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Optimization leads to symmetry

Chenghong WANG', Yugian GUQO?, Daizhan CHENG?
(1. Division of Information Science, Committee of National Natural Science Foundation of China, Beijing 100085, China;
2. Institute of Systems Science, Chinese Academy of Sciences, Beijing 100080, China)

Abstract: The science of complexity studies the behavior and properties of complex systems in nature and humnan society .

Particular interest has been put on their cermin simple common properties. Symmetry is one of such properties. Symmetric

phenomena can be found in many complex systems. The purpose of this paper is to reveal the internal reason of the symmetry.

Using some physical systems and geometric objects, the paper shows that many symmetries are caused by optimization under certain

criteria. It has also been revealed that an evolutional process may lead to symmetry.
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1 Symmetry — a property of complex
systems

An important objective of the science of complexity is to
reveal the properties of complex systems and to find its
causes so as to apply it. Self-organization, power law etc are
properties of complex systems which are founded in the real
world [1]. Small world, scale free, etc. are characteristics of
networks [ 2] . Symmetry , which is familiar to most people,
is also an important nature of the complex world and has
been studied by many researchers. What is symmetry? [3]
gives an informal definition as follows: “The idea of
symmetry can be viewed in very different ways: The
narrowest interpretation is limited to two-sided symmetry,
as applied more or less exactly, to the extemal form of the
human body. The broadest interpretation understands by
symmetry the property of anything that is in some way
regular and shows repetitions.”

In modem mathematics symmetry is explained as a kind
of invariance. Precisely, a set of objects is said to hold a
symmetry if there exists a group, such that the geometric
shapes or certain properties of the set are invarant under
group action.

Symmetry is also important for dynamic systems and
particularly for control systems [4]. A natural problem is:
How the symmetry of complex systems is caused? There
are few researches which have been done for this. A
commonly observed phenomenon is: most creatures are
highly symmetric.Is it occasional? The answer is “No” . In
the process of evolution, there are some un-symmetric
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creatures. But in the process, the strong competitive power
to survive competiion has enabled the creatures with
symmetric bodies to succeed. In this sense, the optimization
of nature selected symmetry.

Among the planar graphs with a fixed perimeter, circle
encloses the largest area. Among the bodies with a fixed
surface area, sphere encloses the largest volume. These are
well known facts and prove that optimization leads to
symimetry .

The purpose of this paper is to explore and further prove
this assertion: optimization leads to symmetry. The rest of
this paper is organized as follows: Section 2 investigates
some physical systems to see that minimum energy leads to
symmetry; Geometric symmetry is studied in Section 3; In
Section 4, we use an example to show that certain
symmetries are the results of dynamic evolutions.

2 Symmetries of physical systems

In this section, we study some simple examples of
physical systems to prove that minimizing energy leads to
symmetry .

Example 2.1 Suppose there are n resistances R, R,
-**, R, that are connected in the parallel way and satisfy the
condition that Z R; =

i=1

pressing upon them is constant, then the total power P

R (Fig.1). If the voltage U

n

U? 1
; R;

question: what conditions R; should be satisfied to minimize
the total power P? In order to solve this problem, we first
define a Lagrange function

dissipated s P = Now consider such a
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L= Uzi%+A(Z":RE—R),

=1 i=|

L _

where/\istheLagmngeconstant.SetaR =0,i = 1,2,
*»+,n, we have
- UzRiz_ +A =0 (i=12,",n).

SoR, =R, =" =R, = S’ It is easy to verfy that
under these conditions the total power P reaches the
minimum. So we can say that the distribution of R;
dissipating the least energy is symmetric.

- Jl_R'__l

& ]
R
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Fig. 1 Symmetry of circuit.

Example 2.2 Consider the conical pendulum (see
Fig.2) . The pendulum string, whose length is [, can slide
freely. I, + I, = l. The pendulum masses are m, and m,
respectively and satisfy my + m, = M. The axis is rotating
with an angular velocity w. It is easy to verify that the
whole kinetic energy of the pendulum bobs is

E = %mlwzl%sinzﬁl + é—mzwzl%sinzﬁz,
where
T = mw’l; = myw’ly,
Tcost, = m g,
Tcosl, = myg.
and T is the tensile force. The above equations together
with the conditions about pendulum length and mass
induce the following constraints:
mly - myl, =0,
mycosf, — mycos8; = 0,
w’lcos0, - g = 0, (1)
L+L-1=0,
m +my, - M = 0.
Define a Lagrange function as:
L :%mlwzl%sinzﬁx + %m2w2l%sin202
+ Alml; — mply) + p(mycost, — mycosb)
+ p(wleost, — g) + E(1y + 1, - 1)
+B8(m; + my - M).
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T = %wzlfsinzﬁl + Aly + pcost, + 8 =0,
i
é% = —;—wzl%sinzﬁz - Aly — peost) + B = 0,
2
g‘TL = mlwzllsinzﬁl + /\ml + E = 0,
1
?TL = myw?lpsin®0, — Amy + pw2cost92 +£=0,
2
Hcaoéﬁ = - mw*3cosl, - pmy = 0,
1
Lacaoéﬁ = — myw?BBcosh, + pmy + pw’ly = 0.
2
(2)
Combining (1) and (2),we have
( M l
ml=m225711:l2:—2—'1
2g 2g*
cosf) = costy = —, A = —.—,
J ‘ P W w?l
_d M )
® == 2 r 0= (U2 ’
& = szl ﬁ _ M
L 47 8w? '
It is easy to see that under constraint (1), the total kinetic
energy reaches the minimum when m; = m,, !, = 1,0,

= 8,. This example also shows that the least kinetic energy
leads to symmetry.

I W
8,110

2
my

=

Fig. 2 Symmetry of flexible conical pendulum.

3 Symmetries in geometry

In this secon we consider some geomettic symmetties
deduced by optimizing certain quantities.

Example 3.1 Consider inscribed polygons of n sides
of a circle (Fig.3) .1t can be proved that the inscribed n
polygon of the largest area must be regular. To interpret
this, one only needs to prove that if the sum 6, + 8, = 0,
is a constant, the sum area of the two triangles AOAB and
AOBC reaches maximum if 8, = #,. In fact,the whole

area 1s

S = %stinﬁl N %—stinﬁz
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n

2 .
R*si > cos 3

6, - 6,
>
Obviously when 8, = 0,, the area reaches the maximum.

BC

= RZ%sinfycos

Fig. 3 Maximum area of two sector triangles.

Example 3.2 Consider inscribed tetrahedrons of a
sphere (Fig.4) . Firstly, if the points A, B, C are fixed, it is
easy to check that the volume of tetrahedron D-ABC is the
largest if D is on the line which is perpendicular to AABC
and through the circumcenter of it, and here the height A
= 00" + R. In fact,if there is another point D' on the
sphere other than D, then the height of tetrahedron
D'-ABC is b’ = 00" + Rsind < h, so Vp_apc <
Vp_ancs Secondly, if we fix the acme D of tetrahedron
D-ABC and let points A, B,C moving on the plane
determined by the original points A, B, C, then one sees
easily that when AABC is the inscribed equilateral triangle
of circle O’ , Spupc is of the largest area (see Example 3.1)
and so is the volume Vp 4p5-.

Fig. 4 Maximum volume of circumscribed pyramid.

Similarly, each face should be an equilateral triangle.
Therefore, the tetrahedron ABCD with largest volume is a
regular one.

4 Symmetry as a result of evolution

It was mentioned that the evolution of creatures in the
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nature leads to symmetry of bodies. In this section we use
an example to describe a symmetry generated by a dynamic
evolution.

Cyclic pursuit is a long discussed problem [(5~7].We
modify the simple pursuit to an attraction-repulsion
process , which is similar to [8].

Example 4.1 Assume there are three particles on a
plane, say Py, P,,Ps,P; pusuits P;,, when || P; -
P, |l > &; otherwise, P; repulses from P;,, (For
notational ease, P4: = P;). The model is described as
P, = (P - P Pyy - Pl —8), i =1,2,3.

@
We want to show that as ¢ = 9, the triangle AP, P, P;
will converge to an equilateral tniangle.

X;
Denote by z; = ( ) =P, - P(i =1,2,3), then
Yi
we have
x x;
(_’}’1) =(y_+i)(\/ x2i+1 + y2i+1 - 8)
i+
x;
—( )(v 2+ ¥y - 8), i =1,2,3.
Yi
Define

Vateyi—8, i =1,2,3.

If we can prove that r;(t) — 0 as t = %, then it implies
that

r, =

“ Pi+1 - Pi“ —'8, I = 1,2,3.
That 15, the triangle converges to an equilateral one . Now

. 1 2 2
Fi= Tyz[xixulfnl — X+ YYiaTiva — yiri]
\ 1 1
Tivi
=-r(r+d8)+ (xxiy + ymn)-
ri + 3

Choosing a Lyapunov function as
V= %(r% + 13+ 13),

then we have

T

V:—r%(n+8)+

T
6(:'6‘962 + )’1)’2)

r +
rars
-3+ &)+ — 8(x2x3 + ¥273)
rsri
- r%(r3 + 8) + rs + 8(1\7327‘ + y:;y‘). (5)
Note that
XXivl + YiYi1 = <zi’zi+1>

< lz il z

= «,/xf + Y%\/x%n + )’%n

= (rl- + 8)(rl-+1 + 8), I = 1,2,3.
(6)



http://www.cqvip.com

396

Plugging them into (5), we have
Ve-(Rn+B+3-nrl-rn-rnm)
- S(T% + T% + r% — Iyrp — rary — r3rl).
Using the inequality [9]:

Py Py
172

we have V < 0.
Note that from (6) V = 0 if and only if

X _ X2 _ X

r =

w [T

2
r{’+%r’£’p=pn+pz,

= = Iy

(7
Y ¥y2 13
which means P, P;, P;3 lie on a straight line. An easy
geometric argument shows that if (7) does not hold at ¢ =
0, it can never be true for all ¢t > O,
We conclude that in the attraction-repulsion model (4),
the triangle formed by three particles converge to an
equilateral triangle.

5 Conclusion

Symmetry is one of the most important characteristics in
real world. Many complex systems have this property. The
purpose of this paper is to explore the reason for symmetry.
It was found that in many cases optimizations lead to
symmetries. In this paper this claim has been demonstrated
by aspects; 1)  physical
phenomena; 2) geometry; 3) dynamic evolution.

It is also helpful to assume certain symmetries when an
optimization problem, involving several similar parts, is
considered.

several

examples in three
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