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Abstract

To apply time-varying port-controlled Hamiltonian (PCH) systems to practical control designs, two basic problems should be dealt with:
one is how to provide such time-varying systems a geometric structure to guarantee the completeness of representations in mathematics;
and the other is how to express the practical system under consideration as a time-varying PCH system, which is called the dissipative
Hamiltonian realization problem. The paper investigates the two basic problems. A suitable geometric structure for time-varying PCH
systems is proposed first. Then the dissipative realization problem of time-varying nonlinear systems is investigated, and serval new
methods and sufficient conditions are presented for the realization.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years, time-invariant port-controlled Hamilto-
nian (PCH) systems have been well investigated (see, e.g.,
van der Schaft, 1999; Nijmeijer & van der Schaft, 1990;
Maschke, Ortega, & van der Schaft, 2000; Ortega,
van der Schaft, Maschke, & Escobar, 2002; Escobar,
van der Schaft, & Ortega, 1999). The Hamiltonian function
in a PCH system is considered as the total energy, which
is the sum of potential and kinetic energies in mechanical
systems, and it can play the role of Lyapunov function
for the system. Because of this, based on time-invariant
PCH systems, various effective controllers have been de-
signed for many control problems (see, e.g.,Shen, Ortega,
Lu, Mei, & Tamura, 2000; Wang, Cheng, Li, & Ge, 2003;
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Xi & Cheng, 2000). However, for some practical systems the
time-invariant PCH structure does not easily apply and its
time-varying form is really needed. Please see the following
example.

Example 1. Consider a single-machine infinite-bus power
system (Lu & Sun, 1993):

�̇ = � − �0,

�̇ = �0
M
Pm − D

M
(� − �0) − �0E

′
qVs

Mx′
d�

sin � + w1,

Ė′
q = − 1

T ′
d

E′
q + 1

Tdo

xd−x′
d

x′
d�

Vs cos� + 1
Td0

uf + w2,

wherew1 andw2 are disturbances,� is the power angle,
� the rotor speed,E′

q the q-axis internal transient voltage,
uf the control input, andVs the infinite-bus voltage. As
for other parameters, please refer toLu and Sun (1993). In
the case that all the parameters are constant, we can use
the time-invariant PCH structure to design an effective con-
troller to attenuate the disturbancesw1 andw2 (Xi & Cheng,
2000). But as well known, in power systems there are al-
ways uncertainties caused by load-level variations, faults, or
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changes of network structure, etc. When a parameter of the
above system is affected by a time-varying signal, say,Vs is
affected by a sine signal sint , the time-invariant structure
is no longer valid for the system. In this case, to design
an effective energy-based controller, the time-varying PCH
structure is really needed.

Therefore, it is necessary to develop the theory of time-
varying PCH systems for some practical control problems.
Recently, time-varying PCH systems have been studied by
Fujimoto and Sugie (2001a,b), Fujimoto, Sakurama, and
Sugie (2003)andCheng (2002). It is worth noticing that
Fujimoto et al. (2003)set up a very important way to the
trajectory tracking control of time-varying PCH systems via
generalized canonical transformations, whose key idea was
to preserve the structure of PCH systems under both coordi-
nate and feedback transformations.At present, in order to ap-
ply time-varying PCH systems to practical control designs,
two basic problems should be dealt with: one is how to de-
fine a geometric structure on a manifold for such systems to
guarantee the completeness of representations in mathemat-
ics; and the other is how to express the practical system un-
der consideration into a time-varying PCH system. The latter
is the so-called dissipative Hamiltonian realization problem.
This paper investigates the above-mentioned two prob-

lems. First, by defining a time-varying generalized Poisson
bracket, we provide a geometric structure for time-varying
PCH systems. Then, we deal with the dissipative Hamilto-
nian realization of time-varying nonlinear systems, and pro-
pose some new methods and sufficient conditions for the
realization.
The rest of the paper is organized as follows. Section 2

briefly reviews the classical Poisson structure, and Section 3
provides the geometric structure for time-varying PCH sys-
tems. In Section 4, we deal with the dissipative Hamiltonian
realization problem, which is followed by the conclusion in
Section 5.

2. A brief review of Poisson structure

This section briefly reviews the classical Poisson structure
with Lie algebraic properties, which will motivate the next
section of the paper.
In order to define a Hamiltonian system on a manifold,

one should equip the manifold with a suitable geometric
structure first. LetM be a smooth manifold andC∞(M)

be the set of smooth functions onM. A Poisson bracket
onM, denoted by{·, ·}, is a map:C∞(M)×C∞(M) �−→
C∞(M), satisfying (Ortega & Planas-Bielsa, 2004; Olver,
1993):

(i) Bilinearity:

{aF + bG,H } = a{F,H } + b{G,H },
{F, aG + bH } = a{F,G} + b{F,H };

(ii) skew-symmetry:{F,H } = −{H,F };
(iii) Jacobian identity:

{{F,G}, H } + {{G,H }, F } + {{H,F },G} = 0; and

(iv) Leibniz’ rule: {F,HG} = {F,H }G + H {F,G},
where∀F,G,H ∈ C∞(M), ∀a, b ∈ R1. Obviously, the
Poisson bracket defines a Lie algebra structure on the al-
gebraC∞(M) (Ortega & Planas-Bielsa, 2004). The pair
(M, {·, ·}) is called a Poisson manifold, and the bracket de-
fines a Poisson structure onM.
AssumeH ∈ C∞(M) is an arbitrary smooth function.We

defineXH := {·, H }, which is called a Hamiltonian vector
field. Systemẋ=XH is called a Hamiltonian system defined
onM, andH is its Hamiltonian function.
It should be pointed out that the manifoldM used here

does not need to be an even-dimensional one, for the Pois-
son bracket defined above has dropped the property of non-
degeneracy (Libermann & Marle, 1986).
In recent years, it has been well noticed that a weak-

ening of the defining conditions of the Poisson bracket is
sometimes a necessary and useful way to accommodate the
description of more general dynamical systems (Ortega &
Planas-Bielsa, 2004; van der Schaft, 1999; Olver, 1993).
Motivated by this, in the next section we will provide a ge-
ometric structure for time-varying PCH systems.

3. Geometric structure for time-varying PCH systems

This section is to provide a geometric structure for time-
varying PCH systems. First, we give the concept of time-
varying generalized Poisson brackets, and then, we present
the geometric structure for time-varying PCH systems.

Definition 1. LetM be ann-dimensional manifold and time
t ∈ R+ := [0,∞). A time-varying generalized Poisson
bracket (GPB), denoted by{·, ·}t , is a map:C∞(M×R+)×
C∞(M × R+) �−→ C∞(M × R+), satisfying

(i) Bilinearity:

{aF(x, t) + bG(x, t),H(x, t)}t
= a{F(x, t),H(x, t)}t + b{G(x, t),H(x, t)}t ,

{F(x, t), aG(x, t) + bH(x, t)}t
= a{F(x, t),G(x, t)}t + b{F(x, t),H(x, t)}t ; (1)

(ii) Leibniz’ rule:

{F(x, t),G(x, t)H(x, t)}t
= {F(x, t),G(x, t)}tH(x, t)

+ G(x, t){F(x, t),H(x, t)}t ,
{F(x, t)G(x, t),H(x, t)}t

= {F(x, t),H(x, t)}tG(x, t)

+ F(x, t){G(x, t),H(x, t)}t , (2)
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where ∀F(x, t),G(x, t),H(x, t) ∈ C∞(M × R+), and
∀a, b ∈ R1.

Remark 1. The time-varying GPB defined above has
dropped the following: (a) nondegeneracy; (b) integra-
bility (Jacobian identity); and (c) skew-symmetry. As for
the detailed development of Poisson brackets, please see
Libermann and Marle (1986), Ortega and Planas-Bielsa,
2004, van der Schaft (1999)and references therein.

Definition 2. A time-varying GPB is called to be sym-
metric if {F(x, t),G(x, t)}t = {G(x, t), F (x, t)}t , and it
is called to be skew-symmetric if{F(x, t),G(x, t)}t =
−{G(x, t), F (x, t)}t , for ∀F(x, t),G(x, t)∈C∞(M× R+).

With Definitions 1 and 2, we obtain the following result.

Proposition 1. (i) Assume that{·, ·}(1)t , {·, ·}(2)t are two time-
varying GPBs. Then,

a{·, ·}(1)t + b{·, ·}(2)t (3)

is still a time-varying GPB.
(ii). An arbitrary time-varying GPB{·, ·}t can be uniquely

decomposed as

{·, ·}t = {·, ·}Jt + {·, ·}St , (4)

where{·, ·}Jt is skew-symmetric and{·, ·}St is symmetric.

Proof. (i). Obviously.
(ii). Assume that{·, ·}t is an arbitrary time-varying GPB.

Set

{F,G}St = 1
2({F,G}t + {G,F }t ),

{F,G}Jt = 1
2({F,G}t − {G,F }t ). (5)

From (i), we know that{·, ·}St , {·, ·}Jt are time-varying GPBs.
It is easy to show that{·, ·}St is symmetric,{·, ·}Jt is skew-
symmetric and

{·, ·}t = {·, ·}Jt + {·, ·}St . (6)

Assume that{·, ·}t has another decomposition as follows:

{·, ·}t = {·, ·}(1)t + {·, ·}(2)t , (7)

where{·, ·}(1)t is skew-symmetric and{·, ·}(2)t is symmetric.
(6) minus (7) yields

{·, ·}Jt − {·, ·}(1)t = {·, ·}(2)t − {·, ·}St . (8)

The left-hand side of (8) is skew-symmetric and the right-
hand side is symmetric, thus{·, ·}Jt −{·, ·}(1)t ≡ 0, {·, ·}(2)t −
{·, ·}St ≡ 0. Therefore, the decomposition (4) is unique.�

Assume that{·, ·}t is a time-varying GPB. For∀H(x, t) ∈
C∞(M×R+), letXH := {·, H(x, t)}t . Then,XH is a map:

C∞(M× R+) �−→ C∞(M× R+). Obviously, it is a time-
varying vector field onM. We callXH a time-varying gen-
eralized Hamiltonian vector field.

Definition 3. (i) A time-varying generalized Poisson mani-
fold is a manifold equipped with a time-varying GPB.
(ii). A time-varying generalized Hamiltonian system is a

triple (M, {·, ·}t , H(x, t)). Its dynamic expression iṡx=XH .

We define the structure matrix of the time-varying GPB
{·, ·}t as follows:

M(x, t) :=



{x1, x1}t {x1, x2}t · · · {x1, xn}t
{x2, x1}t {x2, x2}t · · · {x2, xn}t

· · · · · ·
{xn, x1}t {xn, x2}t · · · {xn, xn}t


 , (9)

which is expressed in a set of local coordinatesx1, . . . , xn.
SinceXH is a vector field,XH can be expressed asXH =∑n
i=1�i (x, t)�/�xi . From Proposition 1,XH = {·, H }t =

{·, H }Jt + {·, H }St := XJ
H + XS

H . It is easy to see thatXJ
H

andXS
H are also vector fields andXJ

H =∑n
i=1�

J
i (x, t)�/�xi ,

XS
H = ∑n

i=1�
S
i (x, t)�/�xi . Thus,

XH =
n∑

i=1

�i (x, t)
�

�xi
=

n∑
i=1

[�Ji (x, t) + �Si (x, t)]
�

�xi
. (10)

With Eq. (10), Leibniz’ rule and the bilinearity, we can
prove the following result.

Theorem 1. (i) For ∀F(x, t), H(x, t) ∈ C∞(M × R+),

{F(x, t),H(x, t)}t = (∇F)TM(x, t)∇H ; (11)

(ii) The time-varying generalized Hamiltonian system de-
fined in Definition3 can be expressed as

ẋ = M(x, t)∇H(x, t). (12)

From Theorem 1, we can see that, as in the standard Pois-
son bracket case, the time-varying GPB is also determined
uniquely by its structure matrix.
Assume thaty = �(x) is a coordinate transformation.

We can prove that under the new coordinates, the structure
matrixM(x, t) becomes

M̄(y, t) = J�M(x, t)J T
� |x=�−1(y), (13)

whereJ� is the Jacobian matrix of�(x); (13) indicates that
the structure matrixM(x, t) is consistent with the changing
law of structure matrices under coordinate transformations.
From the above discussion, we know that the time-varying

generalized Poisson manifold(M, {·, ·}t ) can serve as a
suitable geometric structure for time-varying generalized
Hamiltonian systems and, of course, for time-varying PCH
systems.
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4. Dissipative Hamiltonian realization

This section investigates the dissipative Hamiltonian re-
alization of time-varying nonlinear systems, and proposes
several new results. First, we give some concepts and prop-
erties.

4.1. Concepts and properties

Definition 4. A time-varying dynamic system

ẋ = f (x, t), x ∈ M, t ∈ R+ (14)

is said to have a generalized Hamiltonian realization (GHR)
if there exists a suitable coordinate chart and a Hamiltonian
functionH(x, t) such that (14) can be expressed as

ẋ = M(x, t)∇H(x, t), (15)

whereM is an n-dimensional manifold andM(x, t) is
the structure matrix of some time-varying GPB defined
on M. Furthermore, ifM(x, t) can be decomposed as
M(x, t) = J (x, t) − R(x, t), with J (x, t) skew-symmetric
andR(x, t)�0 symmetric, then (15) is called a dissipative
Hamiltonian realization.

Definition 5. A controlled dynamic system

ẋ = f (x, t) +
m∑
i=1

gi(x, t)ui (16)

is said to have a feedback GHR if there exists a feedback
law u= �(x, t)+ v such that the closed-loop system can be
expressed as

ẋ = M(x, t)∇H(x, t) + g(x, t)v, (17)

whereg(x, t) = (g1(x, t), . . . , gm(x, t)) andu = (u1, . . . ,

um)
T.

From Definition 4, we know that system (15) is a dissi-
pative realization iffM(x, t) + M(x, t)T�0.
Recall the concept ofK-functions (Slotine & Li, 1991).A

continuous function� : R+ �−→ R+ is called aK-function
if (i) �(0) = 0; (ii) �(p)>0, ∀p>0; (iii) � ↑ strictly.
Assume that system (16) has a dissipative realization as

follows:

ẋ = (J (x, t) − R(x, t))∇H(x, t) + g(x, t)v. (18)

We can prove the following proposition.

Proposition 2. If �H/�t�0 and there exists aK-function
� such thatH(x, t)��(||x||)>0, ∀x �= 0, then system(18)
with v = 0 is Lyapunov stable.

The following lemma is equivalent to Part 1 of Theorem
1 in Fujimoto et al. (2003).

Lemma 1 (Fujimoto et al., 2003). Assume that(M, {·, ·}t )
is the geometric structure of system(18). Then, under
the structure, the dissipative Hamiltonian system(18) is
changed into another dissipative Hamiltonian system by a
coordinate transformationz = �(x, t) if and only if there
exists a scalar functionH̄ such thatXH̄ = J−1

� (��/�t)
holds on(M, {·, ·}t ).

Corollary 1. The dissipativeness of system(18) is invariant
under time-invariant coordinate transformations.

4.2. New results on dissipative Hamiltonian realization

A functionV (x) is called a regular positive definite func-
tion (Wang, Li, & Cheng, 2003) if V (x)>0 (x �= 0),V (0)=
0,�V/�x|x=0=0 and�V/�x|x �=0 �= 0. For example,H(x)=
1
2

∑n
i=1x

2
i is a regular positive definite function onRn.

Consider the following time-varying nonlinear system

ẋ = f (x, t) + g(x, t)u, f (0, t) = 0, (19)

wherex ∈ M, t ∈ R+, u ∈ Rm. Motivated byOrtega
et al. (2002), we obtain the following result.

Proposition 3. For arbitrary regular positive definite func-
tion H(x), system(19) can be expressed as

ẋ = (J (x, t) + P(x, t))
�H(x)

�x
+ g(x, t)u, (20)

where

P(x, t) =
{ 〈f (x,t),∇H(x)〉

||∇H(x)||2 In, x �= 0,
0, x = 0

(21)

is symmetric,

J (x, t)

=




1
||∇H(x)||2 [ftd(x, t)

�HT(x)

�x , x �= 0,

−�H(x)

�x f T
td(x, t)]

0, x = 0

(22)

is skew-symmetric, 〈·, ·〉 denotes the inner product, In is the
n × n identity matrix, and

ftd(x, t) = f (x, t) − fgd(x, t),

fgd(x, t) = 〈f (x,t),∇H(x)〉
||∇H(x)||2 ∇H(x), x �= 0.

(23)

Proof. From (23), we get

LftdH(x) = 〈ftd(x, t),∇H(x)〉
= 〈f (x, t),∇H(x)〉

− 〈f (x, t),∇H(x)〉
||∇H(x)||2 〈∇H(x),∇H(x)〉

= 〈f (x, t),∇H(x)〉 − 〈f (x, t),∇H(x)〉 = 0,
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from which we know that whenx �= 0,

J (x, t)
�H(x)

�x

= 1

||∇H(x)||2
[
ftd(x, t)

�HT(x)

�x

−�H(x)

�x
f T
td(x, t)

]
�H(x)

�x

= 1

||∇H(x)||2ftd(x, t)
�HT(x)

�x
�H(x)

�x

− 1

||∇H(x)||2
�H(x)

�x
f T
td(x, t)

�H(x)

�x

= 1

||∇H(x)||2ftd(x, t)||∇H(x)||2

− 1

||∇H(x)||2
�H(x)

�x
LftdH(x) = ftd(x, t).

Thus, whenx �= 0,

f (x, t) = ftd(x, t) + fgd(x, t)

= J (x, t)
�H(x)

�x
+ P(x, t)

�H(x)

�x

= (J (x, t) + P(x, t))
�H(x)

�x
.

Note that, whenx = 0, the above equation still holds. Then,
the theorem follows. �

Remark 2. (i) fgd is the projection off (x, t) in the gradi-
ent direction∇H andftd is the projection in the tangential
direction of equi-value surfaces ofH(x). Obviously,fgd ⊥
ftd andf =fgd+ftd. Therefore, realization (20) has a clear
physical meaning. (ii) Since there always exist regular pos-
itive definite functions, an arbitrary time-varying dynamic
system always has the realization (20), which can be calcu-
lated by the formulas (21)–(23).

Remark 3. From the proof of Proposition 3, we know that
f (x, t) ≡ (J (x, t)+P(x, t))(�H(x)/�x). Thus, when sys-
tem (19) is smooth, realization (20) is smooth, too. How-
ever, even if system (19) is smooth, Proposition 3 cannot
ensure that matricesP(x, t) andJ (x, t) are smooth around
the origin. In general, the proposition can only guarantee the
continuity ofP(x, t) andJ (x, t) if H(x) is chosen properly.

Now, at regular points1 of P(x, t), decomposeP(x, t)

as P(x, t) = −R(x, t) + S(x, t), where R(x, t)�0 and
S(x, t)�0 are symmetric. Then, system (20) can be ex-
pressed as

ẋ = (J (x, t) − R(x, t) + S(x, t))∇H(x) + g(x, t)u. (24)

1We call x a regular point of matrixP(x, t), if there exists a neigh-
borhood,�, of x such that the number of positive eigenvalues and the
number of negative eigenvalues are invariant forx ∈ � and t ∈ R+.

Proposition 4. If

S(x, t) ⊂ Span{g(x, t)} + Ker{dH(x)}, (25)

then there is a control lawu = �(x, t) + v such that the
closed-loop system consisted of(24)and the control law can
be expressed as a dissipative Hamiltonian system withH(x)

as its Hamiltonian function.

Proof. If (25) holds, there exist matricesB and C with
proper dimensions such that

S(x, t) = g(x, t)B + (�1, �2, . . . , �r )C, (26)

where{�1, . . . , �r} is a basis ofKer{dH(x)}. Chooseu =
−B∇H(x) + v and substitute it into (24), then we get

ẋ = (J (x, t) − R(x, t))∇H(x)

+ (�1, . . . , �r )C∇H(x) + g(x, t)v. (27)

Let f̄ (x, t)=(�1, . . . , �r )C∇H(x). Since∇HT(x)f̄ (x, t)=
0, from the proof of Proposition 3 we know

f̄ (x, t) = J̄ (x, t)∇H(x), (28)

where

J̄ (x, t)

=
{

1
||∇H(x)||2 [f̄ (x, t)

�HT(x)

�x − �H(x)

�x f̄ T(x, t)], x �= 0,
0, x = 0.

With (27) and (28), we obtain

ẋ = (J (x, t) + J̄ (x, t) − R(x, t))∇H(x) + g(x, t)v, (29)

which is a dissipative Hamiltonian realization.�

In the following, we consider the single-input case of
system (19). In this case, we have the following result.

Theorem 2. Assume thatg(x, t) ∈ Rn×1. If there ex-
ists a regular positive definite functionH(x) such that
Lg(x,t)H(x) �= 0 (x �= 0), then system(19) has a feed-
back dissipative Hamiltonian realization withH(x) as its
Hamiltonian function.

Proof. Assume that there exists a regular positive definite
functionH(x) such thatLgH �= 0, for all x �= 0. Similar to
the above discussion, we can obtain system (24) with this
H(x).
Whenx = 0, it is obvious that the theorem holds. When

x �= 0, choose control law

u = 1

LgH(x)
[LgH(x)v − ∇HT(x)S(x, t)∇H(x)] (30)
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and substitute it into (24), then we have

ẋ = [J (x, t) − R(x, t) + S(x, t)]∇H(x)

+ 1

LgH(x)
g[LgH(x)v − ∇HT(x)S(x, t)∇H(x)]

= (J (x, t) − R(x, t))∇H(x) + S(x, t)∇H(x)

− 1

LgH(x)
g∇HT(x)S(x, t)∇H(x) + gv

= (J (x, t) − R(x, t))∇H(x)

+ 1

LgH(x)
[S(x, t)∇HLgH − g∇HTS(x, t)∇H ]

+ gv

= (J (x, t) − R(x, t))∇H

+ 1

LgH(x)
[S(x, t)∇HgT − g∇HTS(x, t)]∇H(x)

+ gv.

Thus,

ẋ = (J (x, t) + J̃ (x, t) − R(x, t))∇H(x) + g(x, t)v, (31)

where

J̃ (x, t) = 1

LgH(x)
[S(x, t)∇H(x)gT

− g∇HT(x)S(x, t)] (32)

is skew-symmetric. Therefore, (31) is a dissipative Hamil-
tonian realization. �

4.3. An illustrative example

In this subsection, we give an example to illustrate how to
apply the results proposed in Section 4.2 to get Hamiltonian
realizations.

Example 2. Find a feedback law such that the following
system can be expressed as a dissipative Hamiltonian sys-
tem:

ẋ =
[
tx1 + t2x21x2−t2x31 + tx2

tx3

]
+

[
x1 + t (x1 + x2)

x2 + t (x2 − x1)

x3 + tx3

]
u

:= f (x, t) + g(x, t)u, x ∈ R3, t ∈ R+. (33)

First, we apply Proposition 3 to express (33) as a time-
varying generalized Hamiltonian system. Choose a regular
positive definite function as:H(x)= 1

2(x
2
1+x22+x23). When

x �= 0, from (23) we obtain

ftd(x, t) = f (x, t) − 〈f (x, t),∇H(x)〉
||∇H(x)||2

�H(x)

�x

=
[
tx1 + t2x21x2−t2x31 + tx2

tx3

]
− tx21 + tx22 + tx23

x21 + x22 + x23

[
x1
x2
x3

]

= [ t2x21x2, −t2x31, 0]T.

Thus, whenx �= 0, from (22) and (21) we have

J (x, t) = 1

||∇H(x)||2 [ftd(x, t)∇HT(x)

− ∇H(x)f T
td(x, t)]

= t2x21

x21 + x22 + x23

[ 0 x21 + x22 x2x3
−x21 − x22 0 −x1x3

−x2x3 x1x3 0

]
,

P (x, t) = 〈f (x, t),∇H(x)〉
||∇H(x)||2 I3 =

[
t 0 0
0 t 0
0 0 t

]
.

Therefore, (33) can be expressed as

ẋ =
{
(J (x, t) + P(x, t))

�H(x)

�x + g(x, t)u x �= 0,
g(x, t)u, x = 0.

(34)

Second, we design a control law to make the system be
expressed as a dissipative form. BecauseLgH(x) = (1 +
t)(x21 + x22 + x23) �= 0 (x �= 0), it can be seen from Theorem
2 that system (34) has a feedback dissipative realization
with H(x) as its Hamiltonian function. DecomposeP(x, t)

as follows:P(x, t) = −R(x, t) + S(x, t), whereR(x, t) =
Diag{1,1,1}>0, S(x, t) = Diag{1+ t,1+ t,1+ t}>0.
Whenx �= 0, according to (30) we choose the control law as

u = 1

LgH
[LgH(x)v − ∇HT(x)S(x, t)∇H(x)]

= 1

(1+ t)(x21 + x22 + x23)

{
(1+ t)(x21 + x22 + x23)v

−[x1, x2, x3]
[1+ t 0 0

0 1+ t 0
0 0 1+ t

] [
x1
x2
x3

]}

= − 1+ v;

and, whenx = 0, we chooseu = v. Under the control law,
system (34) can be expressed as

ẋ =
{
(J (x, t) + J̃ (x, t) − R(x, t))∇H(x)

+g(x, t)v, x �= 0
g(x, t)v, x = 0,

=
{
(J̄ (x, t) − R(x, t))∇H(x) + g(x, t)v, x �= 0
g(x, t)v, x = 0,

(35)

where

J̃ (x, t) = 1

LgH
[S(x, t)∇HgT − g∇HTS(x, t)]

= −t

x21 + x22 + x23

[ 0 x21 + x22 x2x3
−x21 − x22 0 −x1x3

−x2x3 x1x3 0

]

and

J̄ (x, t) = J (x, t) + J̃ (x, t)

= t2x21 − t

x21 + x22 + x23

[ 0 x21 + x22 x2x3
−x21 − x22 0 −x1x3

−x2x3 x1x3 0

]
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are skew-symmetric. System (35) is the desired feedback
dissipative Hamiltonian realization.

5. Conclusion

Through defining a time-varying generalized Poisson
bracket, we have provided a suitable geometric structure for
time-varying PCH systems, which can guarantee the math-
ematical completeness of representations of time-varying
PCH systems. In order to apply time-varying PCH systems
to practical control problems, we have also investigated the
dissipative Hamiltonian realization problem of time-varying
nonlinear systems, and proposed serval new methods and
sufficient conditions for the realization.
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