
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 13, NO. 4, JULY 2005 605

Output Regulation for Nonlinear Systems: Some Recent
Theoretical and Experimental Results

Tzyh-Jong Tarn, Peerayot Sanposh, Daizhan Cheng, and Mingjun Zhang

Abstract—This brief summarizes recent theoretical and presents
experimental results of output regulation for nonlinear systems.
The main contribution of this brief consists of the first experi-
mental study of output regulation using a two-link underactuated
mechanical system—the Pendubot.

Index Terms—Nonlinear systems, output regulation, Pendubot,
underactuated mechanical systems.

I. INTRODUCTION

OUTPUT regulation is the problem of finding a control law
by which the output of the system that we are interested

in can asymptotically track another output generated by an ex-
osystem, and simultaneously reject undesired disturbances. The
control law must also asymptotically stabilize the system when-
ever the exosignal is absent. Without loss of generality, both the
exo-output and the disturbances can be viewed as an output of
an augmented exosystem.

The output regulation problem originated from trajectory
tracking for linear systems. By viewing the trajectory as an
output of an exosystem, trajectory tracking can be regarded
as a subclass of global output regulation. In general, if the
disturbances do not affect the response of the system, the
problem of trajectory tracking can be easily solved. However,
this is seldom the case practically. The disturbances always
result from unmodeled dynamics, parameter uncertainties, and
measurement noises. For the case of measurement noises, some
tradeoffs between steady-state tracking errors and responses
due to the disturbances must be considered. The output regula-
tion for linear systems has been solved by Francis and Wonham
[2].

For output regulation of nonlinear systems, Isidori and
Byrnes [7] gave necessary and sufficient conditions for solv-
ability of the problem. In general, the solvability is based on
existence of a center manifold, which is controlled invariant,
zero-error and exponentially attractive. Their work also in-
cludes a geometric theory describing the relationships between
the output-zeroing manifold and the vector field after applying
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the control law. The controller can be viewed as an interconnec-
tion of two controllers, which exponentially stabilizes the plant
when the exosignal is absent, and imposes a signal which con-
verges to a steady response. On the other hand, Isidori [8] states
another viewpoint of the interconnection of the control laws:
one control signal renders the zero-error manifold invariant and
the other signal asymptotically stabilizes the augmented sys-
tems. Later on, Huang and Rugh [3] showed that it is sufficient
to have a zeroth-order and controlled invariant manifold that is
locally defined and attractive. Approximations of the manifold
were presented in [4] and [9], where Taylor’s series expan-
sion and Kronecker product were used to solve the regulator
equations. Huang [5] presented an example of how to construct
a control law to enable the system of interest to track with
a trajectory without concern for stabilization. Marconi et al.
[10] applied existing theory to a vertical taking off and landing
vehicle. All of previous work addressed local properties. Until
recently, the work of Serrani and Isidori [11] was related to
global robust output regulation of single-input–single-output
(SISO) nonlinear systems in a special form. Their work and
the aforementioned literature is restricted to a special class of
exosystems.

This brief surveys recent theoretical results on solvability and
feedback regulator construction for output regulation of non-
linear systems. These theories do not restrict the number of in-
puts and outputs. An experimental study for output regulation of
the Pendubot is then given. The main contribution of this brief
consists of the first experimental study of nonlinear output regu-
lation using a special under-actuated mechanical systems—the
Pendubot. The brief is organized as follows. The problem state-
ment is given in Section II. The output regulation by state feed-
back is presented in Section III. In Section IV, the experimental
study is presented. The conclusion is given in Section V.

II. PROBLEM STATEMENT

Consider a nonlinear system in the following form:

(1)

where state , input , output , and is a
disturbance signal generated by an exosystem as follows:

(2)

where exosignal and a tracking signal .
For the nonlinear plant (1) and exosystem (2), the output

tracks the signal . The tracking error can be defined

(3)
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Assume 0, 0, 0, 0,
0 and 0, all vector fields related to the plant (1) and
exosystem (2) are smooth with respect to their arguments, and
all states can be measured, then the state feedback regulation
problem can be defined as finding a control law ,
such that:

1) the equilibrium point 0 of
is locally asymptotically stable;

2) there exists a neighborhood of (0,0) such
that, for each initial condition , the so-
lutions of (1) and (2) satisfy 0.

If only the output-tracking error is measurable, error feed-
back regulation problems can be formulated similarly [1], [7].
As stated in [7], the error feedback regulation problem is solv-
able if and only if the state feedback regulation problem is solv-
able. This brief will focus on state feedback regulation problem,
whose solving techniques may be extended to solve error feed-
back regulation problems.

III. OUTPUT REGULATION BY STATE FEEDBACK

Isidori and Byrnes [7] gave the necessary and sufficient con-
ditions for the solvability of local output regulation for nonlinear
systems, which assumes the following conditions.

Assumption 3.1: The point 0 is stable and there exists
a neighborhood of the origin with the property that
each initial condition is Poisson stable.

Assumption 3.2: The pair has a stabilizable linear
approximation at 0.

Then the following theorem can be obtained.
Theorem 1 [7]: Under Assumptions 3.1–3.2, the output reg-

ulation by state feedback is solvable if and only if there exist
mappings with 0, and

with 0, both defined in a neighborhood , satis-
fying the conditions

(4)

This theorem is based on the existence of a center manifold
which is locally attractive and controlled-invariant under

. Moreover, the output-tracking error is identically zero on
this manifold. The control law

(5)

where
, solves the state feedback regulator problem. In general, it is

difficult to solve (4). However, without considering convergence
of the solution, the equation can be solved using Taylor series
expansion [9].

Instead of choosing , Cheng et al. [1] proposed
a control in the form of , which can render the
manifold invariant. Moreover, the number of inputs and outputs
for the proposed control may not be equal to each other and
the conditions can be easily verified. The following condition is
assumed in addition to Assumptions 3.1–3.2.

Assumption 3.3: The plant decoupling matrix has full rank
at 0

...
...

...

The following theorem can be obtained.
Theorem 2: Under Assumptions 3.1–3.3 and by Theorem 2.7

[6], if the output regulation problem is solvable, then the control
can be expressed by

where

...

and . The matrix is selected such
that . The symbol denotes the pseudo-
inverse of a matrix.

Consider the nonlinear systems (1), and further assume:
Assumption 3.4: The decoupling matrix has full rank over

, a neighborhood of the origin.
Then, the following necessary conditions are held for the ex-

istence of an output regulator.
Theorem 3 (Necessary Conditions): Under Assumption 3.4

and by Theorem 2.7 [6], if the output regulation problem by state
feedback is solvable, and 0 of the system
is globally asymptotically stabilizable by a smooth control law

, then the following conditions are held.

1) There exists a positive–definite and proper smooth func-
tion such that:

a) if 0 then 0 for all 0;
b) for each 0, there exists 0 such that, if

0 , then there exists with
satisfying 0

2) Let , the
controller which forces the trajectory to stay
on the manifold is given by

...
(6)

3) There exists such that is globally attractive.

The condition (1) is a necessary and sufficient condition for
to be globally asymptotically stabilized by

the control known as the Artstein–Sontag Theorem [8].
Proof of Theorem 2 can be done by continuously differentiating

, and solving for the input .
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Note that in the case of , there must be some redun-
dancies in the system outputs. If , then the previous con-
trol is such that among all
other feasible control laws.

Theorem 4 (Sufficient Conditions): Under Assumption 3.4
and by Theorem 2.7 [6], the output regulation by state feedback
is solvable if all of the following conditions are satisfied.

1) There exists a positive–definite and proper smooth func-
tion such that:

a) if 0 then 0 for all 0;
b) for each 0, there exists 0 such that, if

0 , then there exits with
such that 0

2) There exists a globally defined, smooth mapping
such that

(7)

subject to the constraint 0.
3) There exists a smooth and proper mapping

such that:

a) for all and for some
constant 0 with 0;

b) for all
and for some constant ;

c) has full column rank over
.

where, the error and the time derivative are
defined as

(8)

(9)

Again, condition (1) is always true since it is necessary. Proof
of the results can be done by showing that the controlled-in-
variant manifold of the extended system, which consists of the
plant and the dynamic control, is globally attractive.

If Assumptions 3.1–3.4 are true and by Theorem 2.7 [6],
Theorem 3 and Theorem 4 allows us to write the control law
in the form of

(10)

where . The advantage is that this allows
us to express the control law which renders the zero-error mani-
fold invariant explicitly. A nice thing about the result is that, dif-
ferent from [11], the proposed output regulation theorem does
not require a special structure of the system.

IV. OUTPUT REGULATION OF THE PENDUBOT

The Pendubot is a two-link underactuated mechanical
system, whose first link (shoulder) is actuated and the second
link (elbow) is unactuated. Many approaches have been
proposed to control the Pendubot [12]. However, no output

regulator for the Pendubot has been reported in the open liter-
ature. It would be interesting to see how the proposed output
regulator works for the Pendubot. Unfortunately, global output
regulation cannot be applied to control of the Pendubot, since
one of the necessary conditions, condition 3, in Theorem 3 is
not satisfied. Here, local output regulator is applied for tracking
control of the end position of the Pendubot’s second link. In the
meantime, keep the second link upright. The dynamic model of
the Pendubot is given in as follows:

where , and

(11)
In the previous model, parameters are ob-

tained through reparameterization, whose values are (0.0308,
0.0106, 0.0095, 0.2086, 0.0630). The end position of the second
link of the Pendubot can be expressed as follows:

(12)

where and are the length of the first and second links,
respectively. A picture and the dynamic model of the Pendubot
may be seen in [12].

A. Experiment Design

The desired output is used for one-
dimensional (1-D) regulation. The signal can be generated
by an appropriate linear system of the form

(13)

Consequently, the tracking error in this case is

(14)

For two-dimensional (2-D) output regulation, the variation of
can be approximated as a sinusoidal signal that can also be

generated by a linear system of the form (13). The tracking error
in this case is

(15)

In this experiment, linear quadratic regulator are first used for
swing up control to bring the two links of the Pendubot to the
upright position, i.e., and 0. Then, the controller
will be switched to the proposed output regulator to track the end
of the second link along a desired trajectory. In the meantime,
keep the second link up straight. Detailed control algorithm is
as follows:
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Fig. 1. Experimental results for the up position via output feedback.

• First, use swing up control to bring both links close
to the neighborhood of the equilibrium state. This
can be done through partial feedback linearization
and PD control. The gain for PD control is chosen as

. Then, apply linear quadratic regu-
lator for feedback stabilization. The gain matrix is chosen as

.
• After stabilizing both links for about 10 s, the control for 1-D

regulation is given by

(16)

where the matrix , and is chosen
so that is in the open left-half
plane.

For 2-D regulation, the control will be

(17)

where and the function is the
least square solution.

TABLE I
QUANTITATIVE RESULTS FOR THE UP POSITION VIA OUTPUT FEEDBACK

The parameters for the exosignal are 0.05 and 0.1.
The center manifold is given by

(18)
which is approximated by methods proposed in [4] and [9]. The
center manifold for 2-D tracking is from least-square solution.

B. Experimental Results

Fig. 1 shows end-position of the link two for both 1-D and 2-D
regulations, where and are corresponding to the coordi-
nates of end-position for the link two. Two figures in the middle
row show responses of the link two with swing-up and stabiliza-
tion control. Both links are stabilized at about 10 s. Then, the
controller switches to output regulation for trajectory tracking.
Two figures in the bottom row show coordinates of link two and

and generated by the computer. Two figures in the first
row show differences of the coordinates with respect to exosig-
nals. Based on our observation and the results in Table I, it seems
that the performance of 2-D tracking control is better than that
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Fig. 2. Output regulation using u = (w) +K(x � �(w)).

Fig. 3. Output regulation using u = (x; w) + ~K(x� �(w)).

of 1-D tracking control. The better performance may be due to
having more information on the end-position of the Pendubot.
However, theoretical proof is necessary to make a formal claim.

To compare the two controllers
and , experiments were conducted
for 1-D regulation using both controllers. Figs. 2 and 3 show
responses of end-position for the link two using different con-
trollers, respectively. Fig. 3 shows the difference. As shown
in the figures, the regulation by the control

is qualitatively better than that by the control
, because in the latter case the term

is approximated. On the contrary, the term is the
exact control that renders the error manifold invariant. However,
the integral of the square of errors are

and . The
result shows that the error using control is more concen-
trated around zero. The maximum voltage for is 1.4768,
which is 0.2097 lower than that for . Thus, the cost using

Fig. 4. End-position of link two with disturbances.

the control is approximately 14%
lower.

To test robustness of the output regulator
, disturbances are introduced into the Pendubot

through the second link. The disturbances are generated by tap-
ping the link with a rod at , 55, 80, and 110 s. As shown
in Fig. 4, the second link can still maintain the upright posi-
tion. In the figure, the solid line represents responses without
disturbances, the dashed line means responses with disturbances
and the dotted line represents reference trajectory. Moreover, the
Pendubot can recover quickly from the disturbances.

V. CONCLUSION

This brief surveys necessary and sufficient conditions for
solvability of global output regulation for general nonlinear
systems. The solvability depends on the properties of the
system’s decoupling matrix and the existence of a zeroth-order,
globally-attractive, controlled-invariant manifold. Output reg-
ulators are also proposed for nonlinear systems based on the
discussions. The output regulator was applied to an under-actu-
ated mechanical systems: the Pendubot. From the experimental
study, the output regulator
yields satisfactory results. Moreover, the regulator seems robust
enough despite parameter uncertainties, unmodeled dynamics,
and noises.
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