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Controllability of Switched Bilinear Systems

Daizhan Cheng

Abstract—The controllability of switched bilinear systems (SBLSs) is
considered. Three kinds of controllabilities, including weak controllability,
approximate controllability, and global controllability, are investigated one
by one. Sets of easily verifiable sufficient conditions are obtained for each
case, which are applicable to a large class of switched bilinear systems.

Index Terms—Accessibility Lie algebra, Chow’s theorem, controllability,
switched bilinear system (SBLS).

I. INTRODUCTION

In recent years, the switched systems have attracted considerable at-
tention from the control community [12]. Most of the efforts have been
focused on stability [1], [7], [3], stabilization [6], and controllability
[8], [15], [17] of switched systems.
The controllability of nonlinear control systems has been discussed

for long time, using Lie algebraic technique [2], [16]. The method has
been used for switched linear systems [4]. The controllability of bi-
linear systems has also been investigated a lot [11], [13].
Using Lie algebraic technique, this note investigates the controlla-

bility of switched bilinear systems (SBLSs) of the form

_x=A�(t)x+

m

i=1

B
i

�(t)x+c
i

�(t) ui:=A�(t)x+ B�(t)ux + C�(t)u

x 2 n
; u 2 m (1)

where �(t) : [0;1) ! � is a measurable right continuous mapping
and � = f1; 2; . . . ; Ng. Controls u(t) are piecewise constant func-
tions.
Through this note, the state–space n can be replaced by any arc-

wise connected open sub-manifold, M , of n. So in the sequel, any
one of suchM may be used without further explanation.
Note that in (1) and in the sequel we use brief notation B�u for
m

i=1 B
i

�ui. In fact, this is the semi-tensor productB� u [5], where
B� = B1

� � � � Bm

� is an n �mn matrix.
Three kinds of controllabilities are investigated in this note, namely,

weak controllability, approximate controllability and global controlla-
bility. As one of themain tools, the accessibility Lie algebra of switched
systems is defined and investigated. Roughly speaking, the main result
in this note consists of: i) it is proved that as the accessibility Lie al-
gebra has full rank the system is weakly controllable; ii) if in addition,
certain symmetric condition is satisfied, the approximate controllability
is obtained; and iii) if the system concerned is practically controllable,
some additional local conditions assure the global controllability. The
results ii) and iii) are applicable to a large class of switched bilinear
systems, which satisfy the symmetric condition.
The note is organized as follows. Section II considers weak control-

lability. Section III studies approximate controllability. Global control-
lability is investigated in Section IV. Section V is the conclusion.
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II. ACCESSIBILITY LIE ALGEBRA AND WEAK CONTROLLABILITY

To begin with, we give some rigorous definitions for reachability and
controllability.
Definition 2.1: Consider a SBLS.

i) For a given x 2 n, if there exist piecewise constant controls
and a selected switching law �(t) such that the trajectory of
the controlled switched system can be driven from x to y,
then y is said to be in the reachable set of x. The reachable
set of x is denoted by R(x).

ii) y is said to be weakly reachable from x, if there exists a
spline-trajectories of the system, which connect a finite set of
points, x := x0; x1; . . . ; xs := y pairwise in either forward
or backward ways. Precisely, either xk�1 2 R(xk) or xk 2
R(xk�1), k = 1; 2; . . . ; s. The weak reachable set of x is
denoted by WR(x).

iii) A sub-manifold, I , ofM is called an invariant sub-manifold
of a switched control system, if for any piecewise constant
controls ui, any switched law �(t), and any x0 2 I , the
trajectory of the controlled switched system remains in I ,
i.e., x(x0; u; �(t); t) � I , 8t, 8u.

iv) An invariant sub-manifold I is called a controllable sub-
manifold if for any two points x; y 2 I , x 2 R(y).

v) An invariant sub-manifold I is called a weakly controllable
sub-manifold if for any two points x; y 2 I , x 2WR(y).

The controllable sub-manifolds are closely related to the Lie algebra
generated by the vector fields extracted from the systems. Similar to the
classical (nonswitching) case, we define the accessibility Lie algebra
for SBLS as
Definition 2.2: For system (1), the accessibility Lie algebra is de-

fined as

La := A�x; B
i
�x + c

i
�; � 2 �; i = 1; . . . ;m

LA
: (2)

The following result about weak controllability is a mimic of the
corresponding result about general control systems [13], [16].
Proposition 2.3: The system (1) is globally weakly controllable, if

the accessibility Lie algebra has full rank. That is

rank (La(x)) = n 8x 2 n
: (3)

If (3) is satisfied, as for nonswitching case, it is said that the accessi-
bility rank condition is satisfied.

Proof: According to Chow’s theorem [2], for each x the weakly
reachable set ofx is the largest integral manifold ofLa, passing through
x. By condition (3), it contains an open neighborhood U of x. So, for
any x0 its weakly reachable set is an open set. We claim thatWR(x0)
is also closed. Otherwise, there exists a x1 2 cl(WR(x0))nWR(x0).
However,WR(x1) contains an open neighborhood, U , of x1, so U \
WR(x0) 6= �. Say, � 2 U \ WR(x0). Then, x 2 WR(x1), by
symmetry, x1 2 WR(�), and � 2 WR(x0). By transitivity, x 2
WR(x0). Therefore, U � WR(x0), which is a contradiction. Now
since n is arc-wise connected, its only nonempty closed-open set is
M itself. That is,WR(x0) =

n.
Remark 2.4:

1) Weak controllability is based on an equivalent relation: weak
reachability (WR) [13]. That is, i) x 2 WR(x); ii) if x 2
WR(y), then y 2 WR(x); iii) if x 2 WR(y) and y 2
WR(z), then x 2 WR(z). (This fact has been used in the
previous proof.) So, the whole state–space is partitioned into
weakly controllable subsets.

2) Since each switched model of an SBLS is analytic, using
(generalized) Frobenius’ theorem [14] and Chow’s theorem,
one sees easily that for system (1) the state–space M is
partitioned into maximal connected weak controllability

sub-manifolds. Each weak controllability sub-manifold
is the maximal integral manifold of La. This is a very
important topological structure for weakly controllable
sub-manifolds of SBLSs.

3) Definitions 2.1 and 2.2 and Proposition 2.3 can be extended
to general switched control systems. Some of the following
obtained topological structures of the weakly controllable
sub-manifolds of SBLS are also applicable to analytic con-
trol systems.

Definition 2.5: Let V be a set of vector fields. V is said to be k-sym-
metric, if for any vector field X 2 V , there is a vector field Y 2 V

with Y = �kX , k > 0.
Remark 2.6: Using Chow’s theorem one sees that for SBLSs if La

has a k-symmetric generator of the form ff�+g�u�g, then its weakly
controllable sub-manifolds become controllable sub-manifolds.
The following lemma is useful in the sequel.
Lemma 2.7: Let � be an involutive analytic distribution, i.e., an

involutive distribution generated by analytic vector fields. Moreover,
assume x 2 WR(y) via spline integral curves of �, then

rank(�(y)) = rank(�(x)):

Proof: Without loss of generality, we assume there exists a flow
�(t) of Y 2 � such that x = �(0) and y = �(t) and let X 2 �.
Then, using the Campbell–Baker–Hausdorff formula [14]

�(t)�(X(x)) =

1

i=0

1

i!
t
i
ad

i
YX(y):

Since X is arbitrary and �(t)� is an isomorphism, one sees that
rank(�x) � rank(�y). Using the formula for negative time, we have
the reversed inequality.
Then, we have the following result.
Proposition 2.8:

1) Consider a SBLS. For a given point x 2 n if
rank(L(x0)) = m and there exists an open neighbor-
hood U of x0 such that

S(x) := fx 2 U j rank(La(x)) = mg

is anmth dimensional regular sub-manifold of U , then S(x)
is a weak controllable sub-manifold.

2) IfLa has a k-symmetric generator of the form ff�+g�u�g,
S(x) is a controllable sub-manifold.

Proof:

1) Note that by the Frobenius’ theorem [refer to 2) of Remark
2.4], for a bilinear system the m-th degree largest integral
manifold passing through x0 always exists. By Lemma 2.7,
for any point y on this manifold, La(y) = m. Now since
S(x) is the uniquemth degree regular sub-manifold, it must
be contained in the largest integral manifold.

2) Using Remark 2.6 and the same argument in 1), 2) is obvious.

Remark 2.9:

1) The advantage of Proposition 2.8 lies on that, instead of
searching for the controllable sub-manifold we have only to
check the rank condition. The problem is then tremendously
simplified.

Example 2.10: Consider the following switched system:

_x = B�(t)ux; x 2 2nf0g (4)

where � = f1; 2g and

B1 =
1 0

0 1
B2 =

2 2

1 1
:
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It is easy to see that

fB1; B2gLA = SpanfB1; B2g:

So, we have only to consider the rank of the distribution generated by
these two vector fields. Observe that

det (B1x B2x ) = (x1 + x2)(x1 � 2x2):

According to Remark 2.6 and Proposition 2.8, one sees that the con-
trollable sub-manifolds consist of eight components: four angular re-
gions, which are two dimensional sub-manifolds, and four rays, which
are one dimensional sub-manifolds. They form a partition of 2nf0g,
which are split by two lines: x1 = �x2 and x1 = 2x2. Namely, four
two-dimensional controllable sub-manifolds are

x 2 2nf0g j x1 > 0;�x1 < x2 <
1

2
x1

x 2 2nf0g j x1 < 0;
1

2
x1 < x2 < �x1

fx 2 2nf0g j x2 > 0;�x2 < x1 < 2x2g

fx 2 2nf0g j x2 < 0; 2x2 < x1 < �x2g

and four one-dimensional controllable sub-manifolds are

x 2 2nf0g j x1 > 0; x2 =
1

2
x1

x 2 2nf0g j x1 < 0; x2 =
1

2
x1

fx 2 2nf0g j x1 > 0; x2 = �x1g

fx 2 2nf0g j x1 < 0; x2 = �x1g:

III. APPROXIMATE CONTROLLABILITY

This section considers the approximate controllability of (1). Ap-
proximate controllability means the state can be driven to approach a
given destination point. In some journals it is also called eventual con-
trollability. It is practically useful. We give a rigorous definition.
Definition 3.1: System (1) is said to be approximately controllable

at x 2 M if for any y 2 M and any given � > 0, there exist suit-
able controls and switching law such that the spline-trajectories of the
switched controlled models can reach the � neighborhood of y. The
system is said to be approximately controllable if it is approximately
controllable at every x 2 M .

The constructive nonlinear decomposition technique has been used
widely for bilinear systems [10], [11]. For this approach, instead of
studying the switched bilinear system (1), we consider the following
two switched systems: A linear system without control and two
switched bilinear homogeneous control systems as follows:

_x =A�(t)x (5)

_x =B�(t)ux+ C�(t)u _x = � B�(t)ux+ C�(t)u : (6)

Denote by RLH(x0) the reachable set of the spline trajectories of (5)
and (6). Then, we have the following result, which is due to [11] for
BLS. It can be extended to SBLS without any difficulties.
Lemma 3.2: [11] Consider system (1). For every x0 2 n, denote

the reachable set of x0 by R(x0), then

RLH(x0) � clfR(x0)g: (7)

Here, cl is used to denote the closure of a set. Denote

Vc = (Bi
�x + c

i
�) � 2 �; i = 1; . . . ;m

LA

which is generated by the vectors of input channels.
Using Lemma 3.2, we have the following result immediately.
Proposition 3.3: Consider system (1). If

rank (Vc(x)) = n 8x 2 n (8)

then the system is approximately controllable.
Proof: We claim that the complement of reachable set, denoted

byRc(x0), is nowhere dense. Otherwise, there exists a nonempty open
set O 6= �, O � Rc(x0). Then, Oc � R(x0). Since Oc is a closed
set, we have Oc � clfR(x0)g. It follows from (7) that

O \RLH(x0) = �:

On the other hand, the generator of Vc is from (6), which is a symmetric
set of vector fields. According to Proposition 2.3 and the symmetry, (7)
implies that RLH(x0) =

n. This fact leads to a contradiction.
Now, given y 2 n, for any � > 0, denote its � neighborhood by

B�(y). Since Rc(x0) is nowhere dense, there exits y0 2 B�(y) which
is also in R(x0), which completes the proof.
To avoid the obstacle of nonsymmetry of drift terms, we consider a

class of systems, which, with properly chosen state feedback on every
switching model, have k-symmetric drift terms.
Definition 3.4: The system (1) is said to have a feedback k-sym-

metric drift terms, if there exist controls u0�, � 2 �, such that the new
drift terms under feedback

~A� = A� +B�u
0
�; � 2 � (9)

form a k-symmetric set

~A := ~A�j� 2 � :

Remark 3.5: Consider an affine switched nonlinear system

_x = f�(t)(x) +

m

i=1

g
i
�(t)Ui; �(t) 2 f1; 2; . . . ; Ng: (10)

Equation (10) has feedback k-symmetric drift terms iff for each i there
exist a j and a positive real number k > 0, such that

fi + kfj 2 Spanfgts s = i; j; t = 1; . . . ;mg:

A sufficient condition for feedback k-symmetry is

dim Spanfgts s = i; j; t = 1; . . . ; mg = n: (11)

It is easy to see that a lot of practical systems satisfy (11).
Similar to Proposition 3.3, we can prove the following.
Proposition 3.6: Consider system (1). Assume

i) the system has feedback k-symmetric drift terms;
ii)

dimfLa(x)g = n 8x 2 n
:

Then, the system is practically controllable.

Proof: Using a prefeedback, we can replace (5) by

_x = ~A�(t)x: (12)

Then, the conditions i) and ii) imply that for any x0 2 n the set
RLH(x0) corresponding to (12)–(6) is n. The rest argument is the
same of the one for Proposition 3.3.
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Remark 3.7:

1) If the feedback k-symmetric drift terms form a generator of
La, according to Remark 2.6, the system is globally control-
lable.

2) In fact, if there is a subset �0 � �, such that the corre-
sponding feedback vector fields

~A0 := ~A� j�
0 2 �0

form a symmetric set, then we define

L0 := A� x; B
j

�x + c
j

� j = 1; . . . ;m; �0 2 �0

; � 2 �
LA

:

It is clear that the switched bilinear system (1) is globally
approximately controllable if

dimfL0(x)g = n 8x 2 n
:

Example 3.8: Consider a bilinear switched system

_x = A�(t)x+ u B�(t)x + C�(t) (13)

where � = f1; 2g and

A1=

1 0 1

0 2 0

0 0 3

B1=

0 0 0

0 0 1

0 �1 0

C1=

1

1

1

A2=

�2 0 �2

0 0 0

0 0 �6

B2=

0 0 0

0 1 0

0 0 0

C2=

0

0

0

:

A straightforward computation shows that rank (La(x)) = 3, 8x 2
3. i.e., the accessibility rank condition is satisfied.
In addition, it is obvious that (13) has feedback k- symmetric drift

terms. According to Proposition 3.6, the system is approximately con-
trollable.
Remark 3.9: It is easy to see that the main result obtained in this

section can be extended to affine nonlinear systems.

IV. GLOBAL CONTROLLABILITY

This section considers the global controllability. Recall a result of
local controllability for general control systems first.

Consider a general control system

_x = f(x; u); x 2 n (14)

where f is a C1 mapping. Let x0 be an equilibrium of the control
system with control ue(x), i.e., f(xe; ue(xe)) = 0. Define

E=
@f

@x
(x; ue(x))

x ;u (x )

; D=
@f

@u
(x; ue(x))

x ;u (x )

: (15)

We have the following sufficient condition for local controllability.
Lemma 4.1: [13] Consider system (14). Assume there exist xe 2
n and control ue(x), such that, f(xe; ue(xe)) = 0. Moreover, as-

sume (E;D), defined in (15), is completely controllable. Then, (14) is
locally controllable at xe. That is, there exists an open neighborhood
U of xe, such that for any x; y 2 U , x 2 R(y) and y 2 R(x).

Using it and the approximate controllability investigated in last sec-
tion, we deduce some sufficient conditions for global controllability.
Definition 4.2: Consider a bilinear system

_x = Ax +Bux+ Cu; x 2 n
; u 2 m

: (16)

1) A pair (xe; ue) 2 n � m is called an equilibrium pair, if

Axe +Buexe + Cue = 0: (17)

2) An equilibrium pair (xe; ue) is said to be stable ifA+Bue is
Hurwitz, it is said to be antistable if�(A+Bue) is Hurwitz.

3) An equilibrium pair (xe; ue) is said to be controllable, if
(A+Bue; B(Im 
 xe) + C) is a controllable pair.

Theorem 4.3: Consider system (1). Assume

i) it is approximately controllable;
ii) there exist �1 2 � and an equilibrium pair (xe; ue� ), such

that (xe; ue� ) is antistable for the �1th switching model;
iii) there exist �2 2 � (�2 = �1 is allowed) and an equilibrium

pairs (xe; ue� ), such that (xe; ue� ) is controllable for the
�2th switching model.

Then, (1) is globally controllable.
Proof: Since (xe; ue� ) is controllable, by Lemma 4.1 there exists

a neighborhood U of xe such that the �2th switching model is control-
lable over U .
Next, we show that for any x; y 2 n we can drive the state from x

to y. Since the system is approximately controllable we can first drive
x to a point � 2 U . Denote the vector field of the closed-loop �1th
switching model with control ue� by V , that is

V =(A� +B� u
e
� )x+C� u

e
� =(A� +B� u

e
� ) (x� xe):

Since �V is stable, so the integral curve of �V goes from y to xe
asymptotically. Hence, there is a T > 0 such that

e
�V
T (y) = � 2 U:

Equivalently

y = e
V
T (�):

To complete the proof, we have only to drive the state from � to �. This
can be done by choosing �2th switching model and a suitable control
u� , because of local controllability of this model over U .
Summarizing this argument, we can drive x to y in three steps.

Step 1) According to approximate controllability, we can drive x
to � 2 U .

Step 2) According to the local controllability, we can drive � to �.
Step 3) According to the antistability, we can drive � to y by feed-

back system (vector field) V .

Example 4.4: Recall Example 3.8. We prove that (13) is globally
controllable. Using Theorem 4.3, we have to check conditions i)–iii). i)
is proved in Example 3.8. Now, we choose a pair as (xe; ue) = (0; 0).
Obviously, it is an equilibrium pair. We then show that for the first
model it is antistable. In fact

A1 +B1ue = A1

which is antistable. So, ii) is satisfied. Still use this pair to the first
model. We have

(A1 +B1ue; B1xe + C) = (A1; c1): (18)

It is easy to check that (18) is completely controllable, which implies
iii). The conclusion follows.
Following the same train of thought as in the proof of Theorem 4.3,

we can have the following result immediately.
Proposition 4.5: Consider system (1). Assume that

i) there exist �1 2 � and an equilibrium pair (xe; ue� ), such
that (xe; ue� ) is stable for the �1th switching model;
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ii) there exist �2 2 � and an equilibrium pair (xe; ue� ), such
that (xe; ue� ) is antistable for the �2th switching model;

iii) there exist �3 2 � and an equilibrium pairs (xe; ue� ), such
that (xe; ue� ) is controllable for the �3th switching model.

Then, (1) is globally controllable.
Remark 4.6: In fact, in Theorem 4.3 xe in condition ii) [specified

as x2e to distinguish it from xe in condition iii)] can be different from
the xe (x3e) in condition iii). It is enough that x

2

e 2 R(x
3

e). Particularly,
since R(x3e) contains a controllable open neighborhood, U , of x3e , so
it suffices that x2e 2 U . Similarly, for Proposition 4.5, x3e 2 R(x1e)
and x2e 2 R(x

3

e) are enough for the global controllability. Particularly,
when U is a controllable open neighborhood of x3e, then x

1

e; x
2

e 2 U is
enough for the global controllability.

V. CONCLUSION

In this note, the controllability of a switched bilinear control system
was considered. Three kinds of controllabilities, namely, weak con-
trollability, approximate controllability, and global controllability, are
considered. It was proved that accessibility rank condition assures weak
controllability, weak controllability plus feedback k-symmetry implies
approximate controllability and approximate controllability plus local
controllability and the existence of stable and antistable equilibriums
imply global controllability. Since it was shown that a large class of sys-
tems satisfy the condition of feedback k-symmetry, the results cover a
large class of switched bilinear systems.
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Robust Normalization and Stabilization of Uncertain
Descriptor Systems With Norm-Bounded

Perturbations

Chong Lin, Qing-Guo Wang, and Tong Heng Lee

Abstract—This note is concerned with the problem of the so-called
quadratic normalization and stabilization via both proportional and
derivative state feedback (PDSF) and proportional and derivative output
feedback (PDOF) for uncertain descriptor systems with norm-bounded
perturbations. Necessary and sufficient conditions are presented in terms
of linear matrix inequalities (LMIs) or quadratic matrix inequalities
(QMIs), by using a simple idea of changing the problem to the corre-
sponding stabilization problem of an augmented uncertain system.

Index Terms—Descriptor systems, norm-bounded perturbation, normal-
ization, stabilization.

I. INTRODUCTION

Consider the following linear descriptor system:

E _x(t) = Ax(t) +Bu(t) y(t) = Cx(t) (1)

whereE,A 2 n�n with rank (E) � n,B 2 n�m, andC 2 l�n.
Such a system arises in a variety of physical systems such as electrical
circuits, moving robots and many other systems which can be modeled
by dynamic equations and algebraic constraints. It is well known that
the regularity of system (1) (or, the pair (E;A)), i.e., det(sE�A) 6= 0,
guarantees the existence and uniqueness of solutions to (1) on [0;1),
and the condition deg(det(sE � A)) = rank E ensures that system
(1) is impulse-free, i.e., there is no impulse behavior in the system [4].
Note that the system may have initial jump for noncompatible initial
conditions [11].
It is known that, if the derivative of the state x(t) [and, thus, of

the output y(t)] is available, a proportional and derivative feedback
may render the closed-loop system of (1) a normal system (i.e., the
normalization problem). The use of a proportional and derivative
feedback has a well engineering motivation and so far there have been
many research papers published to address the importance and the
engineering motivation of proportional and derivative state feedback
(PDSF) and proportional and derivative output feedback (PDOF) (see
[1], [3], [5], [6], [8], [13], and the references therein). A PDSF could
make the closed-loop system regular and impulse-free (i.e., the regu-
larization problem) [1], [13]. Such a regularization problem also has
a complete solution by using PDOF [3]. These regularization results
are based on Kronecker canonical decomposition or orthogonal matrix
transformation, and so are hard to apply for further simultaneously
solving the stability problem.While PDSF could regularize a descriptor
system, it would also be useful for the pole assignment. Constructions
of PDSF matrices are given in [8] and [5] to shift all open-loop poles to
desired finite points under certain conditions. All of the aforementioned
developments using proportional and derivative feedback need matrix
decompositions, and these methods could not be applicable anymore
if the system matrices subject to perturbations. Recently, PDSF H1
control approach is proposed in [6] for descriptor systems. Still, the
method is based on matrix decompositions, and is not applicable for
perturbed systems.
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