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respectively. It can be seen in Fig. 2 that when G 6= B+ the control
acts in the opposite direction, i.e., it’s effect is counter effective.

For comparison purposes, we have in Fig. 3 a plot of kzkL =kwkL
for each controller. When G is selected improperly, the value is in-
creased due to the amplification of �u. When G is selected properly,
the value is, after a short transient, lower than the one obtained byH1
alone, even though the discontinuous component was included in the
penalty variable (i.e., z = Cx +D(u0 + u1)).

V. CONCLUSION

In this note, we studied the effects that the projection matrix has on
the resulting (equivalent) perturbation. It was shown that in the pres-
ence of unmatched disturbances the projection matrix of an ISM con-
troller should be selected carefully, for the resulting controller could
amplify them. Two propositions provide a way for selecting the projec-
tion matrix correctly. The proposed parameters ensure that the effect of
the unmatched disturbance will not be amplified by the discontinuous
control. It is also shown that the discontinuous control can not atten-
uate the unmatched disturbances.

The analysis is aimed at combining ISMC with other robust tech-
niques. H1 control was selected as a specific case, but other tech-
niques could be used as well. Simulation results support the analysis
developed.
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Adaptive Finite-Time Control of Nonlinear Systems With
Parametric Uncertainty

Yiguang Hong, Jiankui Wang, and Daizhan Cheng

Abstract—In this note, global finite time stabilization is investigated for a
class of nonlinear systems in normal formwith parametric uncertainties.
To achieve finite-time stabilization, a constructive control design approach
is proposed by following backstepping methodology, and an adaptive fi-
nite-time control law is obtained in the form of continuous time-invariant
feedback.

Index Terms—Adaptive control, finite-time stability, nonsmooth feed-
back, settling time.

I. INTRODUCTION

Nonsmooth finite-time control can make the controlled systems to
reach their targets in a finite time. It was first studied in the literature
of optimal control. In recent years, finite-time stabilization controllers
have been investigated for a number of class of systems [2], [4], [5],
[7]–[9]. In particular, [5] has constructed finite-time stabilizing laws
for the nonlinear systems in p normal form without parametric uncer-
tainties. Indeed, asymptotic/exponential stabilizations are sufficient for
many engineering applications. For very demanding applications, fi-
nite-time stabilization offers an effective alternative, which yields, in
some sense, fast response, high tracking precision, and disturbance-re-
jection properties because of their nonsmoothness [2], [8]. The studies
of finite-time control can show us how to increase the precision in a
given settling time or make the system convergent fast to the target
within arbitrary given precision.
Uncertainties do exist in any real world systems. Adaptive control is

one of the effective ways to deal with control systems with parametric
uncertainty. Although it is not easy to propose adaptive control strate-
gies for general nonlinear systems, a great deal of efforts have been
made in this area and some well-known adaptive design methods are
proposed for nonlinear systems with uncertain parameters (referring
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to [6] and [10]). Adaptive finite-time control design is more compli-
cated. In the most studies of adaptive (asymptotic) control, Barbalat’s
lemma is widely used, but it may not be applicable to the analysis of
finite-time convergence. Using terminal sliding mode control, [11] ob-
tained adaptive finite-time convergence for a class of nonlinear systems
with its uncertainty satisfying the matching condition, but the discon-
tinuous controller contained some singularities. On the other hand, the
finite-time convergence for nonlinear systems without parametric un-
certainties can usually be derived from some inequalities in the form
of _V � �cV � with c > 0, 0 < � < 1 (e.g., in [5], and [7]). However,
this idea cannot be employed directly to check the finite-time conver-
gence for the systems with parametric uncertainties.

In this note, a continuous adaptive finite-time controller is con-
structed for a class of nonlinear systems. This backstepping-like
procedure for adaptive finite-time control is proposed in light of the
results on both finite-time stabilization (e.g., [4] and [5]) and adaptive
(asymptotic) control (e.g., [10]). The nonsmoothness in our proposed
control law not only results probably from the (maybe underactu-
ated) systems under consideration, but also comes inherently from
finite-time convergence.

II. PRELIMINARIES

To study finite-time stability, some basic concepts can be introduced
following the conventions in the literature.
Definition 1: Consider a system

_x = f(x; t); f(0; t) = 0; x 2 U0 � Rn (1)

where f : U0 � R+ ! Rn is continuous with respect to x on an
open neighborhood U0 of the origin x = 0. The equilibrium x =
0 of the system is (locally) finite-time stable if it is Lyapunov stable
and finite-time convergent in a neighborhood U � U0 of the origin.
By “finite-time convergence,” we mean: If, for any initial condition
x(t0) = x0 2 U at any given initial time t0, there is a settling time
T > 0, such that every solution x(t; t0; x0) of system (1) is defined
with x(t; t0; x0) 2 U=f0g for t 2 [t0; T ) and

lim
t!T

x(t; t0; x0) = 0 x(t; t0; x0) = 0 8t > T:

When U = Rn, the origin is a globally finite-time stable equilibrium.
Lemma 1: Suppose that, for system (1), there are aC1 positive–def-

inite function V (x; t) (defined on Û � R+, where Û � U0 � Rn is
a neighborhood of the origin), real numbers c > 0 and 0 < � < 1,
such that _V (x; t) + cV �(x; t) is negative semidefinite (along the tra-
jectory) on Û . Then V (x; t) is locally finite-time convergent, or equiv-
alently, becomes 0 locally in finite time, with its settling time T �
(V (x(t0); t0)

1��=c(1� �)) for a given initial condition x(t0) in a
neighborhood of the origin in Û .

Proof: The proof is straightforward by following that in [2], and
thus omitted. 4
Definition 2: Consider the following nonlinear system:

_x = f(x; �) + g(x)u x 2 Rn; u 2 Rm (2)

where f and g are smooth with f(0; �) = 0 and g(0) 6= 0, and � is an
uncertain parameter vector. The problem of global adaptive finite-time
stabilization is to find a continuous control law

u = v(x; �̂); v(0; �̂) = 0
_̂� = �(x; �̂); �(0; �̂) = 0

(3)

such that the trajectory (x(t); �̂(t)) of system (2) under control law (3)
is bounded, and moreover, for any initial condition (x(t0); �̂(t0)),x(t)
converges to 0 in finite time. In other words, for any initial condition
(x(t0); �̂(t0)), there exists T > t0 such that x(t) = 0 for any t > T .

Here, we consider the adaptive finite-time control for smooth non-
linear systems of the form (called p normal form in [3])

_x1 = xm2 +
m �1

i=0

xi2f1;i(x1; �)

� � �

_xj = x
m

j+1 +
m �1

i=0

xij+1fj;i(x1; . . . ; xj ; �)

� � �

_xn�1 = x
m
n +

m �1

i=0

xinfn�1;i(x1; . . . ; xn�1; �)

_xn = fn(x; �) + u

(4)

where � 2 RN (for some integer N > 0) is a vector of uncertain
parameters,mi, i = 1; . . . ; n � 1 are odd positive integers, and

fj(x; �) =

m �1

i=0

xij+1fj;i(x1; . . . ; xj ; �); j = 1; . . . ; n� 1

are smooth with fj;i(0; �) = 0, i = 0; . . . ; mj�1, j = 1; 2; . . . ; n�1
and fn(0; �) = 0.

III. ADAPTIVE FINITE-TIME CONTROL

In this section, we propose a backstepping-like procedure to con-
struct adaptive finite-time controllers of system (4).
To do this, we need to select some constants that will be used in the

control design. Take m0 = 1 and p0 < q0 with p0 > 0 and q0 > 0
two odd integers such that

� =
p0
q0
� 1 < 0

r1 =1 > � � � > ri=
ri�1+�

mi�1
> � � �>rn=

rn�1+�

mn�1
> 0: (5)

As in [4], we can select

�0 = r2 (�imi + 1)ri+1

=(�i�1mi�1 + 1)ri > 0; i = 1; . . . ; n� 1: (6)

Moreover, to simplify the following analysis, we define the following
functions. Take

w1 = xr1 wj = x
m �

j � v
�

j�1 ; 2 � j � n (7)

with

vj(x1; . . . ; xj ; �̂)= �2w
(r +�)=r m �

j �j(x; �̂); 1�j�n
(8)

where �̂(t) and a C1 positive function �j (1 � j � n) will be deter-
mined in the following recursive design procedure. Note that, vj and
wj are computable once �j (1 � j � n) are fixed. Set

Wj(x) =
x

v

sm � � v
�

j�1 d s; 1 � j � n:

(9)
It is easy to see that Wj is nonnegative and even positive when
x
m

j 6= vj�1(x1; . . . ; xj�1; �̂)[4], [5]. Furthermore, take

V �j (x; �̂) =

j

i=1

Wi(x; �̂)

=Wj(x; �̂) + V �j�1(x; �̂); j = 1; . . . ; n: (10)

In addition, we define a group of functions

Qj(w) = (jw1j
(1+�+r )=r + jw2j

1+�+r +

� � �+ jwj j
(1+�+r )=r � m )1=(1+�+r ) (11)
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for j = 1; . . . ; n. It is easy to see that Ql � Qi if l � i.
Lemma 2: For system (4), there is a smooth positive function

bj(x1; . . . ; xj) such that

jfj j �
1

2
jxj+1j

m +

j

l=1

jxljbj(x1; . . . ; xj)� (12)

where � � 1 is an uncertain constant depending on uncertain � [10].
In what follows, we consider the adaptive finite-time control design

for system (4).
Step 1: Consider system

_x1 = xm2 + f1(x1; x2; �) (13)

with f1 = m �1
i=0 xi2f1;i(x1; �). From Lemma 2, we have jf1j �

jx2j
m =2 + jx1jb1(x1)�.

Take v1 = �2wm
1 �1(x; �̂) = �2x

1=�
1 �1(x; �̂) with

�1 =
2 + �

2
+

��

2
(1 + �̂2)1=��x21 b1(x1) + l1

where l1 > 0 is a constant. It is easy to see that �1 is positive and C1.
Take L1 = l1. Take a function V1 = V �

1 + ~�2=2, where �̂(t) is a
time-varying function to estimate �, ~�(t) = �� �̂(t), and V �

1 defined
in (10). Obviously, _~� = � _̂� because � is a constant.

Note that ��̂jx1+r
1 jb1 + �jx1+r

1 jb1 = ~�jx1+r
1 jb1, we have

_V1j(13) �xr1 xm2 +
xr1 xm2

2
+ jx1j

1+r b1� + ~� _~�

� � L1x
1+�+r
1 +

3

2
jw1kx

m
2 � v1j

+ (~� + �1)[�1(x1)� _̂�] (14)

where �1 = 0, �1 = jx1j
1+r b1 is a C1 function, and _̂�(t) will be

given later.
It is obvious that v�1 is C1, and there are smooth nonnegative func-

tions �1;1 and v̂1 such that

@v�1
@x1

� �1;1(x1; �̂)
@v�1
@�̂

� v̂1(x1; �̂): (15)

After Step j � 1 (j � 2): For system

_x1 = xm2 +
m �1

i=0

xi2f1;i(x1; �)

� � �

_xj�2 = x
m

j�1 +
m �1

i=0

xij�1fj�2;i(x1; . . . ; xj�1; �)

_xj�1 = x
m

j + fj�1(x; �)

(16)

we assume that, by taking Vj�1 = V �

j�1 + ~�2=2 with V �

j�1 defined in
(10)

_Vj�1(x; ~�)j(16)

� � Lj�1Qj�1(w1;w2; . . . ; wj�1)
1+�+r

+
3

2
jwj�1kx

m

j � vj�1j

+[~�+�j�1(x1; . . . ; xj�1; �̂)][�j�1(x1; . . . ; xj�1; �̂)� _̂�]

(17)

where Lj�1 > 0 is a constant, and functions �j�1 and �j�1 are con-
tinuous (their recursive definitions will be introduced in Step j).

For clarity, we make the following assumptions.

A1) For 1 � i � j � 1 (j � n), �i(x; �̂) is positive and C1

with respect to x and �̂. v�i with vi defined in (8) is C1 and,
therefore, Wi+1, defined in (9), is C1.

A2) There is a C1 nonnegative function �i;l, for any given 1 �
i � l � j � 1, such that

@v
�
l

@xi
� Q

(r +�)� �r
l (x)�i;l(x; �̂): (18)

Moreover, there is a C1 nonnegative function v̂i for 1 � i � j � 1
such that

@v�i
@�̂

� v̂i(x; �̂): (19)

Step j: It is time to consider system

_x1 = xm2 +
m �1

i=0

xi2f1;i(x1; �)

� � �

_xj�1 = x
m

j +
m �1

i=0

xijfj�1;i(x1; . . . ; xj�1; �)

_xj = x
m

j+1 + fj(x; �)

(20)

with fj =
m �1

i=0 xij+1fj;i (1 � j < n).
Wj is C1 owing to Assumption A1) in Step j � 1. Then, we can

construct C1 and positive–definite function as follows:

Vj = Vj�1 +Wj = V �

j +
~�2

2
(21)

with V �

j defined in (10).
Let us consider the derivative of Vj :

_Vj j(20) � � Lj�1Q
1+�+r
j�1 +

3

2
jwj�1kx

m

j � vj�1j

+ (~� + �j�1)�j�1 + �j�1 _~� + wj(x
m

j+1 + fj)

+

j�1

i=1

@Wj

@xi
(xmi+1 + fi) +

@Wj

@�̂
_̂� + ~� _~�: (22)

By Young’s inequality [1], we first have

3

2
jwj�1kx

m

j � vj�1j

�
3

21=�
jwj�1kwj j

1=�

�
Lj�1

4n
Q1+�+r

j�1 + �lj jwj j
(1+�+r )=r � m (23)

where �lj > 0 is a constant depending on �,m1; . . . ;mj�1.
Based on Young’s inequality [1], the following three lemmas are

given to analyze the other terms on the right hand side of inequality
(22). Due to the space limitations, their proofs are omitted here.
Lemma 3: There is aC1 nonnegative function ~bj with ~bj(0; �̂) = 0

satisfying

wj x
m

j+1 + fj �
3

2
jwjkx

m

j+1 � vj j+
wjvj
2

+
Lj�1

4n
Q1+�+r

j + jwj j
(1+�+r )=r � m �~bj : (24)
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Lemma 4: For 8j � 2, there exist smooth nonnegative functions
~ j and ~
j such that

j�1

i=1

@Wj

@xi
xmi+1 + fi �

Lj�1

4n
Q1+�+r
j

+jwj j
(1+�+r )=r � m ~ j(x; �̂) + �~
j(x; �̂) (25)

where ~
j(0; �̂) = 0.
Lemma 5: For 8j � 2, there exists a C1 positive function ~�j satis-

fying

(~� + �j�1)�j�1 � �j�1 �
@Wj

@�̂
_̂�

�
Lj�1

4n
Q1+�+r
j�1 + jwj j

(1+�+r )=r � m ~�j

� jwj j
(1+�+r )=r � m (~bj + ~
j)~�

+ (~� + �j)�j � �j _̂� (26)

where

�j = �j�1 �
@Wj

@�̂

�j =�j�1 + jwj j
(1+�+r )=r � m (~
j +~bj): (27)

Based on the previous analysis, take

vj = �2w
(r +�)=r m �

j �j ; (28)

where, for j � 2

�j(x; �̂) = lj +
Lj�1

2n
+ �lj + ~ j(x; �̂)

+~�j(x; �̂) + (1 + �̂2)1=2[~
j(x; �̂) + ~bj(x; �̂)]

with lj > 0 a constant, ~bj(0; �̂) = 0, and ~
j(0; �̂) = 0. Therefore
wjvj
2

+ jwj j
(1+�+r )=r � m

�
Lj�1

2n
+ �lj + ~ j + ~�j + �̂(~bj + ~
j)

� � lj jwj j
(1+�+r )=r � m :

Then, combining (23)–(26) leads to

_Vj(x; �̂)j(20) � �LjQ
1+�+r
j

+
3

2
jwjkx

m

j+1 � vj j+ (~� + �j)(�j � _̂�) (29)

where Lj = minf(n� 1=n)Lj�1; ljg > 0. Note that (29) is consis-
tent with (17).

Moreover, �j is C1 because ~ j , ~�j , ~
j , ~bj are so. Therefore, v
�

j

is C1 because wj is C1 and (rj + �)�j � rjmj�1�j�1. Therefore,
AssumptionA1) given in Step j�1 is still valid in Step j. Moreover, by
induction, we can also verify Assumption A2 for Step j. The detailed
analysis is omitted because of space limitation.
Up to Step n: Take Vn = Vn�1 +Wn = n

i=1Wi + (1=2)~�2,
which is positive definite. Then, the adaptive control law can be con-
structed as

u = vn = �2w
(r +�)=r m �
n �n

� _~� = _̂� = �n(x; �̂):
: (30)

Then, for the closed-loop system, that is

_x1 = xm2 +
m �1

i=0

xi2f1;i(x1; �)

� � �

_xn�1 = x
m
n +

m �1

i=0

xinfn�1;i(x1; . . . ; xn�1; �)

_xn = fn(x; �) + vn(x; �̂(t)
_̂� = �n(x; �̂)

(31)

we have

_Vnj(31) � �LnQn(w1; . . . ; wn)
1+�+r ; (32)

where Qn is positive definite with respect to w1; . . . ; wn and Ln > 0
is a constant.
Theorem 1: System (4), under the control law (30), is globally adap-

tive finite-time stable in the sense of Definition 2.
Proof (Outline): Clearly, from (32), _Vn � 0, and therefore, x

and ~� (or, equivalently, �̂) are bounded. Moreover, �̂(t) is nonnegative
if �̂(0) � 0 because �n is nonnegative. Therefore, without loss of
generality, we assume �̂ 2 [0; C], where C is a constant depending on
initial values x(0) and �̂(0).
Take a Lyapunov function V �n (x; �̂) =

n
i=1Wi, which is positive

definite with respect to x1; . . . ; xj , for any fixed �̂. Because (xi �
vi�1)wi(x1; . . . ; xi) � 0 and jxi � vi�1j � 2jwij

1=� , we have

V �n =

n

j=1

x

v

sm � � vj�1(x1; . . . ; xj�1)
� d s

�

n

j=1

2jwj j
(r +1)=r m � :

Then, we have

(V �n )
(1+�+r )=(1+r ) � 2Q1+�+r

n : (33)

Note that �1(x) = Q1+�+r
1 x��1 b1(x) and

jwj j
(1+�+r )=r � m (~
j +~bj) � Q1+�+r

j (~
j +~bj):

Therefore, recalling �n defined in (27), we have

�n(x; �̂) =�1(x) +

n

j=2

jwj j
(1+�+r )=r � m (~
j +~bj)

�Q1+�+r
n �0(x; �̂)

where �0 =x��1 b1(x) +

n

j=2

(~
j +~bj)

which is continuous with�0(0; �̂) = 0 because ~
j(0; �̂) = ~bj(0; �̂) =
0 for j = 2; . . . ; n.
By (32) and (33)

_V �n

�� LnQ
1+�+r
n +~��n

� �
Ln

2
Q1+�+r
n �

Ln

2
Q1+�+r
n 1�

2(C + �)

Ln
�0

��
Ln

4
(V �n )

(1+�+r )=(1+r )�
Ln

2
Q1+�+r
n 1�

2(C+�)

Ln
�0 :

(34)

It is not hard to prove that, with taking a continuous function
~V (x; �̂) = (2(C + �)=Ln)�0, which satisfies ~V (0; �̂) = 0 for
any given �̂ 2 [0; C], we can get a constant � > 0 such that for
any x 2 
 = f(x; �̂) : V �n (x; �̂(t)) � �g, ~V < 1 and, therefore,
Q1+�+r
n (1� ~V ) � 0 becauseQn � 0 for all (x; �̂). Therefore, once

(x; �̂) 2 
, it will be always in 
.
There are two cases for finite-time convergence analysis.
If the initial condition (x(0); �̂(0)) 2 
, it is not hard to see that, if

(x; �̂) 2 
, we have

_V �n � �
Ln

4
(V �n )

(1+�+r )=(1+r )
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and then V �

n is (locally) finite-time convergent because 0 < 1 + � +
r2 < 1 + r2 by Lemma 1. Since V �

n = n
i=1Wi = 0 if and only if

x = 0, x becomes 0 within T

T �
4(1 + r2)(V

�

n (x(0); �̂(0)))
��=1+r

��Ln

where � < 0 and �̂(0) is known.
If the initial condition (x(0); �̂(0)) is not in
, then we first estimate

its maximum reaching time T2 to
. Before the state enters
, we have
V �

n > �, and then

Vn(x(0); �̂(0)) �Vn(x(0); �̂(0))� Vn(x(� ); �̂(�))

�
�

0

LnQn(x(s))
1+�+r

ds

�
�

0

Ln

2
(V �n )

(1+�+r )=(1+r )
ds

�
Ln

2
�
(1+�+r )=(1+r )

�:

Therefore, (x; �̂) will enter 
 within T2:

T2 �
2V �

n (x(0); �̂(0)) + ~�(0)2

Ln�(1+�+r )=(1+r )
:

After the reaching time T2, the state will be in 
. It will take

T1 �
4(1 + r2)�

��=1+r

��Ln

to arrive at the origin. Thus, in this case, x becomes 0 within T �

T1 + T2.
Therefore, for the closed-loop system (4), x = 0 is globally finite-

time convergent. 4

In this note, a constructive procedure for adaptive finite-time control
of system (4) is given. In fact, for system (4) without any parametric un-
certainty, the design procedure is consistent with the one in [5], where
finite-time stabilizing controllers were constructed.
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Circuit Allocation in All Optical Networks With Average
Packet Delay Cost Criterion

Zvi Rosberg

Abstract—An optimal circuit allocation problem for all-optical cir-
cuit-switched backbone networks with average packet delay cost criterion
is considered. Multiple classes of traffic flows arrive at the network edge
routers, where they can be queued until an end-to-end optical circuit can
be allocated. Assuming fluid traffic and circuit allocation of fixed periods,
a lower bound on the optimal average packet delay is derived and the cost
of two allocation policies are evaluated exactly. The cost of both policies
are demonstrated for a variety of deterministic and random networks and
are compared with the lower bound.

Index Terms—Circuit switching, golden ratio, Markov decision pro-
cesses, optical networks, packet delay, TDM.

I. INTRODUCTION

Circuit switching is a classical network architecture used for real
time applications such as telephony, which is also considered attrac-
tive for all-optical backbone networks (AON) [3], [14], [15]. Circuit
switching in general, provides guaranteed bandwidth and low delay.
Optical circuit switching also avoids the electronics associated with
high-speed queuing and scheduling hardware at the core routers. Un-
derstanding the potential merit of circuit switching for optical networks
is becoming of utmost important in light of hybrid switching methods
[7], [18] comprising of optical burst switching (OBS) [2] and optical
circuit switching (OCS) [6], [8].
AON comprises buffered edge routers at the ingress/egress network

nodes and bufferless core routers inside the network. Edge routers mul-
tiplex/demultiplex end user traffic flows, e.g., SONET [1], and due to
bufferless core routers apply a reservation protocol before transmitting
buffered data into the network.
With circuit switching, a two-way reservation protocol is used, by

which circuits are allocated for a period of time allowing lossless traffic
flows from a subset of sources to their corresponding destinations.
Using wavelength division multiplexing (WDM), an optical circuit
comprises switching resources and a sequence of wavelengths along a
multiple-hop route conforming the wavelength conversion rules [17].
An optical circuit corresponds to a unidirectional lightpath between a
source and destination pair of edge routers.
A fundamental control problem in a circuit-switched AON is to find

an adaptive policy based on the buffer occupancies for allocating cir-
cuits (lightpaths) so as to minimize the average packet delay. Note
that with circuit switching, queuing delay is the main concern since
by proper edge buffer sizing, packet loss diminishes.
This note derives a lower bound to the optimal long-run average

packet delay and evaluates the performance of two heuristic policies.
Previous studies have analyzed circuit-switched networks with respect
to blocking probability, or equivalently carried traffic. The study in
[10] concerns with routing data or voice in a classical circuit-switched
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