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Abstract: A method for terminal sliding mode control design is discussed. As we know, one of the strong points of terminal
sliding mode control is its finite-time convergence to a given equilibriumn of the system under consideration, which may be useful in
specific applications. The proposed method, different from many existing terminal sliding model control design methods, is stud-
ied, and then feedback laws are designed for a class of nonlinear systems, along with illustrative examples.
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1 Introduction

Variable structure system control, as one of the most ac-
tive research areas of contro] theory and one of the power-
ful practical tools, has been studied for many decades. Slid-
ing mode controllers are constructed in order to keep con-
trolled systems to given constraint surfaces and also make
the systems insensitive to some certain external and internal
disturbances. Many results on sliding mode control and its
extensions can be found in the literature including [1~4].

Recent years have also witnessed an increasing interest in
terminal sliding mode control. This may be due to the fact
that this non-smooth feedback may possess faster convergent
rates ( related to finite-time convergence) and superior ro-
bustness properties in practice. Terminal sliding mode con-
trol approach is to render the closed-loop system finite-time
to converge in finite time to the desired position of the sys-
tem under consideration, rather than only to a sliding sur-
face. In this way, the dynamic response of the closed-loop
system may be improved. Theoretical results and their ap-
plication to robotic systems can be found in the references
like [5 ~ 8], though the control methods may cause singu-
larity problems. [5] proposed a two-phase control scheme
to avoid the singularity of their original control law. Also,
[7] proposed another idea to construct the discontinuous
sliding modes with finite time convergence. In addition, it
is worthwhile to point out that, besides discontinuous ter-
minal sliding mode control, continuous finite-time control
draws much research attention as well [9~ 12].

The aim of the paper is to give a new approach to termi-
nal sliding mode controller, which may remove singularities
outside of sliding surfaces. The rest of the paper is orga-
nized as follows. In Section 2, the problem formulation is
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given, while in Secton 3 theoretical results to construct
sliding mode controllers and discussion on terminal sliding
mode control are shown. Then, in Section 4, terminal
sliding mode control laws are built for a class of nonlinear
systems . Finally, concluding remarks are given in Section 5.

2 Problem formulation

Consider the nonlinear control system

i=f(x)+g(x)u, u€R, v €R",

Let s:R" — R be a continuous function and the sliding
surface is defined as S = {x € R":s(x) = 0}. The corre-
sponding motion, satisfying s(x) = 0, is called a sliding
dynamics with respect to the constraint function s. Con-
ventionally, an ideal sliding motion on the sliding mode is
described as

{S(x) =0,
$(x) = Ly, us(x) = 0.
In other words, S should be invariant if possible feedback,
called an equivalent control, can be constructed.

The basic idea of shding mode control is as follows.
Choose a sliding manifold; then use the sliding mode con-
trol to dnve the state outside of the manifold into the mani-
fold; finally, using u.q to render the state in the sliding
mode along the plane to the desired equilibrium. There-
fore, the stability problem basically changes to a problem
how to find a suitable sliding mode and a sliding mode
controller.

In this paper, we focus on a single-input control system
of the form;

%) = filx),
xn—.l =fn—l<x): (1)

%, = fulx) + u,
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with x = (xq,"*,x,)" € B",f,(x) smooth, and £,(0)
=0fori =1,

The sliding mode design procedure can be divided
roughly into two man steps:

1) Find a sliding surface satisfying transverse condition,
that is, there is an 7 such that

ds

ax, = 0, (2)

(without loss of generality, we take i = n in the sequel )
and that s(x) = O implies x — 0;

2) Construct a stabilizing feedback law in the form of
ueq(x), ifs =0,
ut (%), if s >0,

u (x),ifs < 0.

Most shiding mode control laws usually make the con-
trolled system (1) converge to their sliding surfaces in finite
tdme, and then, along the shiding surfaces, the systems
converges to the equilibrium x = 0 of system (1) as time
goes to infinity. However, terminal sliding mode control
laws achieve more by steering the states to reach the equi-
librium in finite time.

Definition 1 Consider a system

= f(x) + g(x)u, x € 37, (3)
where f(0) = Oand g(0) % 0.u = p(x) is called a fi-
nite-time convergent controller if the equilibrium x = 0 of
the closed-loop system (3) under this feedback law is fi-
nite-time convergent, namely, for any imtial condition

u(x) =

x(0) = x® € R", there is a settling time T = 0, which
satisfies:

lin;x(t;O,xO) =0,
and

x(250,2°) =0, ift > T
for every solution x(¢;0,x°) to the closed-loop system
(3). Moreover, if the controller is also a shding mode
controller, it is called a terminal shiding mode controller.

In what follows, for simplicity, we assume that s is se-
lected in the following form to satisfy the transverse condi-
tion (2):

s(x) = x5 — h(xy,° ", %,_,), R(0,--,0) = O,
where h(x;,""",%,_y) is a continuous function. Thus,
s(x) is obtained once h(x) is fixed. Here we give an as-
sumption for the selection of h(x), that is,

n-1
| Ry s %0 1) 1 < Ko+ LoD, | ;|
i=1
for suitable positive numbers Ky and Lg.
Many choices of shdmg modes satisfy conditon (4).

(4)

Z ax; is a widely used form, and

i=1
taking Ky = 1and Ly = max {a;,i = 1,
make (4) hold.

3 Main results

At fist, two lemmas are introduced, whose proofs are

For example, s(x) =
,n — 1} will
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quite obvious and therefore omitted here.

Lemma 1l Forany0 < a < land My > 0, there is a
M, > Osuch that | z 1° << Mg+ M, | z | holds for all z
€ &,

Lemma 2 Suppose that a, b, and m > 1 are all posi-

Wm < a+ b.

~

tive numbers. Then (a™ + b
Denote sgn ( =) as the sign function. Then we have a
result related to the convergence to sliding surfaces for sys-
tem (1)
Theorem 1 If the sliding surface S is taken with h( x)
satisfying (4), then the control law

u =- f,(x) + v, (5)
where
v =- K(1 + Z | filx) 1)sgn (s),
K > max f_Lo,lf, s % 0, (6)

will ensure that the system (1) reaches S in finite time.

Proof The task, in fact, is to prove that, for any ini-
tial condition x(0) » O with s(x(0)) % 0, feedback (5)
can make s(x(¢)) = Oin finite time.

Let x(0) = 2% = (x2,--,2%_,, x%) be the initial con-
dition. The trajectory with the imtal condition is denoted
by x(¢;0,%(0)), or x(¢) for simplicity.

We first study the case when s(x(0)) > 0, namely, x°
> h(x%,-,2% ). We will prove that there is T > 0
such that s(x( 7)) = 0by contradiction.

Suppose that there is not any T > 0 such that s(x(T))
= 0. Because s(x(0)) > Oand s(x(¢)) is continuous,
s(x(¢t)) > Oforany ¢ > 0, namely, x,(¢) > h(x,(¢t),

. x,_1(t)) for any ¢ > 0. Therefore,

n—1

o= — K(1+ 201 fi(x) 1)sgn (s)

i=1
n=1

= - K(1 + Z | filx) 1).

i=1

Integrating both sides of (7) gives

(7)

x,(t) - x —Kt—KEJ | fi(x) | dt
L
<- Kt—KE Joxidzl
i=1
n—1 n-1
s—Kt—KE | x,(t) 1+ KEIx?I,
-1 i=1
which implies

n-1 n-1
xn(t)g_—(Kz—x?l—KE | 2 I)—KZ EACIRR
i=1 i=1
Recall condition (4),i.e.,

n—1
| h(xy, 2,010 < Ko + LOE I x; ).
i=1
When
n-1
1 221,
i=1

K0+Ix
Ly > — %+

we have
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n-1
xn(t|)< - K, - LOZ I x,‘(tl) i

i=1

< h(x, (), %,0(01)),
that is, s(x(t;)) < 0. This contradiction shows that there
exists T, > Osuch that s(x(T,)) = O.

Similarly, when s(x(0)) < 0, that is, 12 < h(«Y,
=, 2% ), thereisa T, > Osuch that s(x(7,)) = 0. Let
T = max{T,, T,!, then the assertion follows. i

An important ment of sliding mode control is that it
provides robustness to uncertainties. Consider system (1)

with f;,f = 1,-**, n uncertain. Suppose
I_f-r(x) IS ¢,‘(x)7 I = 1""’n’
where functions #,(x),i = 1,**,n, are known and

$;(0) may not be zero. Then we have
Theorem 2 If h(x,,""*,x,.,) satisfies (4), we can
take control law in the form of

u(x) = - K(1 + i}?‘,—(x))sgn (s), s=20
(8)

with K > max { Ko, Lo, 1!, such that the uncertain system
(1) reaches S in finite time.

Proof Consider the case when s(x(0)) > O at first.
Then similar to (7), we have

i = filx) — K(1 + Z")s*,-(x))sgn (s)

<- K(1+ 2 4,(x)), (9

i=1
because f,(x) — K $,(x) < 0 (noting that K = 1).
Then, integrating both sides of (7) gives

x,(1) = 2% - K1 - KEJOFS,-(x)dt,
' i=1
and again,
n-] n-1
an(1) < — (K22 K2, 122 1)K, | (1) 1.
i=1

i=1
Then, following the same procedure of the proof of Theo-
rem 1, we can reach the conclusion. a
Terminal sliding mode control is to find a suitable sliding

surface such that the state outside of the selected sliding sur-
face is finite-time convergent to it and the system state in
the sliding surface tends to the equilibrium in finite time.
Here we sketch our design idea as follows. At first, we se-
lect s(x) = x, — h(x,,"**, x,_;) such that it satisfies con-
dition (4) and

iy = film, oy %,1,h),

ZXn-2 =fn-2(xls""xn-l7h)’ (10)

Zp_1 = fn-l(xl PRI 7 h)7
is finite time convergent on § = {x € R":s(x) = 0}
(the selection of such A(x) will be discussed in next sec-
tion). Then we use the control given in (5) or (8) to
guarantee finite-time convergence to S and force the state

to move along S.

Remark 1 Conventionally, we need to construct u
= Ueq on S based on the knowledge of fi,i = 1, n,
which is taken to guarantee s(x(f)) = Oforany t = 0
with the initial condition s (x(0)) = 0. However, in some
uncertain situations, ueq may not always keep an uncertain
system on the surface S, which may lead to some theoret-
cal problems. Moreover, the finite time convergence may
result in the singularity of u., (or equivalently in some
sense, the existence problem of the sliding surface S,
which should be kept invariant by u., ), mostly for third
or higher order systems. Therefore, u.q may not be imple-
mented in practice and the singularity problem of terminal
sliding mode control may be essential and may not be theo-
retically solved with conventional ideas { Levant constructed
sliding modes ¢;_,,, and also commented “none of these
sliding modes really exists”in [7]), and the concepts from
differential inclusions may have to be employed for under-

standing .
4 Construction of controllers

In this section, based on the discussion in Secton 3, we
consider how to construct terminal sliding mode controllers
for a class of systems in form of

xl = x';',

. m (11)
xn_l — xnn—l,

Zp = fn(x) + u,

where m;,1 = 1,-**,n — 1 are positive odd integer.

Remark 2 The terminal sliding mode control for sys-
tems in the form of (4) with m; = *** = m,_, = 1 has
been studied ([7]). In fact, the study can be carried out
on the nonlinear systerns with regular relative degrees (as
did in [3,7]), which can be written in the form of:

{x = Ax + Bu,
z = g(z,x),

with (A, B) controllable.

As shown in [5,6], the existing terminal sliding modes
for system (11) with m| = =*- = m,_, = 1 were usually
constructed in a recursive structure as follows:

(9, /P,
n-2 !

where (n - i = 1)/(n - i) < gi,1/pin < 1 with p;,,,
gis1:1 =0, ,n - 2 as positive odd integers and b, > 0,
1t =0,*,n — 2. Then the control law is taken as

U = Uy — ngn (Sn—l)- (12)
Ueq( x) is given to keep s(x(t)) = Oonce s(x(0)) =0,
but this may not be satisfied because the singularity prob-
lems of terminal sliding modes or uncertainties will occur so
as to make the feedback law (12) fail. In [7], another
idea for terminal sliding mode was given for the system
with m; = - = m,_; = 1. Denote

-Nl,n =1 x |("_l)/","',

S0 = Xy "y Spy = Sp2 + bn—ZS


http://www.cqvip.com

£ OO0 http://www.cqvip.com|

72 Y. HONC et al./ Journal of Conirol Theory and Applications 2 (2004) 69 - 74

Ip/n

Ni’n=(lxl +1 x

) |p/(n—i+l))(n-i)/p

) 'p/(n-l) + -

+ 1 X;_
fori = 1,>*,n — 1 and p > O. Then the sliding mode
controller is given as

u =—fo{x) - Posgn ($,_1,,), (13)
with properly chosen positive parameters 3;,1 = 0,1,--,n
— 1 and a (recursive) sliding mode:
¢0,n =%,
i = X1+ FiN; osgn ($i21.2),
i=1,,n-1,
Our approach is difierent. Take s = x, — A(x;, ",
%,.,) with b = v,_; such that

§ m
X = X9

(14)

mn-2
n-1?

un-l(t) = Un-l(xlv"'sxn-l)

is finite-time convergent to the origin. In fact, system
(14) admits a continuous finite-time convergent * feedback
aw u,y = va (%1, e ) (e g, [9,11,12]).

. . 1/m )
Thus, in our design, we select b = vn_l"" in one of the

Xpp =X

Xp-1 =

forms provided in [9,11].For example, we can construct
v,_1 based on:

B8 Ttk
Viy) = - li”[xi:-l - v(xy,x) ] 8, (15)
where Vg = 07li+l > 0, fori = 05"',"/ _ 2aresultab1e
constants, ry = L sry =+ ko > 0,1 = 2,,n -
2;ko=ﬂ)—1<0,and
90
Bo =1, Briv = Bisaris
(16)

P .
iz—vl-—_lv"'vn'_zo
P qi

with p;,¢q;,1 = 0,-*n — 2 are positive odd integers [11].

In this way, we first make system (14) on sliding sur-
face S finite-time convergent. Moreover, the condition
(4) for this h can also be verified using Lernmas 1 and 2
(see the following examples for some details) . Then, with
the control law in the form of (5) or (8), the state out-
side of the sliding surface is finite-time convergent to the
surface S. Hence, system (11) with s(x) = x, -

1”m. 1 and its corresponding control law

UM E T
is finite-time convergent to the origin.

Remark 3 Note that the terminal sliding mode feed-
back of form (3) is different from (12) and has no singu-
larities when s 52 0. As the results given in related reference
including (6] and [7], we have not solved theoretically
the singularity problem of u,, on S (for the existence of
S ), either. In other words, our approach only removes
the singularities outside of the sliding surface using Theorem
1 or 2 as discussed in Remark 1. However, for practical
design, we may try some simple structures. For instance,

for third or higher order systems, on the_surface S, we will
take u = j_’,,(x), if f(x) = fn(x) + fo(x) with f(x)
unknown .

For illustration, we give two examples .

Example 1  Consider a second order nonlinear
system:
) = x?lv
(17
{xg = fo(x) + u, )

where m) > 01is an odd integer.
Take a continuous function h(x,) = - x/®™*? and
then
S = x9 + xi/u’“l”).
Thus, for the given A, (4) can be satisfied with Ky = 3
and Ly = 2, due to Lemma 1. Then we can take
— fofx) =3(1 +1 x5 Dsgn (s),
if s =0,
u(x) =

3 1/(3m, +2)
Imy + 250

if s =0.

ueq(x) = —fz(x) +

(18)

Then the system is convergent to the sliding surface in fi-
nite time. Once on the sliding surface (s = 0), we have
%) =~ x?/("'l‘m , which is finite-time convergent to x; =
0, that is, the origin x = 0, because of s = 0. This direct-
ly leads to the finite-time convergence of the closed-loop

system. O
Example 2 Consider
N ) = X2,
Xy = X3, (19)
X3 = f3(x) + Uu.
First, we employ the method in (6], and we have
Sp = X1y Sy = s'0+s(7)/9, Sy = s'1+s?/7.
Then the control law is given as
w(x) = uelx) - Ksgn (s3), K >0, (20)
with
(%) = ~ f5(x) = (s®) - (577)
I
Tay Y 925
== filx) - 953 7 T(xy + x7°)

which may contain some singularities .
Next, consider our proposed method for terminal sliding
mode control. Take a continuous function
s(x) = 23 + 25 + %2,
2a,
1+ a) )
When x € S (i.e., s(x) = 0),we have

{xl = X,
jz == xcil - x;29

which is finite-time convergent [9]. Moreover, for s(x)

(21)

0<a|<1,02=
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given in (21),(4) can be satisfied with Ky = 3 and L, =
2, due to Lemma 1, Then, by Theorem 1, we can con-
struct a feedback law of form (5), different from (20),
—f3(x)-3(1+1 x5 [+ x5 )sgn(s),

if s 520,
Ueg = _f3(x)—a,x‘{\"x2+a2x"22"x3,

if s =0.
(In the case when f3(x) is unknown, the feedback can be
taken of form (8) based on Theorem 2). Thus, the sys-
tem is convergent to the shiding surface in finite time, and
in the sliding surface, the state gets to the equilibrium infi-
nite time, which implies the finite-time convergence of the
closed-loop system. To avoid the singularity (referring to
Remarks 1 and 3), we may substitute (22) by a simple
form:

u(x.) = {

u(x) = (22)

—f3(x)=3(1+1 x; 1+ x5 sgn(s),if s 0,
- fa(x),if s = 0.

(23)
Due to various uncertainties in reality, we cannot expect
the exact finite-time convergence, but we can expect the
faster convergent rate of this finite-time’ controller around
a given equilibrium than those of conventional ‘ asymptotic’
controllers (with fixed coefficients) . Fig. | shows two cas-
es with @y = 1/5and 1, respectively. Note that when «;,
= 1, the shding mode control become asymptotic with a
smooth function s(x) (referring to Remark 4), but tra-
jectory under this control law is still with a little oscillation
even around ¢ = 15, while feedback (23) makes the tra-

jectory almost become x; = 0 around ¢t = 7. In other
words, the convergence in the case of @y = 1/5 remains
faster than that in the case of ay = 1. O
2 ——
— a,=1/5
ispN T %=
3
> 1
=]
B
=
E 0.5
0
035 5 10 15
t
Fig. 1 x,(t) for initial conditions (2, -0.5,1)

with o) = 1/5and 1, respectively.

Remark 4 'We would like to make a comparison be-
tween conventional methods and our design ideas in the de-
sign of asymptotic sliding modes for system (11). It is
known that a sliding surface can be obtained with

s(x) = Zn:cixi, (24)

where ¢; > 0,i = 1,--,n (usnally taking ¢, = 1) are
Hurwitz coefficients. Then the conventional controller is
taken as

u,(x) = ueq(x) - Ksgn (s), K > 0,

n-1
where u,,(x) =- f,(x) - Zcixm. This control law

i=1
will stabilize the system (11) [4]. On the other hand,
since, for s given in (24),(4) is also satisfied with K, = 0
and Ly > max fc,,"',cnf , an asymptotic sliding mode
controller in the form of {5) can be constructed with our
design method:

u(x) :—fn(x) - K(l + i | Xis1 I)sgrl (S),

K > max {Lg,1}.
From Theorem 1, this sliding mode controller can render
the system state to converge to the sliding surface in fimte
time, and then to the origin as t — %,

5 Conclusions

Terminal sliding mode control draws attention mostly
because of its finite-time convergence to a given equilibri-
um, in addition to its finite-time convergence to a corre-
sponding shding surface. In the paper, a new design
method for terminal sliding mode control is proposed, and
the global control design for some systems is shown. Al-
though some results of terminal sliding mode control have
been successfully applied, to set up a complete theory for
the analysis and design of these controllers to deal with the

problems including singularity removal is still challenging.
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