
invariant Casimir manifold, the energy function (Hamiltonian)
of the original PCH system could be shaped as a candidate of
Lyapunov function. Then the stabilization problem is considered
by using the shaped Hamiltonian function. When the system has
unknown parameters, the adaptive stabilization is considered,
and the above stabilization result is used to construct an adaptive
stabilizer. Finally, the method developed is used to power systems
with periodic disturbances.

Index Terms—Adaptive stabilizer, Casimir function, energy-
shaping, Hamiltonian system stabilization.

I. INTRODUCTION

I N RECENT years, the port-controlled Hamiltonian systems
have attracted more and more attention [7], [11], [12]. One of

the advantages of this approach is as follows. When the (energy-
shaped) Hamiltonian is used as the Lyapunov function, since
it is part of the system, it can represent some essential system
properties. For instance, when multiple equilibriums of a system
are considered, one Hamiltonian (as Lyapunov function) can be
used for all of them.

Port-controlled form plays a fundamental role in applying
Hamiltonian function approach [14]. The transfer of a general
nonliner system into a port-controlled Hamiltonian system is the
first key issue in its applications [6].

The Hamiltonian function approach has been used for the
control and stabilization of power systems [4], [5], [16], [19].
Particularly, in a recent work, the method is applied to multima-
chine case [15]. In practice, some disturbances of an excitation
system could be periodic. Particularly, when the disturbance is
coupled with rotors it is very likely to be periodic. This is a mo-
tivation for us to consider time-varying Hamiltonian systems.

A port-controlled Hamiltonian (PCH) system (with dissipa-
tion) is defined as follows[17]:

(1)
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where

is called the structure matrix of the system, which determines
a second-order tensor field on state space; is a skew-sym-
metric matrix corresponding to a power continuous interconnec-
tion in the system; is a symmetric positive semidefinite
matrix corresponding to the energy dissipation of the system.

We give some concepts related to time-varying Hamiltonian
systems, which will be used in the sequel.

Definition 1:
1) A function is called a Casimir function of system (1)

if its differential , satisfies

(2)

2) In [10], a time-varying function is said to be posi-
tive definite, denoted by , if there exists a (time
independent) positive definite function , such
that

Remark 1:
1) In fact, the classical definition of a Casimir function is

(3)

But for classical Hamiltonian system, since the structure
matrix is skew symmetric, it is the same
as (2). But, in general, as the structure matrix is
neither symmetric nor skew symmetric, they are not the
same. Therefore, we call satisfying (2) [(3)], the left
(right) Casimir function. A right Casimir function can be
used to modify the Hamiltonian function (adding it to the
Hamiltonian function will not change the system at all). A
left Casimir function is constant along a trajectory of the
system (with zero inputs). In this paper, we consider only
the left Casimir functions.

2) In time-varying case, the structure matrix becomes
. But the Casimir function we considered

is still a time independent function satisfying
.

Many real physic systems can be depicted by this form.
A method to shape the energy function via interconnection
was first proposed and developed by Ortega, van der Schaft,
Maschke, and Escobar [12], [17]. The main idea of this method
is to interconnect the plant system (1) with a source system

(4)
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where is a designed Hamiltonian function for dynamic
control extension. A standard feedback interconnection is

, where are reference signals. When
, the resulting system becomes

(5)

For system (5), a set of Casimir functions in the form
, might be found to construct an invariant

Casimir manifold. A necessary and sufficient condition was re-
vealed in [12], which states that are
Casimir functions of system (5) if and only if

(6)

where . If these kind of
Casimir functions exist, an invariant manifold can be defined as

where are constants. Thus, the restriction of system (5) on
is

(7)

where
is called the shaped energy func-

tion. If satisfies positive definite condition, then it can
be regarded as a Lyapunov function and system (1) can be
stabilized by the source system (4).

The Hamiltonian function approach has been used for the
control and stabilization of power systems with possible con-
stant disturbance [4], [5], [19]. In practice, some disturbances
of an excitation system could be periodic. This is one motiva-
tion for us to consider time-varying Hamiltonian systems.

Our goal is to generalize the method of Casimir function ap-
proach to time-varying Hamiltonian systems. As mentioned in
the above, in time-varying case, we require the Casimir func-
tions being independent of time . Therefore, if we formally
shape the energy function by using the aforementioned method,
condition (6) must be satisfied. But it is not reasonable to find a
function , such that the cor-
responding second condition of (6) holds, i.e., the following (8),
called “obstacle dissipation” [13], is satisfied:

for any (8)

To overcome this obstacle, we have to change the way of inter-
connection so that under this new interconnection the Casimir
functions of new composed system need not satisfy the second
equation of (6). Later on, you will see that the new interconnec-
tion is a generalization of the previous interconnection.

This paper considers the stabilization of time-varying Hamil-
tonian systems. Casimir function approach of time-invariant
Hamiltonian systems has been extended to time-varying case.
When some disturbances exist, an adaptive control law is
designed to stabilize the system. As a case study, the results are

applied to the stabilization of excitation systems with periodic
disturbances.

The paper is arranged as follows. In Section II, we propose a
new way to handle the energy shaping problem for time-varying
Hamiltonian systems. In Section III, we investigate the stabiliza-
tion of time-varying Hamiltonian systems. Based on these re-
sults, the adaptive stabilization problem is studied in Section IV.
Finally, in Section V, the previously obtained results are used
to investigate the stabilization of a class of power systems with
periodic disturbances. Some concluding remarks are given in
Section VI.

II. ENERGY-SHAPING VIA CASIMIR METHOD

Consider a general time-varying Hamiltonian system

(9)

and its extended system

(10)

where is an matrix, which is
called the structure matrix of system (9), is an

matrix, is an matrix, and
with a smooth function. In fact, (10) is a time-

varying version of its original time-invariant form proposed in
[11].

Our aim is to shape the energy function of system (9) by em-
bedding its closed-loop form with a proper control
into its extended system (10). First, we look for Casimir func-
tions of system (10), define an invariant manifold (multilevel
set) of it, and then restrict system (10) on this invariant mani-
fold. As you will see, for properly chosen and , the
restricted system is exactly the same as system (9) with proper
control. First, let’s prove a simple lemma, which is basically
from [11], as a time-varying generalization.

Lemma 1: If there exists functions , such
that

where , then
, are Casimir functions of system (10).

Proof: A straightforward computation shows that

Since , we have

(11)
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which means that for any

That is, , are Casimir functions of
system (10).

Note that (11) shows that the Casimir functions are
constant along the trajectories of system (10).

Then we can define a multilevel set

where , are constants depending on the initial
values of system (10). Obviously, is an invariant manifold of
system (10). When restricting on , system (10) becomes

(12)

We need the following assumption.
A1: There exists an matrix , such that

(13)

Then we have the following.
Proposition 1: Under the assumption A1, the restricted

system of (10) on is the same as the closed-loop system of
(9) with controls

(14)

Proof: Using the control (14) to system (9), we have

where . Obvi-
ously, it coincides with the one in (12).

Remark 2: Equation (13) holds if and only if

(15)

Therefore, the key is to choose , such that (15)
holds.

In the following discussion, we focus on the special case that
the structure matrix takes in the form

(16)

where is skew-symmetric and is positive
semi-definite. That is, we consider only the forced Hamiltonian
system with dissipation as

(17)

where .
Remark 3: Equation (16) is equivalent to

(18)

which is assumed hereafter. In fact, for any matrix
which satisfies (18), we have

where

It is obvious that is skew-symmetric and is pos-
itive semi-definite.

If , from the modeling perspective, system
(10) can be regarded as the interconnection of system (17) with
a source system

(19)

via the standard power-conserving interconnection
, where

(20)

Degenerated to time-invariant case, the condition (20) coincides
with the conditions in [12].

But in general, just as discussed in Section I, since the struc-
ture matrix is time-varying, while is required to be inde-
pendent of , the second equation of (20) is very difficult to sat-
isfy. In the present paper, we removed the second condition of
(20), thus, the choice of Camisir functions has relatively more
freedom than that in [12]. In this case, if the structure matrix

is invertible, then we can introduce a new
output function of system (17) as

(21)

then system (17) with control (14) can still be regarded as its
interconnection with (19), where
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Fig. 1. Interconnection.

via interconnection constraints (shown in
Fig. 1).

Remark 4: The output defined in (21) is similar to the one
defined in [9] and [3]. But they are also different. In [9] or [3],
the output is proven to be a passive one, but ours is not. Our
purpose here is to realize similar interconnection constraints as

and . If the exact output in [9] and [3] is used,
this interconnection will be destroyed.

III. STABILIZATION

In the previous section, we studied how the energy function of
a time-varying Hamiltonian system could be shaped through the
Casimir method. In this section, the shaped Hamiltonian func-
tion is used as a candidate Lyapunov function in order to inves-
tigate the stabilization of system (17).

Consider system (17), if we choose an output as

(22)

then we have the following result.
Theorem 1: Assume the following:

1) there exists functions and
, such that

2) there exists an matrix , such that

where .
Then the control rule

(23)

renders the input-output mapping passive with
storage function .
Furthermore, if is positive definite, then the
closed-loop system is stable for .
Proof: According to the discussions in Section II, the

closed-loop system of (17) with control (23) is

(24)

Moreover

(25)

This implies the passivity of the input-output mapping .
The second statement is obviously true.
Since the system is time-dependent, LaSalle’s principle

(or the Barbashin and Krasovskii’s Theorem) fails in general.
Therefore, the conditions of Theorem 1 are not enough to assure
asymptotic stability. Some other conditions must be found to
assure asymptotical stabilizing the system. First, we introduce
a lemma whose proof can be found in [8].

Lemma 2: [8] Consider system (17). Assume: 1) the Hamil-
tonian is positive definite and
holds for all and and 2) the system is zero-state detectable,
then the feedback

(26)

renders the system asymptotically stable.
Suppose, moreover, that is decreasing and that the

system is periodic, then feedback (26) renders the system uni-
formly asymptotically stable.

Theorem 2: Under the conditions of Theorem 1, assume:
1) is positive definite and 2) system

(27)

is zero-state detectable, then the control law

(28)

renders system (17) asymptotically stable.
Furthermore, if is decreasing and the system (27) is

periodic, then feedback (28) renders the system (17) uniformly
asymptotically stable.

Proof: According to Theorem 1, the control rule (23)
assures system (27) as being passive with storage function

. Since is positive definite and system (27) is
zero-state detectable, according to Lemma 2, the control

(29)

asymptotically stabilizes system (27). That is, the control (28)
asymptotically stabilizes system (17).

Theorem 1 can be used to time-invariant case. Consider time-
invariant forced Hamiltonian system with dissipation:

(30)

Using Theorem 1 and LaSalle’s invariance principle, it is easy
to prove the following.

Theorem 3: For system (30), assume:
1) there exists an matrix and functions

, such that
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2) there exists a function , such that
has strict minimum at ;

then the control

(31)

stabilizes system (30).
Moreover, if there is no non-zero trajectory of the closed-
loop system contained in the set

then the control (31) asymptotically stabilizes system (30).
Remark 5: Theorem 3 is a known result (an equivalent state-

ment can be found in [17]). In fact, Theorem 3 is the clas-
sical control by interconnection methodology. It can be seen
as the interconnection of system (30) with an integrator

via the standard feedback
interconnection , which yields the embedded
system

Also, in the control by interconnection method, the energy func-
tion is free, chosen by the designer to assign the desired equi-
librium point.1

IV. ADAPTIVE CONTROL

In this section, we consider a time-varying Hamiltonian
system with uncertain parameters

(32)

where are uncertain parameters. When
and are constant matrices and the Hamiltonian is
positive and linearly depends on the uncertain parameters , it
is investigated in [19]. In the present paper, we still suppose that
the unknown parameters in the Hamiltonian function are linear,
i.e.

A2:
, where , are smooth

functions and . But we do
not require that is positive definite. We construct an
adaptive control law for system (32) through the following two
steps.

Step 1) Suppose all the parameters in the system are
known, apply the method proposed in the previous
section to shape the energy function and design a
feedback control law

which can stabilize system (32).

1This novel remark is pointed by an anonymous referee.

Step 2) Construct an update law and substitute the unknown
parameters in the feedback by its estimate , i.e.,
design a control law

Step 1: Suppose all the parameters in the system are known
and assume the following.

A3: There exists a vector function
, a matrix , and functions

, such that

(33)

and

is positive definite with respect to and , where

and .
According to Theorem 3, the control law

(34)

stabilizes system (32).
Step 2: Replace the unknown parameter in (34) by its esti-

mate , i.e., consider adaptive controller

(35)

where is to be designed. Substituting (35) into system
(32), we obtain

(36)
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Take

(37)

as a candidate Lyapunov function, where is a positive definite
matrix, then the derivative of along system (32)–(35)
is

(38)

If we choose

then

(39)

where and

If we assume the following.
A4: , then , which

implies that system (32)–(35) is stable.
According to the above analysis, we conclude the following.

Theorem 4: Under assumptions A2–A4, system (32) with un-
certain parameters can be stabilized by adaptive controller

(40)

where is any positive-definite matrix.
Remark 6: In fact, the closed-loop system (32)–(39) can be

expressed as the following Hamiltonian system: (we take
for simplicity)

(41)

where is as in (37) and

Therefore, condition A4 can be replaced by the assumption that
system (41) is dissipative, i.e.,

Remark 7: We need some other conditions to assume the
asymptotical stability of the closed-loop system, such as gen-
eralizations of Barbashin–Krasovski–LaSalle Theorem [2]. In
the following, we give a result of asymptotical stability for pe-
riodical systems. The result will be applied in Section V.

Consider a continuous time-varying nonlinear periodic
system

where

(42)

Assume is a complete vector field, so for each ,
the unique solution exists for all . Moreover, there ex-
ists a positive definite function with

, then the origin is asymptotically stable if
is not identically zero for all nontrivial solutions of system (42)
[1]. Using this result, we have the following.

Theorem 5: Suppose conditions A2, A3, and A4 hold, and it
follows:

1) , and are all periodic in
with the same period ;

2) , which is independent of ;
3) is not identically zero for any solution of system

(32)–(35) other than , where is defined in
(37).

Then system (32) can be asymptotically stabilized by con-
troller (40).

Next, we consider a general Hamiltonian system

(43)
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In the above system, is the unknown constant parameter.
We assume that the following.

A3: There exists a function
, a matrix , and a function

such that

(44)
and

is positive definite with respect to and .
A8: There exists matrices

, and a constant vector such that

(45)
and

(46)

A4’: .
Then we have the following result.
Theorem 6: Under assumptions A3’, A8, and A4’, system (43)

can be stabilized by the following control law:

(47)

Proof: It is easy to verify the closed-loop of system (43)
with control (47) as

(48)

where . Ac-
cording to assumptions A3’ and A4’, system (48) is a dissi-
pative Hamiltonian system with positive definite Hamiltonian
function, so the equilibrium is stable.

As a summary, this section contains three main results: The-
orems 4, 5, and 6. Theorem 5 is a result about the asymptot-
ical stability. It will be used in Section V for the stabilization
of power systems with periodic disturbances. Theorems 4 and 6
are results of stability. The following numerical example is an
application of Theorem 6.

Example 1: Consider time-varying system

(49)
where

and is an uncertain parameter. We
choose and

, then we have

If is selected as , then

which is locally positive definite. Furthermore

where
. It is obvious that

is negative semi-definite. Thus, we obtain an adaptive stabilizer

(50)

According to Theorem 6, the Lyapunov function for the closed-
loop system is

Then the derivative of is

(51)

thus, exists since is decreasing and bounded
from below. The stability of the closed-loop system implies that
any trajectory of the closed-loop system is
bounded on , and so is since the system
under consideration is periodic in . Thus, by (51) it is easy to
check is also bounded on , so is uniformly continuous
on . By Barbalat’s lemma, we have as . This
implies that and as by (51). Fig. 2 is
a simulation for , and .
It shows that the controller is efficient.

V. APPLICATION TO POWER SYSTEMS

In excitation systems, it happens that the disturbances could
be periodic. Consider an excitation system with periodic distur-
bances and

(52)

where . The physical
meanings of the variables with their units are listed in Table I
(where “pu” means “per unit” for normalized parameters).

Denote
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Fig. 2. Simulation for Example 1.

TABLE I
PARAMETER ILLUSTRATION

and
, and

regard as control. We assume and are unknown
parameters and , then the system can be written as the
following Hamiltonian system:

(53)

where

We take and , then condition (33)
is satisfied.

Suppose is the equilibrium to be stabilized
and is the func-
tion such that has a minimum at

, then and , i.e., the following
conditions must be satisfied:

(54)

(55)

Thus, we choose

where is a parameter satisfying .
Then, we have

which is independent of . It is easy to calculate that
and

We can show that is asymptotically stable by using
Theorem 5. In fact, we only need to check condition 3). Suppose
there is a solution , such that , then we
have

It is easy to check that in a neighborhood of , the only solution
to the above equations is . So , this implies that
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Fig. 3. Simulation for power system.

for any . Thus, we have and .
Fig. 3 shows the simulation results for

(Z. Xi, D. Cheng, 2000

[18]). We choose
, and initial

values
.
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The above simulation results show the asymptotical sta-
bility of the overall system. From the simulation one can also
see an unhappy phenomenon: chattering. We found that it is
mainly caused by the system’s structure. Particularly, as the
damping coefficient increases, the chattering phenomenon is
decreased.

Remark 8: From the case study in this section, we may sum-
marize the following.

The method proposed in this paper can be used to treat time-
varying Hamintonian systems. When certain uncertainties exist,
the proposed adaptive controller can be designed to deal with the
uncertainties and reach (asymptotical) stability of the closed-
loop systems. The design method is simple and efficient.

There are some drawbacks of this approach. First, stability is
relatively easier to be obtained. But for asymptotical stability,
so far we can only treat periodic disturbances. Second, it seems
that using this design technique, the chattering phenomenon can
hardly be eliminated.

VI. CONCLUSION

In this paper, the Casimir method of Hamiltonian systems has
been generalized to time-varying case. In using it, the stabiliza-
tion and adaptive stabilization problems of time-varying Hamil-
tonian systems were investigated. The results were applied to
single machine power systems with periodic disturbances, and
the simulations showed the efficiency of the designed adaptive
controller.

Certain problems remain for further study. One is the asymp-
totical stability with nonperiodic disturbances. The other one is
to design a control to reduce the chattering phenomenon in sta-
bilization of power systems.
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