Available online at www.sciencedirect.com

3 i APPLIED
science (@)oineeT MATHEMATICS

AND i
COMPUTATION

ELSEVIER Applied Mathematics and Computation 162 (2005) 381-401

www.elsevier.com/locate/amc

Numerical solution of damped
nonlinear Klein—Gordon equations
using variational method and finite

element approach

QuanFang Wang *, DaiZhan Cheng

Institute of Systems Science, Academy of Mathematics and Systems Science,
Chinese Academy of Sciences, Beijing 100080, PR China

Abstract

Numerical treatment for damped nonlinear Klein—-Gordon equations, based on
variational method and finite element approach, is studied. A semi-discrete algorithm is
proposed by using quadratic interpolation functions of continuous time and spatial
dimension one. The Gauss—Legendre quadrature has been utilized for numerical inte-
grations of nonlinear terms, and Runge-Kutta method is used for solving ordinary
differential equation. Finally, three dimensional graphics of numerical solutions are used
to demonstrate the numerical results.
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1. Introduction

This paper deals with the numerical solution of the damped nonlinear
Klein—Gordon equations with Dirichlet boundary condition using variational
method and finite element approximation. The equation is one of the nonlinear
wave equation arising in relativistic quantum mechanics. The Klein—-Gordon
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equation with damping term is described by the following hyperbolic partial
differential equation with second order derivative in time
Fy oy

—+OC_

where o, f,7 > 0,0 € R are physical constants and f is the time varying
external input.

The Klein-Gordon equation has been studied in many literatures, e.g.,
[8,11,15,20]. However, numerical treatment for Klein—-Gordon equation is
rarely reported (cf. [4,5,9,12,17]). Particularly, [9] concern with the decompo-
sition method and difference method used in [12] nonlinear problems. The
purpose of this paper is to investigate its numerical solution for damped
nonlinear problems of dimension one. Comparing with other nonlinear
hyperbolic partial differential equations, the difficulty in solving Eq. (1) arises
from the unboundedness of the nonlinear input |y|"y. The new method pro-
posed in this paper can overcome this obstacle.

The contents of this paper is as follows. Section 2 introduces the notations
and mathematical setting for the problems. In Section 3, we state the existence
of approximate solution for Klein—-Gordon equation using the variational
formulation (cf. [3]). In Section 4, we construct a numerical solution based on
finite element method using quadratic interpolation functions. In Section 5, we
give the convergence theorem for this solution. Lastly, in Section 6, we do some
numerical simulations and present some 3D graphics of the numerical solution
for various parameters.

2. Notations and mathematical setting

Let Q = (0,/) be an open bounded set in R! and Q = (0,7) x (0,7). We
consider the damped Klein—-Gordon equation described by

2 ) .
=5 +aZ— PAy+3g() = f in O, 2)

where o, 5,0 € R are constants representing the gratitude of damping, diffusion
and nonlinearity effects, A is a Laplacian, g(y) = [y|'y, 7 > 0 is a nonlinear
function and f is the force. We pose the Dirichlet condition

¥(£,0) = y(t,1) = 0, on [0, 7] 3)
and the initial values are given by

¥(0,x) = w(x) in (0,7), %(07)6) =y (x) in (0,7). 4)
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Define two Hilbert spaces H = L*(0,/) and V = H}(0,/), according to the
Dirichlet boundary condition (3). H and V are endowed with the usual inner
products and norms as

W, ) = / V)b dx, W= ()2 for all .y € L2(0,1),

(o) = [ DD 4yl = (), forall gy € (0.0

Then the pair (V,H) is a Gelfand triple space with a notation, V-—H<—V",
which means that embeddings V C H and H C V'’ are continuous, dense and
compact. To use a variational formulation, let us introduce the bilinear form

a(, ) :/0 Vo Vode = ((b,0)), Vb o € HI0,1).

Here a is symmetric, bounded on H} (0, 1) x H](0, 1), satisfying a(¢, ¢) = ||¢|’
for V¢p € H}(0,1). Then we can define a bounded operator 4 € Z(V, V') by the
relation a(¢, @) = (A, ¢). This operator 4 is an isomorphism from ¥V onto V7,
and the restriction of 4 on H is self adjoint and has a dense domain
D(A)={p e V|Ap € H} (cf. [18]).

Lemma 1. If'y € H}(0,1), then y € L**2(0,1), that is g(y) € L*(0,1) for arbi-
trary y > 0, where g(y) = |y|'y.

Proof. We recall Gagliardo—Nirenberg inequality (cf. [20]), for Vy € H}(0,/)
and arbitrary p > 1, there exists C > 0 such that

(o) <e( [ora)” ([ 1oas). 5

Taking p =1 +1 > 1 such that .22 = 2y 4 2, then by (5) we have that

¥l 220, < Cll 11V - (6)

Then (6) implies that

2+4 2%
T4 o

W1l 220,y < VM1 IIyHZOl?O,,) <|[lly-
It means that
g(y) € L*0,1), forVyeV. (7)

This completes the proof. [
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Remark 2. Lemma 1 means that the exponent y, 0 <y < oo can be taken
arbitrary when n = 1. We infer that the nonlinear operator g: H}(0,/) —
L*(0,1), ¢ — g(¢) is well defined.

The problem (2)—(4) is reduced to the following Cauchy problem in H:

&y dy Ay + 6 in (0,7
F""O‘__ﬁ y+ g() f ln(v )a (8)

d
y0)=weV, d%/(o) =y €H.

For general treatment of the nonlinear second order equations of hyperbolic
type, we refer to [13,14,20].

3. Existence of weak approximate solution

In this section, we consider the existence of weak approximate solution in

the framework ;)f variational methods (cf. [3,7]). For simplicity, we shall write
d d
g = d—f, g = df and define the solution space by
w(0,T) = {glg € L*(0,T;V),g' € L*(0,T:H),g" € L*(0,T; V")}.

Now we give the definition of weak solutions of the problem (cf. [3,20]).

Definition 3. A function y is said to be a weak solution of (8) if y € W(0,7T)
satisfies

0" @y +aly (), ) + BO(), D)) + o(y()'(), @) = (f(), d)
for all ¢ € V' in the sense of Z'(0,T),
¥(0) =y, % (0) = »1.

Here the symbol (-,-),, , denotes a dual pairing between V' and V'. Z'(0,T)
denotes the space of distributions on (0, 7).

Remark 4. By (7) in Lemma 1, we note that |y(7)/'y(t) € H a.e. t €[0,7T] if
v € W(0,T). The nonlinear term is meaningful in weak form (9).

Next we construct an approximate solution for the system (8). Since the
embedding of V into H is compact, then there exists an orthogonal basis of H,
{w;}2, consisting of eigenfunctions of 4 = A, such that

Aw; = Lw;, V], 9)
0<;\,1</12<"', ij—>OOﬁSj—>OO.
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We denote by P, the orthogonal projection of H(or V) onto the space spanned
by {wi,...,w,}. We implement a Faedo-Galerkin method as used in [3].
For each m € N, we define an approximate solution of the problem (8) by

1) = > gl (10)

Then the approximate solution y,(¢) satisfies the approximate equation given by

O On(t), ;) 2.3 (0 ) + B0 (0, 0)
Pl (0 ) = (10.mw), 1€ (0.7), (1)

ym(o) - PmyO; Eym(o) = Pmyla 1 g]gm

We set w,, = P,)o and yy,, = P,y,. Then
Yom — Yo InV, y,—y inH asm— oo.

Based on Lemma 1, we show the local Lipschitz continuity for nonlinear
term (cf. [15,20]).

Lemma 5. The operator g is locally Lipschitz from V into H. That is, there exists
a constant k > 0 such that

g() — g(@) k(I + o)l — ell, Y@ eV. (12)

We state the following local existence theorem of the weak solutions (cf.

(13-

Theorem 6. Let f € L*(0,T;H), yo €V, y1 € H. Then the problem (8) with
o, >0, 6 € R and y arbitrary, has a unique weak approximate solution y,, in
w(0,T).

Proof. For each m € N, we define an approximate solution y,,(¢) of the problem
(8) by (10), it also satisfies (11). Therefore, Eq. (11) can be written as m vector
differential equation

2

d d o
—g —g AG =k(t, g 13
qp&n T g &n t+ BAG, = k(1. 8,) (13)
with initial values
(y()m7wl) (ylm; Wl)
. (Yoms w2) d_ (Vims w2)
gm(o) = : ) &gm(o) = .

(y())m Wm) (J/1 moy Wm)-
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- t . 4
Here g, = [gim,- - &) » A =diag(4 :i=1,...,m), and
i m m
(f(t),w1) =9 Zgjmwj Zgjmwja wi
j=1 j=1

7

2o (f(t),wr) =0 Zgijj Egjmwjaw2
k(t’gm) = j=1 j=1

: ,
(f(t)a Wm) - 5( Zlgjmwj Zlgjmwja Wm)

L J= = J
where |- ]' denotes the transpose of [- - -]. The nonlinear forcing function vec-
tor k is locally Lipschitz continuous. Indeed, for g, =lgim -,

g,,,m}, w = [Mims -+ )" it follows from inequality (12) in Lemma 5 and

Schwartz inequality that
( (Zgjmwj> - g(zhjmwj> ) Wi)
j=1

2
" zg,mw,> —g(zh,,-mw,->
=

il 151
B

+1
T
) (8| + 1] - 2, = Fonl.
Therefore, by reducing (13) to a first order system and applying Carathéodory
type existence theorem, there exists a 7 > 0 such that this second order vector
differential equation (13) admits a local unique solution g,, on [0, 7]. Hence we
can construct the approximate solutions y,,(¢) of (11) in the form (10) on [0, 7).
This completes the proof. [

2

-

[F(1.2,) K.

< KPm

jm

Z(gjm - hjm)wj
j=1

< O*Pm

We state global existence of weak solution (cf. [15,20]).

Theorem 7. Let f € L*(0,T;H), yo €V, 1 € H. Then the problem (8) with
o, >0, y>0 and 0 =0 arbitrary, has a unique global weak solution y, in
w(o,T).

4. Finite element approach

Let 0 =10,7] x (0,7). We construct numerical solution to the following
one dimensional Klein—-Gordon equation using finite element method (cf.
[2,6,7,21]). We recall the system described by
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%y Oy

32 T, PA My =/ in[0.7]%(0,0),

y(t70):y(t,l):0 on [O’T]a
y(oax) :y()(x)7 yl(oax) :yl(x) in (07 1)7

where o, > 0, d € R and y > 0 are constants.

Let0 =xp <x; < -+ <xy <xyy; =/ be a partition of the interval [0, /] into
subintervals I, = [x,_;,x.] of length #* =x, —x,.1,e=1,2,...,N+ 1. Let ¥, be
a set of functions ¢;, i=1,2,3. e=1,2,...,N + 1 such that ¢; is quadratic
function on each interval I, e=1,2,...,N + 1, and continuous on [0, /] with
i (0) = y¢(I) = 0. Then it is clear that ¥, C H}(0,/). Let us introduce a set of
quadratic interpolation functions (cf. [22]) Y € ¥}, as

Ve (x) = (1 —x;f) (1 _2<xh—x))
sy = X () ),

w§<x>(x;fe)<12<x,;xe)>, e 1.2, N

Assume N =11, e = 6 and / = 1, the figure of ¥ for i =1,2,3 on [0,1] is
shown in Fig. 1.

The interpolation functions satisfy the following properties, which are
known as the interpolation properties:

1
0.8
0.€
0.4
0.2

Fig. 1. Quadratic interpolation functions.
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@it ={ T2T wea={) 173 (15)

The e-th element of approximate solution is defined by

3
i(t,x) = Zé e=1,2,...,N.

i=1

Here &/(¢) is continuous with respect to 7 on [0, T']. According to the Dirichlet
boundary, we set & (¢) = &) (t) = 0. Then the total approximate solution can be
represented as

Thus by (14), y; satisfies

{ O35
(:(0),

Here & (1) satisfies the following second order differential equations:

+ o0y ¥5) + BV V) + o(il'i i) = (F,7),
) =

)
W (y()alp )’ (yZ,(O)’W‘;) = (ymﬁ_j), e=1,...,N.

géf”ww;’, W) + aéff’uw; W)

B 00 90 + 5 (ST Y;) = 1)

3 3,
;5?(@%@ = 00, 97), 228 (0O, ¥5) = 00, ¥5), e=1,...,N.

i=1
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Set

PO = (5, W0)005s € Mas(R),

O = (VY;, V52153 € My (R),

‘(1) = [&0), & (1), &(1)] € Ma(R),

2 (0) = [&(1),8 (1), & (1)]' € M3 (R),

() =& (1), & (1), (0] € M3 (R),

Fe(r) = [(F(0),05), (F(2),5), (F(2), ¥5)]' € Mar (R),
v1), o, ¥3), (yoA#S)T € M3, (R),

Ye = [0 0), 0 5), n 5] € M (R)

n

and

(ISUARSTAN )]
G(2) = | (I&Ysl'&GYs, ¥3) | € M3 (R).
ISVARSZN %Y

Then Eq. (16) can be expressed in the vector form as

PeE 4 aPeES + fOYEC 4 0G° = F-.

389

(18)

By the continuity of &(¢) on [0, 7], we have &(7) = &' (¢) fore=1,2,...,N.
To assemble Eq. (18) into an overall equation, we introduce the following

matrixes and vectors:

KA 28

2 2

I e S G R 4 0
Vo Vm o U

V= l//§1 1//%2 ‘p§3 + lp?l
0 Bt
A
i v

N
l//12
N
l//22
N
V3

N
[//13

N
l//23

N
3 ]
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n

(=

(¢ b b
b bn by
by Pn dute dL dh
¢ ¢
b3 b3 bn+ P
0
a1 7] |
¢ ! ’
2 . 2 , 2
& 3(: 51) 63
¢ ; &
4 2,72 s !
55 = 3(: él) R E/ = 55
St 5?71 (= fjlv) flzzyq
Eon fg’ S
| Sonvg L éév J §/2N+1
[ L] 51” r
élll %// Gl
5/2/ " I/ G2
5/3/ 53 (:Hél ) G3
: = Gy
= 5 = § (: ? ) ) G= GS
fgjl\;,l 5}3\’*1”(: &l ") Gav-1
&y /2\'” Gy
égzv+1 N" | Gav |
L i 3
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N-1 N N
33 + (pll ¢12

N
¢21
N
31

5 (
ol

N-1
3

N
¢22
N
2

1/
4
1
&

2/

1)
2/

U
=&)
(: 1

N’

N
3

N’

N
¢13

N
¢23

N
¢33,
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R
5
R
F
Fs

Py
Foy

| Favt |

391

Particular, setting 4, = A, the ¥, @ can be calculated as

and

r 4
2
-1
0

p—_ |0

0
0
0

2
16
2
0
0

0
0

0

0 0
0 0
2 -1
16 2
2 8
0 0
0 0
0 0
0 0
0 0
-8 1
16 -8
-8 14
0 0
0 0
0 O

0 O

0 0

0 0

0 0

0 0

g8 2

2 16

-1 2
0 0
0 0
0 0
0 0
0 0
14 -8
-8 16
1 -8

O OO oo

— e

—8
7_

Then by (18), the overall equation in the vector form can be expressed as

YE' +oaPE + BOE + G =F.

(19)

We choose Gauss-Legendre quadrature to integrate the nonlinear terms
involving absolute functions. Given the function r(x) and an integer m, we can
find a set of weights »; and abscissas p; such that the approximation

[ rea > rt)
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Table 1
Gauss-Legendre quadrature points and weights
m Points p; Weights r;
6 +0.2386191861 0.4679139346
+0.6612093865 0.3607615730
+0.9324695142 0.1713244924

is exact if f'(x) is a polynomial. The weights are r; = 2 where v,,(x) are

(=) (7))
Legendre polynomials and the abscissas for quadratur/e order m are given by
the roots of the Legendre polynomials v,(x). The points p; and weights ; on
interval [—1, 1] are given in Table 1.

To apply Gauss-Legendre integrate method to the components of g;, we
divide the element interval [x,,x..] into m = 6 points, by normalized the
coordination from [—1,1] to [x,,x..1] to obtain the abscissas p¢, p5,...,p, on
[X., x..1] and weights 7,73, ..., r,. Thus, by (17), G is approximated by the new
function G, its components are given in below.

1-st component

ORI

a=> |dwwie)
=1
2-nd component

SO WA

2= |[B0we)
=1
3-rd component

&= [B0vieh| aoviehuie)r,
j=1

+Y|a0ne)] donewie,

and so on, till 2N — 1) component

SR D] L lE O A
Jj=1

+3 [0 e[ o e e
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2N component

m

=Y

=1

A O P P

& () ()
2N + 1 component

m
8oN+1 = §

=1

" O PN O

&y ))

The external input F' can be represented by

12 g6 (x) dx
272 (0 (x) dx

7 g3 (x) dx + [7 g(6)y7 (x) dx
I (0w (x) dx

F= [ gOpa(x)dxe + [7 g(6)yi(x)dx | (20)

S gy () de + [ g(e)yy (x) dx
S (o) (x)dx
S g0y (x)dx
If the inverse of ¥ exists, we can convert Eq. (19) into the form of matrixes and
vectors as

(EE'>’+</3‘P0]¢ ;11)<5:> :(TOIF)_((W’PG(E)) (21)

By introducing

E R
E‘(s’)’ M‘(ﬁlplqs od)

P (o) 60 =5y )

(21) becomes
Y +MX =F - G(L), (22)

which is a first order vector ordinary differential equation. To solve (22), we use
the fourth order Runge-Kutta method (cf. [22]). Once the &(z), i =1,2,3 are
known for e=1,2,...,N, we can obtain the numerical solution as

V= ZLZL&?U)!//?(X) on domain [0, 7] x (0, /).
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5. Convergence of the solution

In this section, we consider the convergence of the scheme proposed in
Section 4.

Theorem 8. The numerical solution y, = >N 377 E(t)¢(x) converges to the
weak solution y as N — oo.

Proof. We consider the orthogonal basis of H, {wj}j?i1 consisting of eigen-
functions of 4. The interpolation function y; € ¥ C H can be represented by
the linear combination of {wy, ws, ..., w,} asy; = >, o¢'w;. Then the global
approximate solution can be expressed by

Yn = Zgjm(t>wm7
Jj=1

where g, (1) = 32V, 7 & (1)as". Refer to [15] and by the existence theorem
of weak solution, it is easy to verify that {y,} is bounded in L>(0,7; V) and
{»,} is bounded in L>(0, T; H). Therefore, by the Rellich’s extraction theorem,
we can find a subsequence of {y,}, denotes by itself, and find
z€ L=(0,T;V) C L*(0,T;V), 2 € L=(0,T; H) C L*(0, T; H) such that

i —z weakly * in L*(0,7;¥7) and weakly in L*(0,T; V), (23)

¥, — 7 weakly % in L*(0,T;H) and weakly in L*(0,T;H). (24)

By the classical compactness theorem (cf. [1,19]) the conditions (23) and (24)
imply

i — z strongly in L*(0,T;H). (25)

Then by the well known theorem on strong convergence and (25), we can
extract a subsequence of y,, denote again by y;, such that

w(t,x) — z(t,x) a.e. in [0,T] x (0,1).

In fact, we can prove that z(¢,x) is the weak solution y(f,x) of (14) via
uniqueness (cf. [15]). This completes the proof of Theorem 8. [
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1
0-5/‘\ /\
0.2 0.8 1

Fig. 2. Initial function y, = sin(37x).

1
u-s\ /\
2 0.4 0.€ 0.

-0.5

b

Fig. 3. Initial function y; = cos(37x).

0.00€&}
0.004}

g.002}

-0p 002}

-0.004}

Fig. 4. Nonlinear input g(y) = y|y|*.
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6. Numerical experiments

In this section, we give the simulation based on the numerical solution given
in Section 4, we obtain 3D graphics of numerical solution for the system with
f =0, taking the initial function yy(x) = sin(37nx) (cf. Fig. 2) and y(x) =
cos(37x) (cf. Fig. 3).

Example 6.1. In the simulation given below, we suppose Q= (0,1),
a=10, f=1.0, =00, T=10, Ar=0.01, y=3, ie, g(y) =’y (cf.
Fig. 4).

Taking 6 > 0 and changing the value of ¢, the numerical solution are shown
in figures (a)—(d) below:

(@) ~=3,0=0.0

(© v = 3,4 = 1000.0 (@ ¢ =1000.0,ViewPoint->{10, 5,6}

In above graphics, we find the frequency of wave increases with increasing
0 and numerical solution is bounded in domain [0, 7] x (0,7). This simula-
tion result illustrates Theorem 7 as y > 1, also refer the theoretical results in
[15].

On the other hand, if we take 6 < 0 and enlarge the value 9, the graphics of
numerical solution can be seen in figures (e)—(h) below:
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o T
-ip0o
~1500

(9) v=3,0 =-115.0 (h) v=3,0 =-116.0

We found that the frequency of wave decays and the numerical solution
becomes unbounded in the domain [0, 7] x [0, ]. This explains Theorem 6 as
y > 1 (cf. [15]).

Let x = 0.5 be fixed, Fig. 5 shows the change of the numerical solution with
increasing the time on [0, 7.

It showed the wave phenomena with enlarging the coefficients of nonlinear
inputs as y > 1, it is also observed that the solution approaches to the stable
state as time increases.

y
0.5
t
20 0 &0 BO } 1q0
Bt \/ \\/ vﬂ
-1

Fig. 5.x=0.5, 7 =3, 8 = 100.0.
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Example 6.2. In the simulations given below, we suppose Q= (0,1),
o=1.0, p=0.0001, % =0.0, T=1.0, Ar=0.05. The initial func-
tions yp(x) =sin(3nx) and y(x) = cos(3nx) are shown in Figs. 2 and 3.
The exponent of nonlinear term y = 0.001 and g(y) = dy|y|’ are shown in
Fig. 6.

We show the numerical solution with change of nonlinear term, the constant
0 is the parameter to be adjusted, see figures (a)-(h) below:

@ 4 =0.001,5 = 0.0 ) 4 =0.001,5 = 10.0

© v = 0.001,8 = 20.0 @ 4 =0.001,5 = 50.0

(e) ~ = 0.001, 4 = 100.0 () ~ = 0.001,4 = 200.0

© 4 = 0.001, § = 400.0 () & = 400.0,ViewPoint->{10,5,6}
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1k

-1f

Fig. 6. Nonlinear input y|y|’, y = 0.001.

h 4

AR
SRIATAYATS

-1

Fig. 7. x = 0.5, y = 0.001, 5 = 400.0.

Let x = 0.5 be fixed, the numerical solution with respect to ¢ is shown in
Fig. 7.

We found an obviously frequency change of the wave as ¢ > 0, and the
numerical solution tends to the steady state as time ¢ increases. This case is
another form of Theorem 7 as y < 1.

If we take 6 < 0, the feature of numerical solution is shown in figure (i)
below:

f' ¥ t

1 20 40 € 0 100

3 4 -1000
S000 =-2000
Yo T

-5000

-2000
-2000
-5000
x -£000

£ £ -7000

() y=000L,6=-500 g § = —50.0,z = 0.5
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Let x be fixed, the numerical solution with respect to time ¢ is shown in figure
(§). Here x = 0.5, £, = 0.0, T = 1.0 and Az = 0.01.

It can be found that the graphics is not a regular wave phenomena and the
numerical solution is unbounded on the domain (0, T') x (0, /). This is another
evidence of Theorem 6 as y < 1.

The graphics in Example 6.2 showed the wave change with increasing
parameter ¢ as y < 1. One can find the numerical solution possessing wave
phenomena.

7. Conclusions

In this paper, we studied the numerical solution using variational method
and finite element approximation. A semi-discrete algorithm has been devel-
oped for the numerical solution of damped nonlinear Klein—-Gordon equation,
for two difference exponents y >1 and y <1 of nonlinear input, some
numerical experiments were calculated to verify the effectiveness of the scheme.
The wave graphics of the dynamics systems have been provided for the various
physics parameters. Meanwhile, we can view the tendency with respect to the
time. The results revealed the behavior of solution of nonlinear Klein—-Gordon
equation.

Comparing the research results of the equations on physical field (cf.
[10,16]), the periodic wave, narrow kink, oscillating kink phenomena can be
found in our simulation. It verifies the efficient of the numerical treatment to
damped nonlinear Klein—-Gordon equation.
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