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Abstract

To apply time-varying port-controlled Hamiltonian (PCH) systems to practical control designs, two basic problems should be dealt with:
one is how to provide such time-varying systems a geometric structure to guarantee the completeness of representations in mathematics
and the other is how to express the practical system under consideration as a time-varying PCH system, which is called the dissipative
Hamiltonian realization problem. The paper investigates the two basic problems. A suitable geometric structure for time-varying PCH
systems is proposed first. Then the dissipative realization problem of time-varying nonlinear systems is investigated, and serval new
methods and sufficient conditions are presented for the realization.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction Xi & Cheng, 2000. However, for some practical systems the
time-invariant PCH structure does not easily apply and its

_In recent years, time-invariant port-controlled Hamilto- jme_yarying form is really needed. Please see the following
nian (PCH) systems have been well investigated (see, €.9-example.

van der Schaft, 1999; Nijmeijer & van der Schaft, 1990;

Maschke, Ortega, & van der Schaft, 2000; Ortega, gyample 1. Consider a single-machine infinite-bus power
van der Schaft, Maschke, & Escobgr, 2_002; Es_cobar, system Lu & Sun, 1993:
van der Schaft, & Ortega, 1989rhe Hamiltonian function .

in a PCH system is considered as the total energy, which ¢ = ® — o,

is the sum of potential and kinetic energies in mechanical & = 92 P, — %(w — wg) —
systems, and it can play the role of Lyapunov function ) 1 1 xa—x, 1
for the system. Because of this, based on time-invariant £4 = —77E4 + 7,7 =7 Vs COSO + 7ouf + w2,
PCH systems, various effective controllers have been de-

ifn&iifog ¢:;¥Jf;n2tgoéopr3\?£mséﬁzﬁ’ e%ih?,e(’;rtg%%é. w the rotor speedEj] the g-axis internal transient voltage,
' ' ' ' 9 9. th ' ' uy the control input, andV; the infinite-bus voltage. As

*This paper was not presented at any IFAC meeting. This paper was for other parameters, please referlio and Sun (1993)In
recommended for publication in the revised form by Associate Editor H. the case that all the parameters are constant, we can use
Nijmeijer under the direction of the Editor H. K. Khalil. Supported by the time-invariant PCH structure to design an effective con-
NT‘ggi‘:e’;‘sg::;LSC;’;ﬁgr Foundation of China (G60474001). troller to attenuate the disturbanaesandw- (Xi & Cheng,

E-mail addressesyzwang@sdu.edu.cf¥. Wang), 2000. But as well known, in power systems _there are al-
dcheng@iss03.iss.ac.¢B. Cheng)hu@math.kth.s€X. Hu). ways uncertainties caused by load-level variations, faults, or

onl/I Vs

Mty sin 0 4+ wyq,

where w1 and w» are disturbances) is the power angle,

0005-1098/$ - see front matté& 2004 Elsevier Ltd. All rights reserved.
doi:10.1016/j.automatica.2004.11.006
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changes of network structure, etc. When a parameter of the(ii) skew-symmetry{F, H} = —{H, F};

above system is affected by a time-varying signal, $ays (iii) Jacobian identity:

affected by a sine signal sin the time-invariant structure

is no longer valid for the system. In this case, to design {F,G}, H} + {{G, H}, F} + {{H, F},G} =0, and

an effective energy-based controller, the time-varying PCH L
structure is really needed. (iv) Leibniz’rule: {F, HG} ={F, H}G + H{F, G},

whereVF, G, H € C®(./), Ya,b € R:. Obviously, the
Poisson bracket defines a Lie algebra structure on the al-
gebraC*>(.#) (Ortega & Planas-Bielsa, 20p4The pair
(A, {-,-}) is called a Poisson manifold, and the bracket de-
fines a Poisson structure or.

AssumeH € C*°(.#) is an arbitrary smooth function. We

Therefore, it is necessary to develop the theory of time-
varying PCH systems for some practical control problems.
Recently, time-varying PCH systems have been studied by
Fujimoto and Sugie (2001a,bFujimoto, Sakurama, and
Sugie (2003)and Cheng (2002) It is worth noticing that

Fujimoto et al. (2003)ket a very important way to the . o o
ul ( pet up a very imp way defineXy := {-, H}, which is called a Hamiltonian vector

trajectory tracking control of time-varying PCH systems via _. o L :
generalized canonical transformations, whose key idea Wasf'eld' Systemt =Xy is called a Hamiltonian system defined

to preserve the structure of PCH systems under both coordi-onlt’%’han%Hb'S |ts. I—{a;nlltop![ﬁntfltjr? ction. ifald dh

nate and feedback transformations. At present, in order to ap-OI S OE: Z E’O'Q ed ou ad' € mani ? usfe therE:D .
ply time-varying PCH systems to practical control designs, 0€s not need lo be an even-dimensional one, for the Fo1S-
two basic problems should be dealt with: one is how to de- son bracket defined above has dropped the property of non-
fine a geometric structure on a manifold for such systems to delg;eneraC)t/L@berma_?nh& M;rle, 19833 ticed that K
guarantee the completeness of representations in mathemat- n recent years, It has peen well noficed that a weak-
ics; and the other is how to express the practical system un-&€ning of the defining conditions of the Poisson bracket is

der consideration into a time-varying PCH system. The latter ZomefurPes a fnecessary anc:l gseful \_/va?/ to a:c:&r?modéte the
is the so-called dissipative Hamiltonian realization problem. escription of more general dynamical systerdsi¢ga

This paper investigates the above-mentioned two prob- Planas-Bielsa, 2004van der Schaft, 1999; Olver, 1903

lems. First, by defining a time-varying generalized Poisson Motlva_\ted by this, in the next s_ectlon we will provide a ge-

bracket, we provide a geometric structure for time-varying ometric structure for time-varying PCH systems.

PCH systems. Then, we deal with the dissipative Hamilto-

nian realization of time-varying nonlinear systems, and pro- } i ,

pose some new methods and sufficient conditions for the 3- G&ometric structure for time-varying PCH systems

realization. ) o i i i
The rest of the paper is organized as follows. Section 2 Thls section is to prow_de a geometrlc structure for tl_me-

briefly reviews the classical Poisson structure, and Section 3Va7ying PCH systems. First, we give the concept of time-

provides the geometric structure for time-varying PCH sys- VaTying generalized Poisson brackets, and then, we present

tems. In Section 4, we deal with the dissipative Hamiltonian the geometric structure for time-varying PCH systems.

realization problem, which is followed by the conclusion in

Section 5. Definition 1. Let.# be am-dimensional manifold and time
t € RY := [0,00). A time-varying generalized Poisson
bracket (GPB), denoted Hy, -},, is a mapC>® (.4 x R) x

2. A brief review of Poisson structure C®(M x RT) — C®( x RT), satisfying

This section briefly reviews the classical Poisson structure (i) Bilinearity:
with Lie algebraic properties, which will motivate the next {aF(x, 1) +bG(x, 1), H(x, )},

section of the paper.
In order to define a Hamiltonian system on a manifold, =a{F(x, 1), Hx, D} + 0{G(x, 1), H(x, D)},

one should equip the manifold with a suitable geometric ~ {F(x.1),aG(x, 1) +bH(x, 1)},

structure first. Let# be a smooth manifold and® (.#) =a{F(x,1),G(x,0)}, + b{F(x,t), H(x,1)};; (1)
be the set of smooth functions ow. A Poisson bracket . N )

on.#, denoted by, -}, is a map:C*® () x C®°(M) — (ify Leibniz’ rule:

f;;gﬂ) satisfying Ortega & Planas-Bielsa, 2004; Olver, {F(x,1), G(x, ) H (x, 1)},

={F(x,1),G(x,0)},H(x,1)
+ G, ){F(x, 1), H(x, )},
{F(x,G(x,1), H(x, 1)},
={F(x,1), H(x,0)},G(x,1)
{F,aG + bH} =alF, G} + b{F, H}: + F(x,){G(x,1), H(x, 1)}, 2)

(i) Bilinearity:
{aF +bG, H} =a{F, H} + b{G, H},
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where VF(x,t), G(x,t), H(x,1) € C®(# x R™), and
Ya,b € RL.

Remark 1. The time-varying GPB defined above has

719

C®(M x RY) — C™®( x RT). Obviously, it is a time-
varying vector field on#. We call X ;; a time-varying gen-
eralized Hamiltonian vector field.

dropped the following: (a) nondegeneracy; (b) integra- Definition 3. (i) A time-varying generalized Poisson mani-

bility (Jacobian identity); and (c) skew-symmetry. As for

fold is a manifold equipped with a time-varying GPB.

the detailed development of Poisson brackets, please see (ii). A time-varying generalized Hamiltonian system is a

Libermann and Marle (1986)Ortega and Planas-Bielsa,
2004 van der Schaft (1999nd references therein.

Definition 2. A time-varying GPB is called to be sym-
metric if {F(x,?), G(x,1)}; = {G(x,1), F(x,t)},, and it
is called to be skew-symmetric ifF(x,1), G(x,1)}, =
—{G(x,1), F(x,)},, for VF (x, 1), G(x, ) eC® (M x RT).

With Definitions 1 and 2, we obtain the following result.

(2)

Proposition 1. (i) Assume thaft, }(1) {-,-},” are two time-
varying GPBs. Then
af, 1+ bl 3 )

is still a time-varying GPB
(ii). An arbitrary time-varying GPB-,
decomposed as

ol =1+

where{-,

-}, can be uniquely

S
'}[ s

-};’ is skew-symmetric and, -},S is symmetric

(4)

Proof. (i). Obviously.
(ii). Assume that-,
Set

-}, is an arbitrary time-varying GPB.

{F, G} = i({F, G}, + (G, F},),
{F,GY = 3({F.,G}, — (G, F},).

S

(%)

From (i), we know thaf-, ~}f are time-varying GPBs.

It is easy to show that-, -}° is symmetric,{-, -}7 is skew-
symmetric and

Gode=0 + 60 6)

Assume thaf-, -}, has another decomposition as follows:
Code=1o 62, (7)

where{-, (1) is skew-symmetric angt, }(2) is symmetric.
(6) minus (7) yields

O 1 A B (8)

The left-hand side of (8) is skew-symmetric and the right-

hand side is symmetric, thys -} — (-, 1Y =0, (-, 1@ —
{-,-}7 = 0. Therefore, the decomposmon (4) is uniquél

Assume thaf., -}, is a time-varying GPB. FOYH (x, 1) €
C®(M xRN, let Xy = {-, H(x, )},. Then, Xy is a map:

triple (4, {-, -},;, H(x, 1)). Its dynamic expressionis=Xp .

We define the structure matrix of the time-varying GPB
{-. -}, as follows:

{x1, xa}, {xn, x2) {x1, Xn}s
M()C, l) — {XZ, xl}z {x2.7.)f2}t e {XZ.,.)fn }[ , (9)
{xns xl}t {xl’ls xz}t {Xnvxn}t

which is expressed in a set of local coordinates. . ., x,

SinceXy is a vector field Xy can be expressed &5y =
Y _1&i(x, 1)0/0x;. From Proposition 1Xy = {-, H}, =
{-HY} + {-, H}? := X}, + X5 It is easy to see thax?,
andx$, are also vector fields and), = 3", &(x, 1)3/0x;,
XS =" &3 (x, 1)0/0x;. Thus,

n

D100+ &0 0l

i=1

- (10)

- 0
Xy=Y_ &x, t)a_xl-
i=1

With Eq. (10), Leibniz’ rule and the bilinearity, we can
prove the following result.

Theorem 1. (i) For VF(x, 1), H(x,t) € C®(/ x R"),

(F(x,t), H(x,1)}, = (VF)"M(x,t)VH; (11)

(i) The time-varying generalized Hamiltonian system de-
fined in Definition3 can be expressed as
x=M(x,)VH(x,1). (12)

From Theorem 1, we can see that, as in the standard Pois-
son bracket case, the time-varying GPB is also determined
uniquely by its structure matrix.

Assume thaty = @(x) is a coordinate transformation.
We can prove that under the new coordinates, the structure
matrix M (x, t) becomes
M(y, 1) = JoMx, DIl _g1y)» (13)
whereJy is the Jacobian matrix ab(x); (13) indicates that
the structure matriX/ (x, ¢) is consistent with the changing
law of structure matrices under coordinate transformations.

From the above discussion, we know that the time-varying
generalized Poisson manifold#, {-, -},) can serve as a
suitable geometric structure for time-varying generalized
Hamiltonian systems and, of course, for time-varying PCH
systems.
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4. Dissipative Hamiltonian realization Lemma 1 (Fujimoto et al., 2008 Assume that.#, {-, -},)

is the geometric structure of syste(h8). Then under
This section investigates the dissipative Hamiltonian re- the structure the dissipative Hamiltonian syste(@8) is

alization of time-varying nonlinear systems, and proposes changed into another dissipative Hamiltonian system by a

several new results. First, we give some concepts and prop-coordinate transformation = ®(x, ) if and only if there

erties.

4.1. Concepts and properties

Definition 4. A time-varying dynamic system

¥=f(x,1), xe., teR" (14)

is said to have a generalized Hamiltonian realization (GHR)

exists a scalar function? such thatX ; = qul(aqﬁ/at)
holds on(.#, {-, -},).

Corollary 1. The dissipativeness of systéh8) is invariant
under time-invariant coordinate transformations.

4.2. New results on dissipative Hamiltonian realization

A function V (x) is called a regular positive definite func-

if there exists a suitable coordinate chart and a Hamiltonian tion (Wang, Li, & Cheng, 2008if V(x) >0 (x # 0), V(0)=

function H (x, t) such that (14) can be expressed as

Xx=M(x,t)VH(x,1), (15)

where .# is an n-dimensional manifold andV/(x, 1) is
the structure matrix of some time-varying GPB defined
on ./ . Furthermore, ifM(x,7) can be decomposed as
M(x,t) = J(x,t) — R(x, t), with J(x, t) skew-symmetric
and R(x, r) >0 symmetric, then (15) is called a dissipative
Hamiltonian realization.

Definition 5. A controlled dynamic system

E=f0n)+ Y gl D

i=1

(16)

0,0V /0x|x=0=0anddV /0x|,x0 # 0. For exampleH (x)=

$3°7_1x2is a regular positive definite function d&r'.
Consider the following time-varying nonlinear system

19)

X=f(x,0)+gk Du,  f(O,1)=0,

wherex € ./, t € R, u € R™. Motivated byOrtega
et al. (2002) we obtain the following result.

Proposition 3. For arbitrary regular positive definite func-
tion H(x), system(19) can be expressed as

0H (x)

is said to have a feedback GHR if there exists a feedbackWhere

law u = a(x, t) + v such that the closed-loop system can be

expressed as
X=M(x,t)VH(x,t) + g(x, v, a7

whereg(x,t) = (g1(x, 1), ...
um)T-

,em(x, ) andu = (uq, ...,

From Definition 4, we know that system (15) is a dissi-
pative realization iffM (x, 1) + M(x, )" <O0.

Recall the concept of"-functions Slotine & Li, 1991). A
continuous function: : R™ — R is called ax"-function
if (i) «(0) =0; (ii) a(p) >0, Vp > 0; (iii) o 1 strictly.

Assume that system (16) has a dissipative realization as

follows:
x={J(x,t) — R(x,t))VH(x,t) + g(x, H)v. (18)

We can prove the following proposition.
Proposition 2. If 0H /0r <0 and there exists & -function

o such thatH (x, 1) > a(]|x|]) > 0, Vx # 0, then systen(l8)
with v = 0 is Lyapunov stable

The following lemma is equivalent to Part 1 of Theorem
1 in Fujimoto et al. (2003)

&= (00 + Pl ) —5— +g(x. Du, (20)
P(X, [) = [IVHx)||? Ins X ;ﬁ 0, (21)
0’ X = 0
is symmetric
J(x,1) i
0
m[ﬁd(x’t)_[_lax(_ma X #O’
= 0
i B A TC) (22)
0, =0

is skew-symmetrjc-, -) denotes the inner produdi, is the
n x n identity matrix and

Ju(x, 1) = fx, 1) — fod(x, 1),

_ (.0, VH(x))
fgd(-xvt)_ [IVH®)|| VH(.X),

x #0. (23)

Proof. From (23), we get

Ly H(x) = (f(x, 1), VH (x))
=(f(x,1), VH(x))

_ Y0 VHW)
[IVH (x)|]2

=(f(x, 1), VH(x)) — (f(x,1), VH(x)) =0,

(VH(x), VH (x))
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from which we know that whem # O, Proposition 4. If
I, 2 S(x.1) C Span{g(x. ) + Ker{dH(x)), (25)
_ ( t)@HT(X) then there is a control law = a(x, r) + v such that the
T IVH )12 falx, Ox closed-loop system consisted24) and the control law can
aH(x) OH (x) be expressed as a dissipative Hamiltonian system iith)
ftd (x, )} as its Hamiltonian function

-
OH (x) 0H(x) Proof. If (25) holds, there exist matriceB and C with

1
T ivHORM Y

Ox Ox proper dimensions such that
1 0H(x) 7 OH (x)
- 5 S, ) ——
[IVH (x)||* 0x Ox Sx, 1) =g, )B4+ (&1, &n, ..., &)C, (26)
_ 2
= vamR e DIVA®I where{¢, ..., &} is a basis ofK er{dH (x)}. Chooseu =
1 0H (x) —BVH (x) + v and substitute it into (24), then we get
- 5 Lo H(x) = fid(x, ).
[IVH(x)||* Ox .
x=J(x,1) — R(x,1)VH(x)
Thus, whenx # 0, +(1,...,§)CVHX) + g(x, Hv. 27)
S 1) = fd(x, 1) + fod(x, 1) Let f(x,)=(&q, ..., E)CVH(x). SinceVHT (x) f (x, t)=
— Tt OH (x) )aH(x) 0, from the proof of Proposition 3 we know
’ Ox Ox
— (J(x. 1)+ Plx. t)) (X) fx,t)=J(x,t)VH(x), (28)
where
Note that, wherx = 0, the above equation still holds. Then,
the theorem follows. [J J(x, 1)
aH (x) aH(x) T
Remark 2. (i) fqd is the projection off (x, ¢) in the gradi- {SVH(x)IIZ[f(x n frnl x 758’
R x=0.

ent directionVH and fiq is the projection in the tangential
direction of equi-value surfaces &f (x). Obviously, fqq L

fia @and f = fga+ fid- Therefore, realization (20) has a clear
physical meaning. (ii) Since there always exist regular pos-
itive definite functions, an arbitrary time-varying dynamic
system always has the realization (20), which can be calcu-
lated by the formulas (21)—(23).

With (27) and (28), we obtain
=(J(x, )+ J(x,1) = R(x, ))VH(x) + g(x, v, (29)
which is a dissipative Hamiltonian realization]

In the following, we consider the single-input case of

Remark 3. From the proof of Proposition 3, we know that system (19). In this case, we have the following result.

fx,t) = (J(x,1)+ P(x,1))(0H(x)/0x). Thus, when sys-
tem (19) is smooth, realization (20) is smooth, too. How-
ever, even if system (19) is smooth, Proposition 3 cannot .
ensure that matriceB(x, t) and J (x, t) are smooth around
the origin. In general, the proposition can only guarantee the
continuity of P(x, ) andJ (x, t) if H(x) is chosen properly.

Theorem 2. Assume thatg(x,7) € R"*L. If there ex-
ists a regular positive definite functioff (x) such that

Lox.nH(x) # 0 (x # 0), then systen(19) has a feed-
back dissipative Hamiltonian realization witH (x) as its
Hamiltonian function

Now, at regular poinfs of P(x, ), decomposeP (x, 1)
as P(x,t) = —R(x,t) + S(x,t), where R(x,t)>0 and
S(x,t)>0 are symmetric. Then, system (20) can be ex-
pressed as

Proof. Assume that there exists a regular positive definite
function H (x) such thatL, H # 0, for allx # 0. Similar to

the above discussion, we can obtain system (24) with this
H(x).

F= (1) — R, 1)+ SG, ))VH ) + g(x, Du.  (24) Whenx = 0, it is obvious that the theorem holds. When
x # 0, choose control law

1we callx a regular point of matrixP (x, t), if there exists a neigh- 1 T
borhood, Q, of x such that the number of positive eigenvalues and the u# = T[LgH(x)v —VH' (x)S(x,t)VH(x)] (30)
number of negative eigenvalues are invariantafoz Q andr € R™. 8 (x)
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and substitute it into (24), then we have
x=[J(x,t) — R(x,t) + S(x,t)]VH (x)

+ glLgH(x)v — VHT (x)S(x, ) VH (x)]

L¢H (x)
=(J(x,t) — R(x,t))VH(x) + S(x,t)VH(x)

gVH(x)S(x, )VH(x) + gv

T LyH(x)
=(J(x,1) — R(x,))VH(x)

+ [S(x,t)VHL,H — gVH'"S(x,1)VH]

LgH(x)
+gv
=(J(x,t) — R(x,t)VH

T T

+ L HG) [S(x,t)VHg gVH S(x,t)]VH(x)

+ gv.
Thus,
Y=, )+ J(x, 1) — R, )VH(x) +g(x, v, (31)
where
7 _ T
J(x,t)= LHG) [S(x,1)VH(x)g

— gVHT(x)S(x. 1] (32)

is skew-symmetric. Therefore, (31) is a dissipative Hamil-
tonian realization. [J

4.3. An illustrative example

In this subsection, we give an example to illustrate how to
apply the results proposed in Section 4.2 to get Hamiltonian

realizations.

Example 2. Find a feedback law such that the following

system can be expressed as a dissipative Hamiltonian sys-

tem:
tx1+t2xfx2 x1+t(x1+ x2)
X = —t2xf+tx2 + | x2+1t(x2—x1) |u
1x3 X3 +1x3
= f, ) +glx,Nu, xeR3 reR. (33)

First, we apply Proposition 3 to express (33) as a time-
varying generalized Hamiltonian system. Choose a regular

positive definite function agd (x) = 5 (x? +x3 +x2). When
x # 0, from (23) we obtain

~ (f(x, 1), VH(x)) OH (x)
ﬁd(xat)_f('xat)_ ||VH()C)||2 ax

tx12—|—3t2x%x2 tx% + tx% + tx% X1
—t .Xl +tx2 — T 2 2. 2 X2
tx3 X1Hx+ X3 |
0]".

_/2,3

= [t2x32_x2a X715
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Thus, whenx # 0, from (22) and (21) we have

1
J(x, 1) = ————[ fia(x, )VH (x)
[|VH (x)|2 L
— VH®X) fih(x, 0]
1252 20 , x% + x% X2X3
=52, 2| 1% 0 —x1x3 |,
X1 + X2 + X3 —X2X3 X1X3 0
t 0 O
VH
P(x,t)ZMk: 0 r 0].
IVH (x)l] 00 :
Therefore, (33) can be expressed as
OH (x)
XZ{(‘](xvt)-i_P(-xat))_ax_ +g(-xat)u -x;éoa (34)
g(-xs t)uv = O

Second, we design a control law to make the system be
expressed as a dissipative form. Becalgé! (x) = (1 +
H)(x2 +x24x3) # 0 (x # 0), it can be seen from Theorem
2 that system (34) has a feedback dissipative realization
with H(x) as its Hamiltonian function. Decompo#¥x, t)
as follows: P(x, 1) = —R(x,t) + S(x, t), whereR(x,t) =
Diag{l,1,1}>0, S(x,t) = Diag{1+1t,1+1¢t,1+1t}>0.
Whenx # 0, according to (30) we choose the control law as

u [LoH(x)v— VHT (x)S(x, ) VH(x)]

L,H
B 1
(1402 + x5 4 x§)
1+t 0 0
—[xl,xz,xg][ 0 1+¢r O

A H]|

and, whenx = 0, we choose: = v. Under the control law,
system (34) can be expressed as

{(1 + 02 + 22 + x2)

= -1+

(J(x, 1)+ J(x, 1) = R(x, 1) VH(x)
X = { +g(x, v, x#0
g(x, v, x =0,
_ UG D= Rx,0))VHX) + g, v, x #0 (35)
] gx, v, x=0,
where
J(x,1) = [S(x,t)VHg" — gVH'S(x,1)]
L H
_; 2O , x% + x% X2X3
=55 | X — X3 0 —X1X3
Xy x5 +x3 —X2X3 X1X3 0
and
J(x,0)=J(x, 1)+ J(x,1)
th% _y 20 , sz_ + x% X2X3
=52, 2| M2 0 -
X1 + X2 + X3 —X2X3 X1X3 0
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are skew-symmetric. System (35) is the desired feedbacksiotine, J. J. E., & Li, W. (1991)Applied nonlinear control Englewood

dissipative Hamiltonian realization. Cliffs, NJ: Prentice-Hall.

van der Schaft, A. J. (1999).,-gain and passivity techniques in nonlinear
control. Berlin: Springer.

Wang, Y., Cheng, D., Li, C., & Ge, Y. (2003). Dissipative Hamiltonian
realization and energy-basefly-disturbance attenuation control of
multimachine power systemslEEE Transmissions on Automatic
Through defining a time-varying generalized Poisson  Control, 48(8), 1428-1433.

bracket, we have provided a suitable geometric structure forWang, Y., Li, C., & Cheng, D. (2003). Generalized Hamiltonian realization

time-varying PCH systems, which can guarantee the math- of time-invariant nonlinear systemautomatica 3%(8), 1437-1443.

. h . . Xi, Z., & Cheng, D. (2000). Passivity-based stabilization d@#g, control
ematical completeness of representations of time varying of the Hamiltonian control systems with dissipation and its application

PCH systems. In order to apply time-varying PCH systems 5 power systemsinternational Journal of Control 73(18), 1686—
to practical control problems, we have also investigated the  1691.

dissipative Hamiltonian realization problem of time-varying
nonlinear systems, and proposed serval new methods anc
sufficient conditions for the realization.

5. Conclusion
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