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Abstract

Superconducting magnetic energy storage (SMES) units can be used to enhance the stability of power systems. The key to make good use
of the SMES units is to design effective controllers. This paper presents a number of results on the analysis and control of multi-machine
power systems with such units via Hamiltonian function method. It has been shown that the multi-machine power systems with SMES units
can be made to be a port-controlled Hamiltonian (PCH) system by using a state feedback control, and that the stability of the resulting system
can be established. Furthermore, this paper proposes a novel energy-based adaptive L2 disturbance attenuation control scheme for the multi-
machine systems with SMES units. The control scheme is a decentralized one and consists of two parts: one is an L2 disturbance attenuation
excitation controller for the generators, and the other is an adaptive L2 disturbance attenuation controller for the SMES units. Simulations on
a six-machine system with one SMES unit show that the proposed control scheme is very effective.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The superconducting magnetic energy storage (SMES) is ca-
pable of supplying both active and reactive powers simulta-
neously and quickly for power systems, and thus capable of
enhancing the systems’ stability and reliability dramatically
(Banerjee, Chatterjee, & Tripathy, 1990; Irie, Takeo, & Sato,
1992; Jiang & Chu, 2001; Simo & Kamwa, 1995). Primarily,
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the SMES unit was aimed to store energy during the off-peak
load period and release it in the peak load period. It has been
shown that the SMES can not only supply the active and re-
active power simultaneously, but also help damp the electro-
mechanical oscillations in a network (Simo & Kamwa, 1995;
Wu & Lee, 1993). In fact, the unit can also be used as a power
system stabilizer, if the control scheme is suitably designed (Irie
et al., 1992; Maschowski & Nelles, 1992). The applications
of the SMES also include load regulation, transmission stabi-
lization, frequency-oscillation damping, uninterruptible power
supply, power compensation, voltage control and improving
customer power quality, etc. (Buckles & Hassenzahl, 2000;
Juengst, 1998; Luongo, 1996). In the above-mentioned appli-
cations, a key to success is to design effective controllers.

In recent years, the port-controlled Hamiltonian (PCH)
system, proposed by Maschke and van der Schaft (1992),
van der Schaft and Maschke (1995), has been well investi-
gated in van der Schaft (1999), Maschke, Ortega, and van der
Schaft (2000), Maschke, Ortega, van der Schaft, and Escobar
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(1999), Escobar, van der Schaft, and Ortega (1999), Ortega,
Loría, Nicklasson, and Sira-Ramírez (1998), Ortega, van der
Schaft, Maschke, and Escobar (2002), Fujimoto and Sugie,
2001a, 2001b, Fujimoto, Sakurama, and Sugie (2003). The
Hamiltonian function in a PCH system is considered as the to-
tal energy, which is the sum of potential and kinetic energies in
mechanical systems, and it can play the role of Lyapunov func-
tion for the system. Because of this and its nice structure with
clear physical meaning, the PCH system has many advantages
in control designs and has found its use in many practical prob-
lems. Especially, it has been widely used in the control design
of power systems, see, e.g. Ortega, Galaz, Astolfi, Sun, and
Shen (2005), Cheng, Xi, Hong, and Qin (1999), Shen, Ortega,
and Lu (2000), Sun, Shen, and Ortega (2001), Galaz, Ortega,
Bazanella, and Stankovic (2003), Wang, Cheng, and Li (2003),
Xi, Cheng, Lu, and Mei (2002), Cheng et al. (1999) and Shen
et al. (2000) applied it to the stabilization of single-machine
infinite-bus systems, and designed effective control laws, re-
spectively. Ortega et al. (2005), Sun et al. (2001) and Wang
et al. (2003) used it in the analysis and control of multi-machine
power systems, and obtained some significant results.

It is well known that a key step in applying the PCH sys-
tem to investigate practical control problems is to transform the
system under consideration into a dissipative PCH system, i.e.,
to obtain the dissipative Hamiltonian realization (Ortega et al.,
2002; Wang, Li, & Cheng, 2003). The dissipative Hamiltonian
realization of multi-machine systems is a long-standing prob-
lem in the energy-based control of power systems. Recently,
some significant contributions have been made to the problem
(Ortega et al., 2005; Sun et al., 2001; Wang et al., 2003; Xi
et al., 2002). It is well worth noticing that Ortega et al. (2005)
has set up a useful method to handle the long-standing problem
of multi-machine systems with non-negligible transfer conduc-
tances. The method is very important, because it can not only
provide a PCH structure for the systems but also pave an easy
way to analyze the domain of attraction of the systems, which
is a key factor in the transient stabilization of power systems.
Unfortunately, none of these papers has obtained the final dis-
sipative Hamiltonian realization of multi-machine power sys-
tems in general model. The structure of multi-machine power
systems in general model is too complicated, so that the real-
ization problem still remains open.

In this paper, we use the PCH system to investigate adap-
tive L2 disturbance attenuation control of multi-machine power
systems with SMES units, and propose an energy-based con-
trol design method for the systems (note: it should be pointed
out that the model of multi-machine systems used in the paper
is not the general one, but it is a standard model. Please refer
to Lu, Sun, Xu, & Mochizuki, 1996). First, we transform the
multi-machine power systems with SMES units into a PCH sys-
tem by using a feedback control. Then, we study the stability
of the obtained PCH system. Finally, an energy-based adaptive
L2 disturbance attenuation controller is designed for the multi-
machine power systems with SMES units. Simulations on a
six-machine system with one SMES unit show that the adap-
tive L2 disturbance attenuation control scheme obtained in this
paper is more effective than some other control schemes.
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Fig. 1. The typical configuration of an SMES unit.

The design method and results proposed in this paper can be
used in practice to design energy-based adaptive robust con-
trollers for power systems with SMES units, when there exist
external disturbances in the systems and parametric uncertain-
ties in the SMES units. In addition, it should be pointed out that
the main objective of the paper is to design effective controllers
to make good use of the SMES units, and hence the case of
generators’ parametric uncertainty is not taken into account in
the main results of this paper. Although the case is considered
in a remark of the paper (see Remark 3 below), further study
remains needed to design an effective adaptive controller for
the case. This is the practical limitation of the main results in
the paper.

The rest of the paper is organized as follows. Section 2 gives
the model of the multi-machine power systems with SMES
units, and Section 3 transforms the model as a global PCH
system. In Section 4, we study the stability of the obtained
PCH system. Section 5 investigates the energy-based adap-
tive L2 disturbance attenuation control design for the multi-
machine power systems with SMES units. Section 6 presents
some simulation results, which is followed by the conclusion in
Section 7.

2. System model

2.1. A model for SMES units

Fig. 1 shows the typical configuration of an SMES unit,
which is composed of a 12 pulse thyristor bridge and a super-
conducting magnet (Jiang et al., 2001; Masahide, Yasunori, &
Kiichiro, 1999). The use of self-commuted devices like gate
turn off thyristor (GTOs) guarantees a wide control range of
active and reactive powers. By using the pulse width modula-
tion (PWM) control with self-commuted converters, one can
realize simultaneous control of the active and reactive powers
at high MVA levels with less harmonics. The modulation in-
dex, W, and the phase firing angle, �, can be used as the control
variables so that it is guaranteed that the SMES is capable of
controlling the active power, PF , and the reactive power, QF ,
independently (Chu, Jiang, Lai, Wu, & Liu, 2001; Jiang et al.,
2001). According to Jiang et al. (2001), Chu et al. (2001),
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Fig. 2. Connection to the network.

PF and QF can be expressed as{
PF = 1.5

√
2WV F IF cos �,

QF = 1.5
√

2WV F IF sin �,
(1)

where VF is the voltage at the lower side of the transformer
connecting to the network (see Fig. 2), IF is the current of
the superconducting coils, and the dynamics of W and � are
described by the following first-order inertial equations:⎧⎨
⎩

Ẇ = − 1

T
W + 1

T
uW ,

�̇ = − 1

T
� + 1

T
u�,

(2)

here T is the time constant of the controlled circuit.
With a straightforward computation shown in Appendix A,

we know that the dynamics of PF and QF can be given in the
form (Liu, 2002; Xi & Guan, 2001):⎧⎪⎪⎨
⎪⎪⎩

ṖF = − 1

T
PF + uP ,

Q̇F = − 1

T
QF + uQ,

(3)

where uP , uQ are new control inputs of PF and QF , respec-
tively.

2.2. A model of multi-machine power systems with SMES units

This paper considers an n-machine power system with m
SMES units (1�m�n) interconnected through a transmission
network (for simplicity, we denote the system by n-M plus m-
SMES in sequel). We assume that one SMES unit is located
close to one generator. Thus, one SMES unit together with
its nearby generator can be considered as a new equivalent
generator in the network (see Fig. 2). Without loss of generality,
we assume that the m SMES units are assigned to the first m
generators. Then, the model of the n-M plus m-SMES system
can be given as

Dynamics of the generators (Lu et al., 1996):

⎧⎪⎪⎨
⎪⎪⎩

�̇i = �i − �0,

�̇i = �0

Mi

Pmi − Di

Mi

(�i − �0) − �0

Mi

Pei + εi1,

Ė′
qi = − 1

Td0i

Eqi + 1

Td0i

uf i + εi2, i = 1, 2, . . . , n,

(4)

Dynamics of the SMES units (Eq. (3)):⎧⎪⎨
⎪⎩

ṖF i = − 1

Ti

PFi + uP i + εi3,

Q̇F i = − 1

Ti

QFi + uQi + εi4, i = 1, 2, . . . , m,

(5)

where

Eqi = E′
qi + Idi(xdi − x′

di),

Idi = BiiE
′
qi −

n∑
j=1,j �=i

BijE
′
qj cos(�i − �j ),

i = 1, 2, . . . , n,

for i ∈ {1, 2, . . . , m}

Pei = PLi + PFi, Vti = VFi + QFiXT i

VFi

,

PLi = GiiE
′
qi

2 + E′
qi

n∑
j=1,j �=i

BijE
′
qj sin(�i − �j )

for i ∈ {m + 1, m + 2, . . . , n}

Pei = GiiE
′
qi

2 + E′
qi

n∑
j=1,j �=i

BijE
′
qj sin(�i − �j ),

εi1, εi2, εi3, εi4 are disturbances; �i is the power angle of the
ith generator, in radian; �i the rotor speed of the ith generator,
in rad/s, �0 =2�f0; E′

qi the q-axis internal transient voltage of
the ith generator, in per unit (p.u.); Eqi the internal voltage, in
p.u.; xdi the d-axis reactance, in p.u.; x′

di the d-axis transient
reactance of the ith generator, in p.u.; uf i the voltage of the
field circuit of the ith generator, the control input, in p.u.; Mi

the inertia coefficient of the ith generator, in seconds; Di the
damping constant, in p.u.; Td0i the field circuit time constant,
in seconds; Pmi the mechanical power, assumed to be constant,
in p.u.; Pei the active electrical power, in p.u.; Idi the d-axis
current, in p.u.; Yij = Gij + jBij the admittance of line i–j, in
p.u.; Yii = Gii + jBii the self-admittance of bus i, in p.u.; PFi

and QFi are, respectively, the active and reactive powers of the
ith SMES unit (here i = 1, 2, . . . , m), in p.u.; as for VFi , Vti

and XT i , please refer to Fig. 2, and they are all in p.u. It should
be noted that the resistance and crosswise voltage excursions
of the transformer are neglected here.

Remark 1. The nodal susceptance matrix of the system (4)
is symmetric, and Gij + jBij (a complex number) is just the
element located at (i, j) in the matrix. Thus, we know that
Gij = Gji and Bij = Bji hold for all i, j = 1, 2, . . . , n, which
is important for our analysis below.

3. A PCH structure of the system

In this section, we transform the n-M plus m-SMES system
into a dissipative PCH system. Assume (�(0)

i , �0, E
′
qi

(0)
), i =

1, 2, . . . , n, is the pre-assigned operating point of the system
(4), which should remain unchanged in the control design.
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Let

xi1 = �i , xi2 = �i − �0, xi3 = E′
qi, xj4 = PFj ,

xj5 = Vtj − Vtj0 ai = �0

Mi

Pmi,

bi = Di

Mi

, ci = �0

Mi

Gii,

di = �0

Mi

, ei = 1

Tdoi

,

hi = xdi − x′
di

Tdoi

, ui = 1

Tdoi

uf i,

i = 1, 2, . . . , n, j = 1, 2, . . . , m,

then the n-M plus m-SMES system can be rewritten as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋi1 = xi2,

ẋi2 = ai − bixi2 − cix
2
i3 − dixi4

−dixi3

n∑
s=1,s �=i

Bisxs3 sin(xi1 − xs1) + εi1,

ẋi3 = −(ei + hiBii)xi3

+hi

n∑
s=1,s �=i

Bisxs3 cos(xi1 − xs1) + ui + εi2,

ẋi4 = − 1

Ti

xi4 + uP i + εi3,

ẋi5 = − 1

Ti

xi5 + uti + ε′
i4, i = 1, 2, . . . , m,

ẋj1 = xj2,

ẋj2 = aj − bjxj2 − cj x
2
j3

−djxj3

n∑
s=1,s �=j

Bjsxs3 sin(xj1 − xs1) + εj1,

ẋj3 = −(ej + hjBjj )xj3

+hj

n∑
s=1,s �=j

Bjsxs3 cos(xj1 − xs1) + uj + εj2,

j = m + 1, . . . , n,

(6)

where Vtj0 is the assigned value of Vtj , ε′
i4=(XT i/VFi)εi4

and uti is a new input satisfying

uti = 1

Ti

(VFi − Vti0) + XT iuQi

VFi

+ V 2
Fi − QFiXT i

V 2
Fi

V̇F i , (7)

which is the relationship between the inputs uQi and uti .
It appears almost impossible to transform system (6) into

a Hamiltonian system directly. However, with the following
feedback control law the compensated system becomes a PCH
system:⎧⎪⎨
⎪⎩

ui = −2cihi

di

xi1xi3 − kixi3 + ūi + vi1, i = 1, 2, . . . , n,{
uPj = lj xj2 + vj2,

utj = vj3, j = 1, 2, . . . , m,

(8)

where the terms −(2cihi/di)xi1xi3 and lj xj2 are used to
achieve a PCH structure; the terms −kixi3 and ūi are employed
to keep the system’s operating point unchanged; lj > 0 is a con-
stant control gain (may be adjusted), ki and ūi are constants to
be determined; and vi1, vj2, vj3 are the new reference inputs.

Theorem 1. Under the feedback control law (8), the n-M plus
m-SMES system can be transformed into a dissipative PCH

system as follows:

ẋ = (J − R)
�H(x)

�x
+ G1v + G2ε, (9)

where J = −J T = Diag{J1, . . . , Jm, Jm+1, . . . , Jn}, R =
Diag{R1, . . . , Rm, Rm+1, . . . , Rn}�0, G1=Diag{g11, . . . , gm1,

gm+1,1, . . . , gn1}, G2 = Diag{g12, . . . , gm2, gm+1,2, . . . , gn2},
v=[vT

1 , . . ., vT
m, vm+1, . . ., vn]T, ε=[εT

1 , . . ., εT
m, εT

m+1, . . ., ε
T
n ]T,

x=[xT
1 , . . ., xT

m, xT
m+1, . . ., x

T
n ]T, �H/�x=[�HT/�x1, . . . , �HT

/�xm, �HT/�xm+1, . . . , �HT/�xn]T; for i = 1, 2, . . . , m,
xi = [xi1, xi2, xi3, xi4, xi5]T,

Ji =

⎡
⎢⎢⎢⎣

0 di 0 0 0
−di 0 0 −dili 0

0 0 0 0 0
0 dili 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎦ ,

Ri =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 0
0 bidi 0 0 0
0 0 hi 0 0

0 0 0
li

Ti

0

0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎦ , (10)

gi1 =

⎡
⎢⎢⎢⎣

0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎦ , gi2 =

⎡
⎢⎢⎢⎣

0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎦ , (11)

vi = [vi1, vi2, vi3]T, εi = [εi1, εi2, εi3, ε
′
i4]T, (12)

for i = m + 1, . . . , n, xi = [xi1, xi2, xi3]T,

Ji =
[ 0 di 0

−di 0 0
0 0 0

]
, Ri =

[0 0 0
0 bidi 0
0 0 hi

]
, (13)

gi1 =
[0

0
1

]
, gi2 =

[0 0
1 0
0 1

]
, εi =

[
εi1
εi2

]
, vi = vi1, (14)

and

H(x) =
n∑

i=1

⎧⎨
⎩ − ai

di

xi1 + ci

di

xi1x
2
i3 + 1

2di

x2
i2

+ ei + hiBii + ki

2hi

x2
i3 − ūi

hi

xi3

−1

2
xi3

n∑
j=1,j �=i

Bij xj3 cos(xi1 − xj1)

⎫⎬
⎭

+ 1

2

m∑
i=1

(
1

li
x2
i4 + 1

Ti

x2
i5

)
. (15)

Proof. See Appendix B.

In addition, it can be seen that, to keep the system’s pre-
assigned operating point unchanged, ki and ūi in the feedback
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(8) should satisfy

− (ei + hiBii)E
′
qi

(0) + hi

n∑
j=1,j �=i

BijE
′
qj

(0) cos(�(0)
i − �(0))

− 2cihi

di

�(0)
i E′

qi
(0) − kiE

′
qi

(0) + ūi = 0, (16)

where i = 1, 2, . . . , n.

Remark 2. (1) The Hamiltonian realization (9) is a global re-
sult, which holds on the whole state space of the power system.

(2) In practice, the variation range of xi2 (=�i − �0) is, in
general, ±3%, while that of xi4 (the SMES’ active power) is
±Pmax. The two ranges are quite different in value, and li in
the feedback control (8) is to make them match in value. This
is also the guideline of choosing li .

(3) From (16) and the fact that xi2 ≡ 0 when the system
is stable, it can be seen that the feedback control (8) does not
change the system’s operating point.

Remark 3. (1) The feedback law (8) admits the parametric un-
certainty in the SMES units, that is, the parametric uncertainty
in the SMES units does not affect the role of (8) to provide
exact compensation for the system.

(2) When the generators’ parameters are not known exactly,
the compensation provided by the feedback law (8) will not be
exact. In this case, we can modify (8) to obtain the following
adaptive feedback law to provide exact compensation for the
system:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ui = −2c0
i h

0
i

d0
i

xi1xi3 − kixi3 + ūi − 2�i �̂ixi1xi3 + vi1,

˙̂�i = 2Pi�T
i xi1xi3�i (x), i = 1, 2, . . . , n,{

uPj = lj xj2 + vj2,

utj = vj3, j = 1, 2, . . . , m,

(17)

where �T
i ∈ Rs (s�1) is a known vector assumed to be such

that cihi/di = c0
i h

0
i /d

0
i + �i�; c0

i , h0
i and d0

i are the nominal
values of ci , hi and di , respectively; � ∈ Rs denotes the un-
known element of cihi/di ; �̂ is the estimate of �; Pi ∈ Rs×s

is a positive definite matrix (adaptation gain); and �i (x) is a
function to be determined by Hamiltonian structural properties.

(3) Similar to the proofs of Theorem 1 and Lemma 2 below,
we can show that under the control law (17), the n-M plus
m-SMES system can be transformed into an augmented PCH
system with the following function as its Hamiltonian function:

H̄ = H(x) + 1

2

n∑
i=1

(� − �̂)TP −1
i (� − �̂),

where H(x) is given by (15).
(4) When the generators’ parameters are not known exactly,

based on the above augmented PCH system, we can use the
stability analysis method in Section 4 and the control design
method in Section 5 to analyze the stability and design an
adaptive L2 disturbance attenuation controller for the n-M plus
m-SMES system, respectively, only the processes will be more
complicated (see Sections 4 and 5 below).

4. Stability analysis

In this section, we analyze the stability of the system (9).
First, we study the properties of the Hamiltonian function H(x).

Construct two functions:

H� =
n∑

i=1

⎧⎨
⎩

⎛
⎝ ki

2hi

+ ci

di

xi1 − 1

2

n∑
j �=i

Bij

⎞
⎠ x2

i3

−ai

di

xi1 + 1

2di

x2
i2 + ei + hiBii

2hi

(xi3 − ūi

ei + hiBii

)2
}

+ 1

2

n∑
i=1

n∑
j>i

Bij (|xi3| − |xj3|)2

−
n∑

i=1

ū2
i

2hi(ei + hiBii)
+ 1

2

m∑
i=1

(
1

li
x2
i4 + 1

Ti

x2
i5

)
,

H� =
n∑

i=1

⎧⎨
⎩

⎛
⎝ ki

2hi

+ ci

di

xi1 − 1

2

n∑
j �=i

Bij

⎞
⎠ x2

i3

−ai

di

xi1 + 1

2di

x2
i2 + ei + hiBii

2hi

(xi3 − ūi

ei + hiBii

)2
}

+ 1

2

n∑
i=1

n∑
j>i

Bij (|xi3| + |xj3|)2

−
n∑

i=1

ū2
i

2hi(ei + hiBii)
+ 1

2

m∑
i=1

(
1

li
x2
i4 + 1

Ti

x2
i5

)
.

The difference between H� and H� is only in one term: H� is
with (|xi3| − |xj3|)2, while H� with (|xi3| + |xj3|)2. From (15)
and the relation Bij =Bji (see Remark 1), we can easily obtain

H� �H(x)�H�. (18)

Next, to further study the properties of the Hamiltonian func-
tion H(x), we present a lemma.

Lemma 1. Assume that f (x) : Rn −→ R is a smooth lower
bounded and radially unbounded function. Then there is a local
minimum point x0, with

�f (x)

�xi

(x0) = 0, i = 1, . . . , n. (19)

Proof. Since f (x) is radially unbounded, for any l ∈ R

L = {x|f (x)� l}
is a compact set (we may choose l large enough to avoid the
frustrating case of L = 	). On the other hand, f (x) is lower
bounded, then over the compact set L we can find a point x0
such that

f (x0) = inf
x∈L

f (x).

Since the function is radially unbounded, we can assume that
x0 is not on the boundary (otherwise, we can choose larger l).
By smoothness, x0 satisfies (19). �



1126 Y. Wang et al. / Automatica 42 (2006) 1121–1132

Remark 4. In general, x0 is not unique. Thus, x0 is only a
minimum point. But if we know that the solution of (19) is
unique (an isolated point), it is a strict minimum point (locally
strict minimum).

The following corollary is an immediate consequence of
Lemma 1.

Corollary 1. Let V be a compact analytic sub-manifold of Rt

(compact is the sense of inherited topology of Rt ) and f (x, y) :
V × Rn −→ R be smooth, lower bounded and radially un-
bounded with respect to y. Then there is a local minimum point
(x0, y0) satisfying

�f

�x
(x0, y0) = 0,

�f

�y
(x0, y0) = 0.

Now the closed-loop multi-machine system with SMES units
is defined on (S1)n ×R2(n+m), where S1 is a circle, and hence
Sn is compact. Using the structure of H� and the property of
xi1 ∈ [−�, �], we know that H� is lower bounded if ki is
selected to be suitably large, say, ki =ki0. Now let ki =ki0, and
from (18) one can see that H(x) is lower bounded and radially
unbounded with respect to xi2, xi3, xi4 and xi5. From Corollary
1, there exists a working point x0 satisfying (�H/�xij )(x0)=0.
Note that the equilibrium of the power system is an isolated
point, thus the working point is a strict local minimum point.
From the properties of the dissipative PCH system (Maschke
et al., 2000; Ortega et al., 2002), we know that when v = 0 and
ε = 0, the system (9) is Lyapunov stable at the working point.
Moreover, we have the following result.

Proposition 1. When v and ε vanish, the system (9) is asymp-
totically stable at the operating point. In other words, the feed-
back control (8) is a stabilizer of the n-M plus m-SMES system.

Proof. See Appendix C.

Remark 5. Eq. (16) with ki = ki0 (i = 1, 2, . . . , n) is the con-
dition to determine ki and ūi .

5. Adaptive L2 disturbance attenuation of the n-M plus
m-SMES system

In this section, to make good use of the SMES units, we in-
vestigate the adaptive L2 disturbance attenuation control design
for the n-M plus m-SMES system. First, we propose a lemma
on L2 disturbance attenuation, which will be used in the con-
trol design.

Consider a dissipative PCH system as follows:{
ẋ = (J (x) − R(x))∇H(x) + g1(x)u + g2(x)w,

z = h(x)gT
1 (x)∇H(x),

(20)

where x ∈ Rn, u ∈ Rm is the control input, w ∈ Rq is
the disturbance, J (x) is skew-symmetric, R(x)�0, H(x) has
a strict local minimum at the system’s equilibrium, z is the
penalty function, h(x) is a weighting matrix and ∇H =�H/�x.

Assume that the system (20) involves parametric perturba-
tions, which are small enough to keep the dissipative structure
of the system unchanged, and that the parametric perturbations
can be represented by a constant unknown vector p. Then, the
system (20) becomes (Shen et al., 2000).

ẋ = [J (x, p) − R(x, p)]�H

�x
(x, p) + g1(x)u + g2(x)w, (21)

where J (x, 0)=J (x), R(x, 0)=R(x), H(x, 0)=H(x), J (x, p)

is skew-symmetric and R(x, p) is positive semi-definite.
Decompose J (x, p), R(x, p) and (�H/�x)(x, p) as follows:

J (x, p) = J (x) + �J (x, p), R(x, p) = R(x) + �R(x, p),
�H

�x
(x, p) = �H

�x
(x) + �H (x, p).

Given a disturbance attenuation level 
 > 0, take z as the
penalty function. Then, we have the following result.

Lemma 2. For the penalty function z and the given disturbance
attenuation level 
 > 0, if

P : =R(x, p) + 1

2
2 [g1(x)gT
1 (x) − g2(x)gT

2 (x)]�0 (22)

and there exists an s × m matrix �(x) such that

[J (x, p) − R(x, p)]�H (x, p) = g1(x)�T(x)� (23)

holds for all x, then an adaptive L2 disturbance attenuation
controller of the system (21) can be designed as{

u = − 1
2 [hT(x)h(x) + 1


2 Im]gT
1 (x)

�H

�x
(x) − �T(x)�̂,

˙̂� = Q�(x)gT
1 (x)

�H

�x
(x),

(24)

and 
-dissipation inequality

V̇ (x, �̂) + ∇TH(x)P∇H(x)� 1
2 {
2||w||2 − ||z||2} (25)

holds along the trajectories of the closed-loop system (21) with
(24), where � ∈ Rs is an unknown constant parameter vector
related to the perturbation p, �̂ is an estimate of �, Q > 0 is a
constant adaptation gain matrix, and

V (x, �̂) = H(x) + 1
2 (� − �̂)TQ−1(� − �̂). (26)

Proof. Substituting (24) into (21) and using the condition (23)
yield⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẋ = [J (x, p) − R(x, p)]�H

�x
(x) + g1�T(x)(� − �̂)

−1

2
g1[hTh + 1


2 Im]gT
1

�H

�x
(x) + g2w,

˙̂� = Q�(x)gT
1

�H

�x
(x),

which can be changed into an augmented dissipative PCH sys-
tem as follows:

Ẋ = [J̄ (X) − R̄(X)]∇V (X) + Ḡ1(X)ū + Ḡ2(X)w, (27)



Y. Wang et al. / Automatica 42 (2006) 1121–1132 1127

where X=[xT, �̂
T]T, Ḡ1(X)=[gT

1 , 0]T, Ḡ2(X)=[gT
2 , 0]T with

proper dimensions,

J̄ (X) =
[

J (x, p) −(Q�(x)gT
1 )T

Q�(x)gT
1 0

]
,

R̄(X) = Diag{R(x, p), 0}, ∇V (X) = [�TV/�x, �TV/��̂]T and

ū = − 1

2
(hTh + 1


2 Im)gT
1 (x)

�H

�x
(x),

= − 1

2
(hTh + 1


2 Im)ḠT
1 (X)

�V

�X
. (28)

Rewriting the penalty function z leads to

z = hgT
1 (x)∇H(x) = hḠT

1 (X)∇V . (29)

With the system (27), the control law (28) and the penalty
function (29), it can be seen from Wang et al. (2003) that

V̇ + �V T

�X
[R̄(X) + 1

2
2 (Ḡ1Ḡ
T
1 − Ḡ2Ḡ

T
2 )]�V

�X

� 1

2
{
2‖w‖2 − ‖z‖2},

which implies that (25) holds, and thus the proof is completed.
�

Remark 6. Lemma 2 is motivated by Shen et al. (2000). When
g1(x) ≡ g2(x), Lemma 2 degenerates to the result of Shen
et al. (2000).

In the following, we apply Lemma 2 to design an energy-
based adaptive L2 disturbance attenuation control scheme for
the n-M plus m-SMES system.

Let a disturbance attenuation level 
 > 0 be given. Assume
that the time constants of the SMES units have perturbations:
Ti → Ti +pi , where pi are unknown and satisfy |pi | < Ti , i =
1, 2, . . . , m. Then, it is easy to see from Section 3 that in the sys-
tem (9) the Hamiltonian function H(x) and the matrices Ri (i=
1, 2, . . . , m) involve the perturbation p : =[p1, . . . , pm]T, and
they will take the forms of H(x, p) and Ri(x, p), respectively.
A straightforward computation shows that in this case the sys-
tem (9) becomes

ẋ = [J − R(x, p)]�H

�x
(x, p) + G1v + G2ε, (30)

where R(x, p)=Diag{R1(x, p), . . . , Rm(x, p), Rm+1, . . . , Rn},
(�H/�x)(x, p) = [(�HT/�x1)(x, p), . . . , (�HT/�xm)(x, p),
(�HT/�xm+1)(x), . . . , (�HT/�xn)(x)]T,{

Ri(x, p) = Ri + �Ri(x, p),
�H

�xi

(x, p) = �H

�xi

(x) + �iH(x, p), i = 1, 2, . . . , m,

and

�Ri(x, p) = Diag

{
0, 0, 0,

−pili

Ti(Ti + pi)
, 0

}
, (31)

�iH(x, p) =
[

0, 0, 0, 0,
−pixi5

Ti(Ti + pi)

]T

. (32)

To design the control scheme for the system, we take

z = r(x)GT
1 ∇H(x) (33)

as the penalty function, where r(x) = Diag{r11, r12, r13, . . . ,

rm1, rm2, rm3, rm+1,1, rm+2,1, . . . , rn1} > 0 is a constant
weighting matrix, z = [zT

1 , . . . , zT
m, zm+1, . . . , zn]T, zi =

[zi1, zi2, zi3]T (i = 1, 2, . . . , m), and zj := zj1 (j = m +
1, . . . , n).

Now, we check whether the condition (23) holds for the
system (30). Choose �i (x) = [0, 0, xi5] and �i = pi/(Ti(Ti +
pi)), i = 1, 2, . . . , m, then it is easy to see from (30)–(32) that

[Ji − Ri(x, p)]�iH(x, p) = gi1�
T
i (x)�i ,

where i = 1, 2, . . . , m. Set �(x) = Diag{�1(x), . . . , �m(x), 0,

. . . , 0}n×(2m+n) and �=[�1, . . . , �m, 0, . . . , 0]T, then we obtain

[J − R(x, p)]�H (x, p) = G1�
T(x)�, (34)

where �H (x, p) = [(�1H(x, p))T, . . . , (�mH(x, p))T,

0, . . . , 0]T. Thus, (23) is satisfied.
Then, we check whether the condition (22) holds for the sys-

tem (30), i.e., whether R(x, p) + (1/2
2)[G1G
T
1 − G2G

T
2 ]�0

holds for all x and the above p, 
. Let

Pi : =Ri(x, p) + 1

2
2 gi1g
T
i1 − 1

2
2 gi2g
T
i2

= Diag{0, bidi, hi,
li

Ti + pi

, 1} − Diag{0,
1

2
2 , 0, 0, 0}
i = 1, 2, . . . , m,

Pj : =Rj (x) + 1

2
2 gj1g
T
j1 − 1

2
2 gj2g
T
j2

= Diag{0, bj dj , hj } − Diag{0,
1

2
2 , 0}
j = m + 1, . . . , n.

It can be seen that Pi �0 when 1/2
2 �bidi = �0Di/M
2
i ,

i = 1, 2, . . . , n (see Section 3). Now we choose


�
0 : = max
1� i �n

{
Mi/

√
2�iDi

}
,

then Pi �0, which implies R(x, p)+(1/2
2)[G1G
T
1 −G2G

T
2 ]=

Diag{P1, . . . , Pn}�0. Thus, (22) holds for the system (30)
when 
�
0.

Therefore, all the conditions of Lemma 2 can be satisfied.
According to Lemma 2, when 
�
0, an adaptive L2 disturbance
attenuation controller of the system (30) can be designed as⎧⎪⎨
⎪⎩
v = −1

2
rT(x)r(x)GT

1
�H

�x
(x)− 1

2
2 GT
1
�H

�x
(x)−�T(x)�̂,

˙̂� = Q�(x)GT
1
�H

�x
(x),

(35)

where �̂ is the estimate of �, and Q = Diag{q1, . . . , qn} > 0 is
a constant adaptation gain matrix.
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Fig. 3. A six-machine system with one SMES unit.

From (35) and (8), we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ui = −2cihi

di

xi1xi3 − ki0xi3 + ūi − 1

2
(ri1 + 1

ri1
2 )zi1,

i = 1, 2, . . . , n,

uPj = lj xj2 − 1

2

(
rj2 + 1

rj2
2

)
zj2,

utj = −1

2

(
rj3 + 1

rj3
2

)
zj3 − xj5�̂j ,

˙̂�j = qj

Tj

x2
j5, j = 1, 2, . . . , m,

(36)

where �̂j is the jth component of �̂, j = 1, 2, . . . , m (note:

�̂i=0, i=m+1, . . . , n). Rewrite (36) with the original notations
of the variables and parameters, then we obtain the desired
adaptive L2 disturbance attenuation controller of the n-M plus
m-SMES system as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uf i = −2Gii(xdi − x′
di)�iE

′
qi − ki0TdoiE

′
qi + Tdoi ūi

−1

2
Tdoi

(
ri1 + 1

ri1
2

)
zi1, i = 1, 2, . . . , n,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uPj = lj (�j − �0) − 1

2

(
r2
j2 + 1


2

)
1

lj
PFj ,

uQj = − VFj

2TjXTj

(
r2
j3 + 1


2 + 2Tj �̂j

)
�Vtj

− VFj

TjXTj

(VFj − Vtj0) − V 2
Fj − QFjXTj

VFjXTj

V̇Fj ,

˙̂�j = qj

Tj

(�Vtj )
2, j = 1, 2, . . . , m,

(37)

where �Vtj = Vtj − Vtj0, and ri1, rj2, rj3, qj are adjustable
positive constants.

Summarizing the above leads to the following result.

Theorem 2. For the penalty function (33) and the given dis-
turbance attenuation level 
 > 0, if


�
0 = max
1� i �n

{
Mi√

2�iDi

}
(38)

holds, then an adaptive L2 disturbance attenuation controller of
the n-M plus m-SMES system with the parametric perturbation
p can be given as (37).

Remark 7. (1) It is noted that the control scheme (37) is a
decentralized one.

(2) The control scheme (37) consists of two parts: the first
part is an L2 disturbance attenuation excitation controller for the
n generators, and the second part is an adaptive L2 disturbance
attenuation controller for the m SMES units.

6. Simulation

A six-machine system (Lu et al., 1996) is chosen as an ex-
ample to demonstrate the effectiveness of the control (37). The
system is shown in Fig. 3, where one SMES unit is connected
into the system. As for the system’s data, see Lu et al. (1996).

In this example, Generator No. 6 is a synchronous condenser
and Generator No. 1 is chosen as the reference machine. The
simulation is completed by the PSASP package, which is a pro-
fessional testing system for power systems designed by China
Electrical Power Research Institute.

In order to illustrate the difference of effectiveness of dif-
ferent control schemes, we made comparisons of the following
control configurations:

Controller I: Generators No. 2–5 are equipped with the power
system stabilizer (PSS) and the SMES unit is equipped with
the PID controller, where the parameters of the PID controller
are tuned as follows (Lu & Sun, 1993): for uP , P = −0.01,
I = −0.02 and D = 0; for uQ, P = −100.01, I = −10.2 and
D = 0 (note: (i) PSS and PID controllers are widely used in
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Fig. 4. Under Controller I when Fault 1 occurs.
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Fig. 5. Under Controller II when Fault 1 occurs.

practical power systems; (ii) Since Generator No.1 is used as
the reference and Generator No.6 is a synchronous condenser,
neither of them is equipped with the PSS).

Controller II: Generators No. 2–5 are equipped with our L2
disturbance attenuation controller (the first part in (37)) and
the SMES unit is equipped with our adaptive L2 disturbance
attenuation controller (the second part in (37)), where we let

=2 (note: in this example 
0 =79.5/

√
2 × 314 × 3=1.8316),

T1 = 0.02, ri1 = r12 = r13 = 0.2 , l1 = 1 and q1 = 1.
In simulation, to study the robustness of the controllers, T1

is given 50% perturbation and the following two faults are
considered, respectively:

Fault 1: A three-phase temporary short-circuit fault is as-
sumed to occur at point K (see Fig. 3) during the time pe-
riod 0–0.15 s. In this case, the simulation results are showed in
Figs. 4 and 5, which are the responses of the rotor angles un-
der the above two control configurations, respectively, where
�i1 = �i − �1 (i = 2, 3, 4, 5).

Fault 2: A three-phase temporary short-circuit fault is as-
sumed to occur at point L (see Fig. 3) during the time pe-
riod 0–0.15 s. In this case, the simulation results are showed in
Figs. 6 and 7, which indicate the responses of the rotor angles
under the above two control configurations, respectively.
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Fig. 6. Under Controller I when Fault 2 occurs.
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Fig. 7. Under Controller II when Fault 2 occurs.

From Figs. 4–7, we can see that under our adaptive L2 dis-
turbance attenuation control scheme (37) the system remains
stable when Faults 1 and 2 occur. While when the PSS+PID
control scheme is used, the system falls out of synchronism
soon after the faults occur.

The simulations show that the adaptive L2 disturbance atten-
uation control scheme proposed in the paper is more effective
and has better robustness against disturbances and parametric
perturbations.

7. Conclusion

This paper has presented a number of results on the analysis
and control of multi-machine power systems with SMES units.
We have transformed the multi-machine power systems with
SMES units into a dissipative PCH system by using a state feed-
back, and also analyzed the stability of the resulting system. As
the main result, this paper has proposed a novel energy-based
adaptive L2 disturbance attenuation control scheme for the
multi-machine systems with SMES units. The control scheme
is a decentralized one and consists of two parts: one is an L2
disturbance attenuation excitation controller for the generators,
and the other is an adaptive L2 disturbance attenuation con-
troller for the SMES units. Simulations show that the proposed
control scheme is very effective.
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Appendix A. The derivation from (1)–(3)

The inductance of the superconducting coils is very large,
and IF changes very very slow. In practical control design, the
dynamics of IF can be ignored, see, e.g., [Jiang et al., 2001;
Liu, 2002]. With this, it is easy to know from (1) and (2) that

ṖF = − 1

T
PF + 1.5

√
2WV̇F IF cos �

+ 1

T
(1.5

√
2VF IF uW cos � + QF � − QF u�),

Q̇F = − 1

T
QF + 1.5

√
2WV̇F IF sin �

+ 1

T
(1.5

√
2VF IF uW sin � − PF � + PF u�).

Choose new controls

uP = 1.5
√

2WV̇F IF cos �

+ 1

T
(1.5

√
2VF IF uW cos � + QF � − QF u�),

uQ = 1.5
√

2WV̇F IF sin �

+ 1

T
(1.5

√
2VF IF uW sin � − PF � + PF u�),

then we obtain (3).

Appendix B. The proof of Theorem 1

Substituting (8) into (6) leads to

⎡
⎢⎢⎢⎣

ẋi1
ẋi2
ẋi3
ẋi4
ẋi5

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0 di 0 0 0
−di −bidi 0 −dili 0

0 0 −hi 0 0
0 dili 0 − li

Ti
0

0 0 0 0 −1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f
(1)
i

1

di

xi2

f
(2)
i

1

li
xi4

1

Ti

xi5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+gi1vi + gi2εi,

(A.1)

i = 1, 2, . . . , m, and

[
ẋj1
ẋj2
ẋj3

]
=

[ 0 dj 0
−dj −bjdj 0

0 0 −hj

] ⎡
⎢⎢⎣

f
(1)
j

1

dj

xj2

f
(2)
j

⎤
⎥⎥⎦

+gj1vj + gj2εj ,

(A.2)

where j =m+1, . . . , n; gi1, gi2, gj1, gj2, vi , vj , εi and εj are
defined by (11), (12) and (14), respectively; and

f (1)
w : = − aw

dw

+ cw

dw

x2
w3

+ xw3

n∑
s=1,s �=w

Bwsxs3 sin(xw1 − xs1),

f (2)
w : =ew + hwBww

hw

xw3 + 2cw

dw

xw1xw3

+ kwxw3 − ūw

hw

−
n∑

s=1,s �=w

Bwsxs3 cos(xw1 − xs1),

w = i, j .

Set Hamiltonian functions as

Hi = − ai

di

xi1 + ci

di

xi1x
2
i3 + 1

2di

x2
i2

− xi3

n∑
s=1,s �=i

Bisxs3 cos(xi1 − xs1)

+ ei + hiBii + ki

2hi

x2
i3 − ūi

hi

xi3 + 1

2li
x2
i4 + 1

2Ti

x2
i5,

i = 1, 2, . . . , m,

Hj = − aj

dj

xj1 + cj

dj

xj1x
2
j3 + x2

j2

2dj

+ ej + hjBjj + kj

2hj

x2
j3

− xj3

n∑
s=1,s �=j

Bjsxs3 cos(xj1 − xs1) − ūj

hj

xj3

j = m + 1, . . . , n,

then (A.1)–(A.2) become

ẋi = (Ji − Ri)
�Hi

�xi

+ gi1vi + gi2εi, i = 1, 2, . . . , n, (A.3)

where Ji and Ri are defined by (10) and (13).
It is noted that the above structure does not provide a Hamil-

tonian structure for the overall system, because in each indi-
vidual subsystem the cross-variables are frozen as constants.
In the following, we search for a Hamiltonian function for the
overall system, which is considered as the total energy of the
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whole system. Let

H(x) =
n∑

i=1

Hi

+ 1

2

n∑
i=1

xi3

n∑
j=1,j �=i

Bij xj3 cos(xi1 − xj1)

=
n∑

i=1

{
−ai

di

xi1 + ci

di

xi1x
2
i3 + 1

2di

x2
i2

+ ei + hiBii + ki

2hi

x2
i3 − ūi

hi

xi3

−1

2
xi3

n∑
j=1,j �=i

Bij xj3 cos(xi1 − xj1)

⎫⎬
⎭

+ 1

2

m∑
i=1

[
1

li
x2
i4 + 1

Ti

x2
i5

]
.

Using the relation Bij =Bji (see Remark 1), we can show that:

�H(x)

�xi

= �Hi

�xi

, i = 1, 2, . . . , n. (A.4)

Eq. (A.4) indicates that H(x) can serve as the Hamiltonian
function for the overall system. Thus, from (A.3) and (A.4) the
overall system can be expressed as

ẋ = (J − R)
�H(x)

�x
+ G1v + G2ε,

where J, R, G1, G2, v and ε are defined as in Theorem 1. �

Appendix C. The proof of Proposition 1

When v = 0 and ε = 0, from (9) and (15) we obtain

dH

dt
= −

n∑
i=1

�HT

�xi

Ri

�H

�xi

= −
n∑

i=1

bi

di

x2
i2 −

m∑
i=1

[ 1

Tili
x2
i4 + 1

T 2
i

x2
i5]

−
n∑

i=1

hi

⎧⎨
⎩ei + hiBii

hi

xi3 + 2ci

di

xi1xi3 + ki0

hi

xi3

− ūi

hi

−
n∑

j=1,j �=i

Bij xj3 cos(xi1 − xj1)

⎫⎬
⎭

2

�0.

Because the system (9) with v = 0 and ε = 0 is stable at the
working point (see Section 4), it can be seen from the dynamic
system theory that the system converges to the largest invariant
set contained in

S = {x : dH

dt
= 0} = {x : xi2 = 0, fi = 0, xj4 = 0,

xj5 = 0, ∀t �0, i = 1, . . . , n, j = 1, . . . , m},

where

fi : =ei + hiBii

hi

xi3 −
n∑

j=1,j �=i

Bij xj3 cos(xi1 − xj1)

+ 2ci

di

xi1xi3 + ki0

hi

xi3 − ūi

hi

.

From xi2 ≡ 0 and xj4 ≡ 0, we can conclude that (see the
system (6))

ai − cix
2
i3 − dixi3

n∑
j=1,j �=i

Bij xj3 sin(xi1 − xj1) = 0,

i = 1, 2, . . . , n.

Thus, the points in the largest invariant set satisfy⎧⎪⎨
⎪⎩

ai − cix
2
i3 − dixi3

n∑
j=1,j �=i

Bij xj3 sin(xi1 − xj1) = 0,

xi2 = 0, fi = 0, xj4 = 0, xj5 = 0,

i = 1, 2, . . . , n; j = 1, 2, . . . , m,

which is exactly the condition that the equilibrium satisfies.
Therefore, there exists a suitably small neighborhood, �, of the
operating point such that the largest invariant set in � contains
only one point, that is, the operating point. From the LaSalle’s
invariance principle (Khalil, 1996), the system (9) with v = 0
and ε = 0 is asymptotically stable. �

References

Banerjee, S., Chatterjee, J. K., & Tripathy, S. C. (1990). Application
of magnetic energy storage unit as load-frequency stabilizer. IEEE
Transactions on Energy Conversion, 5(1), 46–51.

Buckles, W., & Hassenzahl, W. V. (2000). Superconducting magnetic energy
storage, IEEE Power Engineering Review, 16–20.

Cheng, D., Xi, Z, Hong, Y., & Qin, H. (1999). Energy-based stabilization
in power systems. Proceedings of the 14th IFAC world congress, Beijing,
China (Vol. O, pp. 297–303).

Chu, X., Jiang, X., Lai, Y., Wu, X., & Liu, W. (2001). SMES control
algorithms for improving customer power quality. IEEE Transactions on
Applied Superconductivity, 11(2), 1769–1772.

Escobar, G., van der Schaft, A. J., & Ortega, R. (1999). A Hamiltonian
viewpoint in the modelling of switching power converters. Automatica,
35(3), 445–452.

Fujimoto, K., & Sugie, T. (2001a). Canonical transformations and stabilization
of generalized Hamiltonian systems. Systems and Control Letter, 42,
217–227.

Fujimoto, K., & Sugie, T. (2001b). Stabilization of Hamiltonian systems with
nonholonomic constraints based on time-varying generalized canonical
transformations. Systems and Control Letters, 44, 309–319.

Fujimoto, K., Sakurama, K., & Sugie, T. (2003). Trajectory tracking
control of port-controlled Hamiltonian systems via generalized canonical
transformations. Automatica, 39(12), 2059–2069.

Galaz, M., Ortega, R., Bazanella, A. S., & Stankovic, A. M. (2003). An
energy-shaping approach to the design of excitation control of synchronous
generators. Automatica, 39(1), 111–119.

Irie, F., Takeo, M., Sato, S. et al. (1992). A field experiment on power line
stabilization by a SMES system. IEEE Transactions on Magnetics, 28,
426–429.

Jiang, X., Chu, X. et al. (2001). SMES system for study on utility and customer
power applications. IEEE Transactions on Applied Superconductivity, 11,
1765–1768.

Juengst, K. P. (1998). SMES progress. Proceedings of 15th international
conference on magnet tech (MT-15) (pp. 18–23). Science Press.



1132 Y. Wang et al. / Automatica 42 (2006) 1121–1132

Khalil, H. (1996). Nonlinear systems. 2nd ed., New Jersey: Prentice-Hall.
Liu, Q. (2002). Energy-based control method and its FACTS applications.

Ph.D Dissertation of Tsinghua University, Beijing.
Lu, Q., Sun, Y. (1993). Nonlinear Control of Power Systems, Beijing: Science

Press.
Lu, Q., Sun, Y., Xu, Z., & Mochizuki, T. (1996). Decentralized nonlinear

optimal excitation control. IEEE Transactions on Power Systems, 11(4),
1957–1962.

Luongo, C. A. (1996). Superconducting storage systems: An overview. IEEE
Transactions on Magnetics, 32(4), 2214–2223.

Masahide, H., Yasunori, M., & Kiichiro, T. (1999). Linearization of
generator power swing property by controlling power output of SMES
for enhancement of power system stability. IEEE Transactions on Applied
Superconductivity, 9(2), 338–341.

Maschowski, J., & Nelles, D. (1992). Power system transient stability
enhancement by optimal simultaneous control of active and reactive power.
IFAC symposium on power system and power plant control (pp. 271–276).
Munich.

Maschke, B. M., & van der Schaft, A. J., 1992. Port-controlled Hamiltonian
systems: modelling origins and system theoretic properties. Proceedings
of the IFAC symposium on NOLCOS (pp. 282–288). Bordeaux, France.

Maschke, B. M., Ortega, R., & van der Schaft, A. J. (2000). Energy-based
Lyapunov functions for forced Hamiltonian systems with dissipation. IEEE
Transactions on Automatic Control, 45(8), 1498–1502.

Maschke, B., Ortega, R., van der Schaft, A. J., & Escobar, G. (1999). An
energy-based derivation of Lyapunov functions for forced systems with
applications to stabilizing control. Proceedings of the 14th IFAC world
congress (Vol. E, pp. 409–415). Beijing, China.

Ortega, R., Galaz, M., Astolfi, A., Sun, Y., & Shen, T. (2005). Transient
stabilization of multi-machine power systems with nontrivial transfer
conductances. IEEE Transactions on Automatic Control, 50(1), 60–75.

Ortega, R., van der Schaft, A. J., Maschke, B., & Escobar, G. (2002).
Interconnection and damping assignment passivity-based control of port-
controlled Hamiltonian systems. Automatica, 38(4), 585–596.

Ortega, R., Loría, A., Nicklasson, P. J., & Sira-Ramírez, H. (1998). Passivity-
based control of Euler-Lagrangian systems. Communications and control
engineering Berlin: Springer.

Shen, T., Ortega, R., & Lu, Q. et al. (2000). Adaptive L2 disturbance
attenuation of Hamiltonian systems with parameter perturbations and
application to power systems. Proceedings of the 39th IEEE Conference
on Decision and Control (Vol. 5, pp. 4939–4944).

Simo, J. B., & Kamwa, I. (1995). Exploratory assessment of the dynamic
behavior of multi-machine system stabilized by a SMES unit. IEEE
Transactions on Power Systems, 10(3), 1566–1571.

Sun, Y., Shen, T., & Ortega, R. et al. (2001). Decentralized controller design
for multi-machine power systems on Hamiltonian structure. Proceedings of
the 40th IEEE conference on decision and control (Vol. 4, pp. 3045–3050),
Orlando.

van der Schaft, A. J. (1999). L2 gain and passivity techniques in nonlinear
control. London: Springer.

van der Schaft, A. J., & Maschke, B. M. (1995). The Hamiltonian formulation
of energy conserving physical systems with external ports. Archive für
Elektronik und Übertragungstechnik, 49, 362–371.

Wang, Y., Cheng, D., Li, C. et al. (2003). Dissipative Hamiltonian
realization and energy-based L2-disturbance attenuation control of multi-
machine power systems. IEEE Transactions on Automatic Control, 48(8),
1428–1433.

Wang, Y., Li, C., & Cheng, D. (2003). Generalized Hamiltonian realization
of time-invariant nonlinear systems. Automatica, 39(8), 1437–1443.

Wu, C. J., & Lee, Y. S. (1993). Application of simultaneous active and reactive
power modulation of superconducting magnetic energy storage unit to
damp turbine-generator subsynchronous oscillations. IEEE Transactions
on Energy Conversion, 8(1), 63–70.

Xi, Z., & Guan, T. (2001). H∞ control of power systems with the SMES
unit. Proceedings of the 20th Chinese control conference (pp. 751–756).
Dalian, China.

Xi, Z., Cheng, D., Lu, Q., & Mei, S. (2002). Nonlinear decentralized
controller design for multi-machine power systems using Hamiltonian
function method. Automatica, 38(3), 527–534.

Yuzhen Wang graduated from Tai’an Teachers
College in 1986, received his M.S. degree from
Shandong University of Science & Technol-
ogy in 1995 and his Ph.D. degree from the
Institute of Systems Science, Chinese Academy
of Sciences in 2001. From 2001 to 2003, he
worked as a Postdoctoral Fellow in Tsinghua
University, Beijing, China. Now he is a full
professor with the School of Control Science
and Engineering, Shandong University, China,
and the director of the Institute of Automatic
Control, Shandong University.

His research interests include nonlinear control systems, Hamiltonian systems
and robust control. Dr. Wang received the Prize of Guan Zhaozhi in 2002,
the Prize of Huawei from the Chinese Academy of Sciences in 2001, and
the Prize of Natural Science from Chinese Education Ministry in 2005.

Gang Feng (S’90–M’82–SM’95) received the
B.Eng and M.Eng. degrees in Automatic Con-
trol (of Electrical Engineering) from Nanjing
Aeronautical Institute, China in 1982 and in
1984, respectively, and the Ph.D. degree in
Electrical Engineering from the University of
Melbourne, Australia in 1992.
He has been with City University of Hong
Kong since 2000 and was with School of Elec-
trical Engineering, University of New South
Wales, Australia, 1992–1999. He was awarded
an Alexander von Humboldt Fellowship

in 1997–1998. He was a visiting Fellow at National University of Singa-
pore (1997), and Aachen Technology University, Germany (1997–1998). His
current research interests include robust adaptive control, signal processing,
piecewise linear systems, and intelligent systems and control.
Dr. Feng is an associate editor of IEEE Trans. on Fuzzy Systems, and IEEE
Trans. on Systems, Man & Cybernetics, Part C, Journal, of Control Theory
and Applications, and was an associate editor of the Conference Editorial
Board of IEEE Control System Society.

Daizhan Cheng (SM’99-Fellow’05) graduated
from Tsinghua University, Beijing in 1970,
received M.D from Graduate School, Chinese
Academy of Sciences, Beijing in 1981, and
Ph.D. degree from Washington University, MO,
USA in 1985. Since 1990, he is a Professor with
Institute of Systems Science, Chinese Academy
of Sciences. He was an AE of “Math Sys. Est.
Contr.”, “Automatica”, and “Asia J. Contr.”,
Deputy Editor-in-Chief of “J. Control Theory
App.”, and “Control and Decision”, AE of three
other journals. He is currently the Chairman of

Technical Committee on Control Theory, Chinese Automation Association,
and IEEE Fellow. His research interests include nonlinear system and control,
numerical method, etc. He is the author or co-author of over 160 journal
papers, six books and 80 conference papers.

Yanhong Liu received her B.S. degree in Elec-
tronic and Engineering from Zhengzhou Uni-
versity of Light Industry in 1992. She entered
Tsinghua University for her M.S. degree in 1999
and is currently a Ph. D. candidate in Control
Science and Engineering in Tsinghua University.
Her research interests include nonlinear control
systems, constraint systems and robust control.
Yanhong Liu received the Rockwell Automation
Scholarship in 2001 and the Huawei Scholar-
ship in 2004, both from Tsinghua University.


	Adaptive L2 disturbance attenuation control of multi-machinepower systems with SMES units62626262
	Introduction
	System model
	A model for SMES units
	A model of multi-machine power systems with SMES units

	A PCH structure of the system
	Stability analysis
	Adaptive L2 disturbance attenuation of the =n-M plus =m-SMES system
	Simulation
	Conclusion
	Acknowledgments
	Appendix A. The derivation from (1)--(3)
	Appendix B. The proof of Theorem 1
	Appendix C. The proof of Proposition 1
	References


