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with the smooth function �k�1( � ) determined later renders
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whenever the Razumikhin condition holds, and
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The aforementioned inductive argument shows that (28) holds for k =
n. Hence, at the last step, the Lyapunov–Razumikhin function is con-
structed as

V (z; �̂) = Vn�1(~zn�1; �̂) +
1

2
z
2
n (32)

then, choosing the control law u and _̂
� as (19) renders the time deriva-

tive of V along the trajectories of (18) to satisfy
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whenever the Razumikhin condition k~ztk < qk~zk holds.
Now, we determine the smooth functions �i( � ) (i = 1; 2; . . . ; n �

1). By using the determination of _̂
� in (19) and the recursion of �n,

we choose �i( � ) as
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Substituting (34) into (33), we obtain

_V (z; �̂) � �
1

2
kzk2; if k~ztk < qk~zk: (35)

Therefore, from (32) and (35), it follows obviously that the conditions
(4) and (5) are satisfied. In view of Theorem 1, we conclude that the
closed-loop system is stable in the sense of Lyapunov, and z(t)! 0 as
t ! 1. In consequence, from (20) with �i(0; �) = 0, it follows that
x(t)! 0 as t!1 for any given �( � ) and �̂(0).

IV. CONCLUSION

In this note, the adaptive stabilization problem for nonlinear time-
delay systems is investigated. The main contributions are to establish

the LaSalle–Yoshizawa-like condition that ensures the convergence of
partial states with the stability of the solution for a class of functional
differential equations, and to show that with the proposed condition
a design method to adaptive control of nonlinear time-delay systems
can be developed. It should be noted that the proposed controller is of
delay-independent.
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Comment on “Coordination of Groups of Mobile
Autonomous Agents Using Nearest Neighbor Rules”

Lixin Gao and Daizhan Cheng

Abstract—This note provides some corrections and generalizations to the
aforementioned paper.

Index Terms—Cooperative control, graph theory, multiagent systems,
switched systems.

In [1], each agent’s heading was updated using a simple neighbor
rule, and it was shown that for a large class of switching signals and for
any initial set of headings that the headings of all agents will converge
to a steady-state value. The approach in [1] is based on bidirectional
information exchange, modeled by an undirected graph. In this com-
ment, we point that a part of the Proofs of Theorems 4 and 5, the main
results about leader following case in [1], is questionable. The objec-
tive of this comment is to correct the Proofs of Theorems 4 and 5 of [1]
and then extend the results to directed graph case.
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We first cite some notions from [1] to make this note more read-
able. For the leader following case in [1], the system consists of n au-
tonomous agents, labeled 1 through n, plus one additional agent, la-
beled 0, which acts as the group’s leader. Agents i’s update rule is of
the form

�i(t+ 1) =
1

1 + ni(t) + bi(t)
�i(t) +

j2N (t)

�j(t) + bi(t)�0

(1)

whereNi(t) is the set of agent i’s neighbors, ni(t) is the number of the
neighbors within Ni(t), and bi(t) is 1 whenever agent 0 is a neighbor
of agent i and 0, otherwise.

The neighbor relationship between agents can be conveniently de-
scribed by a simple directed graph. Each such graph G has vertex set
V = fv0; v1; . . . ; vng and " � V � V is the set of edges of the
graph G. A graph is call undirected (or bidirectional) if 8(vi; vj) 2
" ) (vj ; vi) 2 ". If (vi; vj) 2 ", then vj is said to be a neighbor
of vi, which means the information flow is from agent j to agent i.
From those definitions we know that the leading agent labeled node
0 does not have any neighbor. In the sequel we use the symbol �P to
denote a set indexing the class of all simple digraphs �GP defined on
vertices fv0; v1; . . . ; vng. We define the subgraph GP of �GP on vertex
set fv1; v2; . . . ; vng which is obtained from �GP by deleting vertex 0
and all edges incident on vertex 0. A path from vertex vi to vertex vj
is a sequence of distinct vertices starting vi and ending with vj such
that consecutive pairs of vertices make an edge of digraph. If there is a
path from one node vi to another node vj , then vj is said to be reach-
able from vi. If a node vi is reachable from every other node of the
digraph, then it is said to be globally reachable. A directed graph G is
called weakly connected if there exits a node which is globally reach-
able, and a digraph is strongly connected if and only if any two distinct
nodes of the graph can be connected via a path. A weakly connected
undirected graph must be strongly connected, so it is simply termed
as a connected graph. By the union of a collection of simple graphs,
f �Gp ; �Gp ; . . . ; �Gp g � �GP , each with vertex set V , we mean a simple
graph �G with vertex set V and edge set equaling the union of the edge
sets of all of the graphs in the collection. We say that such a collection
is jointly weakly connected if the union of its members is a weakly
connected graph. For undirected graph, the jointly weakly connected
union must be jointly connected. More information is available in [2].

For matrices M;N;M > N means M � N is a positive matrix,
where by a positive matrix is meant a matrix with all positive entries.
The norm kRk of a nonnegative matrix R is the induced infinity norm
of matrixR which is the largest row sums of a nonnegative matrix. We
denote the matrix obtained by replacing all ofR’s nonzero entries with
1 by dRe. Note that R > 0 if and only if dRe > 0. Any nonnegative
matrices A;B;C with positive diagonal elements satisfy dABCe �
dACe and dABe = ddAedBee.

Let � = (�1; �2; . . . ; �n)
T and �� = col(�; �0), then the set of agent

heading update rules defined by (1) can be expressed as

��(t+ 1) = �F�(t)��(t) (2)

where �:f0; 1; . . .g ! �P is a switching signal whose value at time
t is the index of the neighbor graph �Gp, and matrix �Fp is nonneg-
ative and stochastic matrix associated with neighbor graph �Gp. Let
Bp = diag(b1; b2; . . . ; bn), and let Ap denote the n � n adjacency
matrix of the n-agent graph andDp the corresponding diagonal matrix
of valences of Gp. The matrix �Fp is partitioned as

�Fp =
Fp Hp1

0 1
(3)

where 1 = (1; 1; . . . ; 1)T 2 Rn; Fp is

Fp = (I +Dp +Bp)
�1(I +Ap) (4)

and Hp is

Hp = (I +Dp +Bp)
�1Bp: (5)

Denote the heading error vector by �(t) := �(t)��01, from (1) and
(2) we can get

�(t+ 1) = F�(t)�(t): (6)

Now, we give a simple counterexample to Lemma 5 in [1].
Assume the adjacency matrix �Ap of neighbor graph �Gp ; i = 1; 2,

are

�Ap =

0 1 0

1 0 0

0 0 0

�Ap =

0 0 0

0 0 1

0 0 0

:

The last row and column label the neighbor relationship with the leader.
Then, we have

�Fp =

1
2

1
2

0
1
2

1
2

0

0 0 1

�Fp =

1 0 0

0 1
2

1
2

0 0 1

:

It is obvious that the union of f �Gp and �Gp g is jointly connected,
which means all conditions of [1, Lemma 5] are satisfied. However,
it is easy to calculate that for any i > 2 we have

2

k=1

F i�1
p Hp 1 =

0
1
2

i

which is not greater than 0. It violates the conclusion of [1, Lemma 5].
Therefore, [1, Lemma 5] is incorrect. As a result, the main results for
the leader following case, Theorems 4 and 5 of [1] are questionable.

For switching sequence

i

p1; . . . ; p1;

i

p2; . . . ; p2, the reader can verify
directly that

i

�Fp . . . �Fp

i

�Fp . . . �Fp =

1
2

1
2

0
1
2

i+1 1
2

i+1
1� 1

2

i

0 0 1

from which we conclude that k

i

Fp . . .Fp

i

Fp . . .Fp k = 1, which
shows that [1, Prop. 2] is incorrect too.

On the other hand, for switching sequence p2;

i

p1; . . . ; p2; p1, one
can get

�Fp

i

�Fp . . . �Fp �Fp =

3
2

3
2

1� 3
2

3
2

3
2

1� 3
2

0 0 1

for which we can get kFp

i

Fp . . .Fp Fp k = (3i)=(22i)! 0; i !
1. In the first case the leader’s information can not reach directly to
agent 1, but in the second case the leader’s information can reach di-
rectly to all other agents, which implies that the order of switching
graph plays an important role in convergence of systems.
Motivated by this counterexample, we give a new definition about

joint connectness of an ordered set of neighbor graph. For an ordered
set of fGp ;Gp ; . . . ;Gp g � GP , where every Gp is a simple graph
with vertices given by fv1; v2; . . . ; vng and edge set given by "p ; k =
1; 2; . . . ;m, a joint path of length l from vj to vj is an ordered set of
distinct nodes fvj ; vj ; . . . ; vj g such that (vj ; vj ) 2 "p ; i =
1; 2; . . . ; l; ki 2 f1; 2; . . . ; mg and ki � ki+1. If there is a joint path
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from one node vi to another vj , then vj is said to be jointly reachable
from vi. If a node vj is jointly reachable from every other node in the
digraph, then it is said to be jointly globally reachable. Note that if such
an ordered set contains at least one weakly connected graph, then the
ordered set must be jointly globally reachable.

Lemma 1: Let fp1; p2; . . . ; pmg be a set of indices in �P for
which v0 is a jointly globally reachable node of the ordered set
f �Gp ; �Gp ; . . . ; �Gp g. Then, the matrix ( �Fp �Fp . . . �Fp )n has
the form

( �Fp �Fp . . . �Fp )n =
Fp Fp . . .Fp

n
B

0 1
(7)

where B satisfies B > 0.
Proof: The form (7) can be verified by a straightforward compu-

tation, which shows

B =

n

k=1

m

j=1

Fp Fp . . .Fp
n�k

Fp Fp . . .Fp Hp 1:

(8)

Since v0 is a jointly globally reachable node of the ordered
set f �Gp ; �Gp ; . . . ; �Gp g, for any vj ; j 6= 0 there exits a
joint path from vj to v0 and the path length l satisfies l �
n. Assume the joint path is an ordered set of distinct nodes
fvj ; vj ; . . . ; vj ; v0g such that (vj ; vj ) 2 "p ; i =
1; 2; . . . ; l; pk 2 fp1; p2; . . . ; pmg, and ki � ki+1, which means
the jth element of vector Ap Ap . . .Ap Hp 1 is greater
than 0. We can conclude that the jth component of the vector
Fp . . .Fp Hp 1 is greater than 0 by noting that all matrices are
nonnegative and using (4). We also have

Fp Fp . . .Fp
n�1

Fp Fp . . .Fp Hpk 1

� Fp Fp . . .Fp Hp 1

which implies B > 0.
Then, [1, Prop. 2] can be modified as follows.
Proposition 1: Let T > 0 be a positive integer. There exists a pos-

itive number � < 1, depending only on T , for which

Fp Fp . . .Fp < �

for every sequence of p1; p2; . . . ; p�t at length at mostT possessing sub-

sequence of the same sequences

n

q1; q2; . . . ; qm; . . . ; q1; q2; . . . ; qm
whose associated ordered set of f �Gq ; �Gq ; . . . ; �Gq g has a jointly
globally reachable node v0.

Proof: Note that

�Fp �Fp . . . �Fp � �Fq �Fq . . . �Fq
n

: (9)

Using (9) and Lemma 1, the Proposition 1 can be proved via the same
ideas as those for the proof of [1, Prop. 2].

Theorem 2: Let �(0) and �0 be fixed and let � : f0; 1; . . .g ! �P
be a switching signal for which there exists an infinite sequence of con-
tiguous, nonempty, bounded, time-intervals [ti; ti+1), i � 0, starting
at t0 = 0, with the property that the ordered set of neighbor graphs
across each such interval has a jointly globally reachable node associ-
ated with the leader. Then

lim
t!1

�(t) = �01: (10)

The proof of this theorem is omitted, because it is mimic to the proof
of [1, Th. 4].

Now, we characterize the relationship between the joint weak con-
nectivity of the graphs and the joint global reachability. It is obvious
that the union of graphs is jointly weakly connected if the ordered set
of graphs has a jointly globally reachable node. On the other hand, a
collection can be jointly weakly connected but the associated ordered
set has no a jointly globally reachable node. Let � denote the subset of
GP consisting of all connected graphs. Since the set � is a finite set,
let �n be the number of elements in �. For the contiguous, nonempty,
bounded, time-intervals [ti; ti+1), i � 0, starting at t0 = 0 and having
a property that across each such interval the union of neighbor graphs
is jointly connected, there must be at least one element in � which is
the union of neighbor graphs across interval at least n times on any
sequence of n�n contiguous time-intervals. Assume these n intervals
are [tk ; tk +1); i = 1; 2; . . . ; n satisfy that ki < ki+1 and ki < n�n,
and the union of neighbor graphs of interval [tk ; tk +1) is �G 2 �.
Since �G is connected, there must exist a path of length l; l � n, from
vj to v0 for any node vj ; j = 1; 2; . . . ; n, which is an ordered set of
distinct nodes fvj ; vj ; . . . ; vj ; v0g. In time-interval [t0; tn�n), for
every j; j = 1; 2; . . . ; n, there must exist a jointly path from vj to v0
by noting that at least a neighbor graph of [tk ; tk +1) con-
tains edge (vj ; vj ). Thus, the ordered set of neighbor graphs across
interval [t0; tn�n) has a jointly globally reachable node associated with
leader. We have proved the following proposition.

Proposition 2: For an infinite sequence of contiguous, nonempty,
bounded, time-intervals [ti; ti+1); i � 0, starting at t0 = 0, the prop-
erty that the union of neighbor graph across each such interval has
a globally reachable node associated with leader is equivalent to the
property that the ordered set of neighbor graph across each such in-
terval has a jointly globally reachable node associated with leader.

Remark 1: Proposition 2 implies that the result of [1, Th. 5] is cor-
rect by using Theorem 2 of this note. All the results of the leader fol-
lowing case in [1] can be easily extended to the directed graph case.
For the leader following in continuous-time case, the proof of [1, Th.
5] should also be similarly modified as what we did in this comment for
the discrete-time case. The conditions of [1, Th. 5] can also be replaced
by an infinite sequence of contiguous, nonempty, bounded, time-inter-
vals [ti; ti+1); i � 0, starting at t0 = 0, with the property that the
ordered set of neighbor graphs across each such interval has a jointly
globally reachable node associated with leader as in Theorem 2.

Remark 2: Considering possibly time-varying relative confidence
of each agent’s information variable or relative reliabilities of different
information exchange links between agents, we propose the following
weighting agent i’s update rule instead of update rule (1):

�i(t+ 1) =
1

aii(t) + j2N (t) aij(t) + bi(t)

� aii(t)�i(t) +
j2N (t)

aij(t)�j(t) + bi(t)�0 (11)

where aij(t) is time-variant positive weighting factor, and
weighting factor bi(t) is greater than 0 whenever agent 0 is
a neighbor of agent i and 0 otherwise. If all weighting factors
aij(t); bi(t) 2 [emin; emax]; emin > 0, the similar results of Theorem
2 can be obtained for the update rule (11). For continuous-time case,
we propose that agent i uses a hybrid control law of the form

ui(t) = �
j2N (t)

aij(ti) (�i(t)� �j(t)) + bi(ti)(�i(t)� �0)

(12)
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where aij(ti) is a time-variant positive weighting factor, and
weighting factor bi(ti) is greater than 0 whenever agent 0 is a
neighbor of agent i and 0, otherwise. If all weighting factors
aij(ti); bi(ti) 2 [emin; emax]; emin > 0, and all the dwell times
satisfy 0 < tmin � ti+1 � ti � tmax, some similar results of [1, Th.
5] can also be obtained for the update rule (12).
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Correction to “Homogeneous Observers, Iterative Design,
and Global Stabilization of High-Order Nonlinear Systems

by Smooth Output Feedback”

Bo Yang and Wei Lin

In [1], there is a typo on page 1074, which needs to be corrected.

• The statement under (5.1): “the mappings �i : IRn
! IR; i =

1; . . . ; n, are C1 with �i(0; 0) = 0”, should read as “the
mappings �i : IRn+1

! IR; i = 1; . . . ; n, are C1 with
�i(0; u) = 0.”
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Erratum to “Hierarchical Interface-Based Supervisory
Control—Part I: Serial Case”

Ryan J. Leduc, Bertil. A. Brandin, Mark Lawford, and W. M. Wonham

In the above paper [1], a photo for the second author was missing.
The corrected biography with photo is as follows.
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