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satisfies Lipschitz condition. Based on the result on the existence and
uniqueness of solution to CSSP, necessary and sufficient conditions
for generalized quadratic stability is obtained by using S-procedure
approach and matrix inequality technique. The proposed convex op-
timization approach guarantees global exponential stability and simul-
taneously maximizes the tolerable perturbation bound. The approach
presented in this note has improved and generalized the results and
techniques in the literature. The assumptions of index one and single
equilibrium systemswill be relaxed and investigated in our future work.
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Optimal Estimation for Continuous-Time Systems With
Delayed Measurements

Huanshui Zhang, Xiao Lu, and Daizhan Cheng

Abstract—This note focuses on the traditional problem of the Kalman fil-
tering for linear continuous-time systems. Although the problem has been
studiedwidely in the past decades, little work has been done for the time-de-
layed systems and some fundamental problems remain to be solved. This
note proposes a new tool, namely, reorganization innovation analysis ap-
proach, to investigate the filtering problem for systems with delayed mea-
surements. The Kalman filter is given in terms of the solution of standard
Riccati equations. The performance is clearly demonstrated through an-
alytical results and simulation. The solved problem in this note is related
with some more complicated problems such as fixed-lag smoothing,

control with preview and control with input delays.

Index Terms—Continuous-time system, Kalman filter, reorganized inno-
vation analysis, Riccati equations, time-delayed systems.

I. INTRODUCTION

Linear estimation has important applications in many fields, such as
communication, control, econometrics and signal processing, etc. The
problem has attracted significant attention in the past 50 years [4], [6],
[7]. There are two main approaches to the linear estimation. One is the
minimum variance estimation which is termed as H2 [5], [10], [16].
The other is the H1 estimation which has emerged as an alternative
since the 1980s [6], [11]. For the systems without delay, most of the
estimation or control problems under the two performances have been
well studied. In the case of time-delay, however, the estimation or con-
trol problem is much more complicated and some problems remain to
be investigated.
The Kalman filter (H2 estimation), which addresses the minimiza-

tion of filtering error covariance, has been a classical tool in signal pro-
cessing, communication and control applications. It has been widely
studied via Riccati equation approach [7]. However, the Kalman fil-
tering formulation is only applicable to the standard systems without
delays. In the time delays context, the optimal estimation has been
studied via partial differential equation (PDE) [10] for continuous-time
systems or state augmentation method for discrete-time systems. Note
that the PDE is very difficult to be solved in general (in fat it is impos-
sible to have a analytical solution) and the state augmentation leads to
very expensive cost. Very recently, [1] and [2] studied the estimation
and control problem for observation-delay systems via differential Ric-
cati-type equations.
In this note, we consider the minimum mean square error (MMSE)

estimation problem for linear continuous time varying systems with
current and time-delay measurements. Such problem has obvious ap-
plications to many engineering problems. Furthermore, the problem
has been shown to be related with some complicated problems such as
H1 fixed-lag smoothing [14], [15], preview control [12] andH1 con-
trol with control input signal delays [8], [9]. Our aim is to present the
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Kalman filtering formulation for such problem in terms of the differen-
tial Riccati equation. It will be shown that, different from the standard
delay-free system, the Kalman filtering formulation for the time delay
systems consists of two standard Kalman filters with the same dimen-
sion as the original systems.

The rest of the note is organized as follows. The problem formulation
is given in Section II. The main results for the H2 filter is presented
in Section III. In Section IV, a numerical example is constructed to
illustrate the main result. Section V contains some concluding remarks.

II. PROBLEM FORMULATION

We consider the following linear system forH2 estimation problem:

_x(t) = �(t)x(t) + �(t)u(t) (1)

where x(t) 2 Rn and u(t) 2 Rr , represent the state and input noise,
respectively,�(t) and�(t) are bounded time-varyingmatrices with ap-
propriate dimensions. Assume that the state x is observed by different
systems with delays which are described by

y(t) =H(t)x(t) + v(t) (2)

y1(t) =H1(t)x(t� d) + v1(t); d > 0 (3)

where y(t) 2 Rp and y1(t) 2 Rp are respectively the current and
the delayed output measurement, v(t) 2 Rp and v1(t) 2 Rp are
the related the measurement noises. It is assumed that the input u and
measurement noise v(t) are from L2[0; T ], and the delayed measure-
ment noise v1(t) is from L2[d; T ], while T > 0 is the time-horizon of
filtering. Let yd(t) denote the observation of the system (2), (3) at time
t and vd(t) the related observation noise at time t, then we have

yd(t) =
y(t); 0 � t < d

col fy(t); y1(t)g ; t � d
(4)

vd(t) =
v(t); 0 � t < d

col fv(t); v1(t)g ; t � d:
(5)

Now, we make the following standard assumptions for the systems
(1)–(3)

Assumption 2.1: The initial state x(0) and the noises u(t), v(t),
v1(t) are mutually uncorrelated white noises with zero means and
known covariance matrices as

hx(0); x(0)i =�0 (6)

hu(t);u(� )i =Qu(t)�(t� � ) (7)

hv(t);v(� )i =Qv(t)�(t� � ) (8)

hv1(t);v1(� )i =Qv (t)�(t� � ): (9)

Problem P: Given the observation ffyd(�)gj0���tg, find a linear
least mean square error estimator x̂(tjt) of x(t).

In the following, for the convenience of discussions we will denote
that

t1
�
= t� d:

III. MAIN RESULTS

The basic idea to deal with the time delay in this note is to reorganize
the observations from different channel as new delay-free observations,
and introduce the innovation associated with the observations. The op-
timal filter is then derived by using the reorganization innovation and
the projection formula. For the simplicity of discussions we first sup-
pose that the time t > d. The case of 0 � t � d will be considered
later.

A. Reorganization Innovation

We first define the reorganization observation in the following
lemma.

Lemma 3.1: The linear space ofLfyd(� ); 0 � � � tg is equivalent
to

LfY2(�)j0���t Y1(�)jt <��tg (10)

where Y2(�) and Y1(�) are the reorganized new observations as

Y2(�)
�
=

y(� )

y1(� + d)
(11)

Y1(�)
�
=y(� ) (12)

satisfy that

Yi(�) = Hi(�)x(�) + Vi(�); i = 1; 2 (13)

with

H2(�)
�
=

H(�)

H1(� + d)
H1(�)

�
= H(�): (14)

V2(�)
�
=

v(� )

v1(� + d)
V1(�)

�
= v(� ): (15)

Moreover, Vi(�) is white noise with zero mean and covariance ma-
trix as

QV (�) =
Qv(�) 0

0 Qv (� + d)
QV (�) = Qv(�): (16)

Proof: The proof is straightforward and omitted.
In the above, Y2(�) and Y1(�) are the reorganization observations.

Now we introduce the innovation associated with the reorganization
observation.

Definition 3.1: Consider the linear space of (10), for any s > t1 =
t � d denote

w1(s)
�
= Y1(s)� Ŷ1(s) (17)

where Ŷ1(s) is the projection of Y1(s) onto linear space

LfY2(�)j0���t Y1(�)jt <�<sg : (18)

For 0 � s � t1, denote

w2(s)
�
= Y2(s)� Ŷ2(s) (19)

where Ŷ2(s) is the projection of Y2(s) onto linear space

LfY2(�)j0��<sg : (20)

In the above, w1(s) and w2(s) are the prediction error of the reorga-
nization observation. It is easy to observe that w1(s) and w2(s) have
the following relationships as:

w2(s) =H2(s)~x(s; 2) + V2(s); 0 � s � t1 (21)

w1(s) =H1(s)~x(s; 1) + V1(s); s > t1 (22)

where

~x(s; 2) =x(s)� x̂(s; 2); 0 � s � t1 (23)

~x(s; 1) =x(s)� x̂(s; 1); s > t1 (24)

while x̂(s; 2) is the projection of x(s) onto linear space of (20) and
x̂(s; 1) is the projection of x(s) onto linear space of (18).

Lemma 3.2: The stochastic process w defined in Definition 3.1 is
mutually uncorrelated and

fw2(�)j0���t w1(�)jt <��tg (25)

spans the same linear space as Lfyd(� ); 0 � � � tg.
Proof: It is readily seen from (19) that w2(s) for s � t1

(or w1(s), s > t1) is a linear combination of the observations
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Fig. 1. True state ^ ( ) and its estimation value with delay.

fY2(� )j0���sg (or fY2(�)j0���t ; Y1(�)jt <��sg). Conversely,
Y2(s), s � t1, (or Y1(s), s > t1) can be given in terms of a linear
combination of w2(�)j0��<s (or fw2(�)j0���t ; w1(�)jt <�<sg).
Thus, fw2(�)j0���t ; w1(�)jt <��tg spans the same linear space as
LfY2(�)j0���t ; Y1(�)jt <��tg or equivalently Lfyd(�)j0���tg.

Next, we show that fwi(�); i = 1; 2g is an mutually uncorrelated
sequence. In fact, for any s > t1 and � � t1 where t = t � d1, it
follows from (17)–(19) that

E w1(s)w2(�)
0 =H1(s)E ~x(s; 1)w2(�)

0 + E VVV1(s)w2(�)
0
:

(26)
Note that E [V1(s)w2(�)

0] = 0. Since ~x(s; 1) is the state pre-
diction error, it follows that E [~x(s; 1)w2(�)

0] = 0, and thus
E [w1(s)w2(�)

0] = 0, which implies thatw2(�), (0 � � � t1) is un-
correlatedwithw1(s), (s > t1). Similarly, it can be verified thatw2(s)
is uncorrelated withw2(�) for s 6= � andw1(s0) is uncorrelated with
w1(�0) for s0 6= �0. Hence, fw2(�)j0���t ; w1(�)jt <��tg is an
innovation sequence. This completes the proof of the lemma.
wi(�), i = 1; 2, is termed as reorganized innovation, which plays

important role for deriving the optimal estimator.

B. Riccati Equation

Given time instant t and t1 = t � d, denote

P2(�)
�
= E ~x(�; 2)~x(�; 2)0 ; 0 � � � t1 (27)

P1(�)
�
= E ~x(�; 1)~x(�; 1)0 ; � > t1 (28)

whereP2(�) andP1(�) are the covariance matrices of prediction error
of system state. We shall show that P2(�) and P1(�) satisfy Riccati
equation.

Theorem 3.1:

1) P2(�) is the solution of the following Riccati equation:

dP2(�)

d�
= �(�)P2(�)+P2(�)�

0(�)�K2(�)QV (�) [K2(� )]
0

+�(�)Qu(�)�
0(�) P2(0) = �0 (29)

where

K2(�) = P2(�)H
0
2(�)Q

�1
V (�): (30)

2) P1(�) for � > t1 is the solution of the following Riccati
equation:

dP1(�)

d�
= �(�)P1(�)+P1(�)�

0(�)�K1(�)QV (�) [K1(� )]
0

��(�)Qu(�)�
0(�) P1(t1) = P2(t1) (31)

where

K1(�) = P1(�)H
0
1(�)Q

�1
V (�): (32)

Proof: First, it is obvious that P�
2 is the solution of the standard

Riccati (29) which is associated with the Kalman filtering of the system
(1) and (13) with i = 2.
Second, note that for � > t1, x̂(�; 1) is the projection of x(� ) into

the linear space

Lfw2(s)j0�s�t ; w1(s)j0<s<�g

and can be obtained by applying the projection formula as

x̂(�; 1) =

t

0

hx(�);w2(s)iQ
�1
V (s)w2(s)ds

+

�

t

hx(�);w1(s)iQ
�1
V (s)w1(s)ds: (33)

By differentiating both sides of (33) with respect to � , we have

dx̂(�; 1)

d�
=�(�)x̂(�; 1) + hx(�);w1(�)iQ

�1
V (�)w1(�)

=�(�)x̂(�; 1) +K1(�)w1(�) (34)

where

K1(�) = P)1(�)H
0
1(�)Q

�1
V (�)

with initial condition x̂(t1; 2). Therefore, �1(�)
�
= hx̂(�; 1); x̂(�; 1)i

satisfies the equation

d�1(�)

d�
= �(�)�1(�) + �1(�)�

0(�) +K(�)1QV (�) [K1(� )]
0
:

(35)
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Fig. 2. True state ^ ( ) and its estimation value with delay.

It is also clear that�(� )
�
= hx(� );x(� )i satisfies the linear differential

equation
d�(�)

d�
= �(�)�(�) + �(� )�0(�) + �(�)Qu(�)�

0(�): (36)

In view of the decomposition x(� ) = x̂(�; 1) + ~x(�; 1), we have that
�(� ) = �1(�) + P1(�). Then, (31) follows, which completes the
proof.

C. Optimal Estimate x̂(tjt)

In this subsection, we will calculate the optimal estimate x(tjt)
based on the Riccati equation given in last subsection.

Theorem 3.2: Consider (1)–(3) and given time t > d, the optimal
estimate x̂(tjt) is given by

x̂(tjt) = x̂(t; 1) (37)

where x̂(t; 1) is computed through the following steps.

Step 1) Calculating x̂(�; 2) for � = t1

dx̂(�; 2)

d�
= �(�)x̂(�; 2) +K2(�) [Y2(�)�H2(�)x̂(�; 2)]

x̂(0; 2) = 0 (38)

where K2(�) = P2(�)H
0
2(�)Q

�1

V
(�) and P2(�) is

calculated by (29), i.e.,
dP2(�)

d�
= �(�)P2(�)+P2(�)�

0(�)�K2(�)QV (�) [K2(� )]
0

+�(�)Qu(�)�
0(�) P2(0) = �0: (39)

Step 2) Calculating x̂(�; 1) for t1 < � � t

dx̂(�; 1)

d�
= �(�)x̂(�; 1) +K1(�) [Y1(�)�H1(�)x̂(�; 1)]

x̂(t1; 1) = x̂(t1; 2) (40)

where K1(�) = P1(�)H
0
1(�)Q

�1

V
(�), and P1(�) is

calculated by (31), i.e.,
dP1(�)

d�
= �(�)P1(�)+P1(�)�

0(�)�K1(�)QV (�) [K1(� )]
0

+�(�)Qu(�)�
0(�) P1(t1) = P2(t1): (41)

Step 3) The estimator x̂(t; 1) is computed from Step 2) for � =
t.

Proof: (37) is obtained immediately fromDefinition 3.1. (39) and
(41) follow directly from (29) and (31) respectively. From the standard

Riccati equation, we can conclude (38). From (17) and (34), we can
obtain (40).

Remark 3.1: When 0 � t � d, the optimal estimator x̂(tjt) is the
projection of state x(t) onto the linear space generated by the observa-
tion of fy(� ); 0 � � � tg. Note the observation y(� ) is from (2) and
delay free, thus x̂(tjt) is standard Kalman filter associated with system
(1), (2) which can be computed by

dx̂(�; 1)

d�
= �(�)x̂(�; 1) +K1(�) [y1(� )�H1(�)x̂(�; 1)]

x̂(0; 1) = 0 (42)

where K1(�) = P1(�)H
0
1(�)Q

�1

V
(�), and P1(�) is calculated by

dP1(�)

d�
= �(�)P1(�)+P1(�)�

0(�)�K1(�)QV (�) [K1(� )]
0

+�(�)Qu(�)�
0(�) P1(0) = �0: (43)

When t > d, a flow chart for calculating x̂(tjt) is drawn in Fig. 4.

IV. NUMERICAL EXAMPLE

In the section, we illustrate the results obtained in previous section
with a simple example. Consider the continuous-time model (1)–(3)
with

�(t) =
�10 0

10 �20
�(t) =

�2

�1

H(t) = [1 1] H1(t) = [2 1] (44)

then

H1(t) = [1 1] H2(t) =
1 1

2 1
: (45)

The initial state x(0) = 1

0:5
, x̂(0) = 0

0
and P0 =

1 0

0 1
.

In the simulation, u(t), v0(t) and v1(t) are assumed to be uncorre-
lated Gaussian noises with zero means and known covariance matrices
Qu(t) = 1, Qv (t) = Qv (t) = 1, let sampling period Ts = 0:02 s,
d = 0:4 s.
The simulation results are drawn in Figs. 1–3. It can be observed

from the simulation results that the proposed method produces very
good performance, so the technique proposed in this note is efficient.
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Fig. 3. Sum of the variance with delay and without delay.

Fig. 4. Flow chart for calculating x̂( ) with .

V. CONCLUSION

The note studied the Kalman filtering for continuous-time systems
with delayed measurements. The optimal estimate is derived by devel-
oping a new tool called reorganized innovation approach. It consists
of two different Kalman filters that have the same dimension as the
original system. Comparingwith the conventional approach via solving
partial differential equation (PDE), a significant advantage of new ap-
proach is that it provides a closed-form solution. Simulation results
showed that the new approach is efficient. Moreover, we believe that
the presented results give an useful benchmark for dealing with time
delay problems such as controller and filter design in H2 or H1 per-
formance [8], [9], [13].

It should be pointed out that the presented results in this note are
limited to the systems with only current and one channel delayed mea-
surements. This is in comparison with some recent publications as in

[1] and [2], where the more general cases for the systems with both
measurement delays and state delays were considered.
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