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show the stability of the network dominated by the TCP congestion On p-Normal Forms of Nonlinear Systems
control algorithm under the normal offered load condition. ) o
An assumption of the bandwidth allocation in this note is that the Daizhan Cheng and Wei Lin

instanttraffic load at each link can not exceed the link capacity; see
the constraint (4). Concerning the practical operation of data networks

. / .. L . Abstract—Using the differential-geometric control theory, we presentin
supporting elastic traffic (including in particular the Internet), one m Mis note a necessary and sufficient condition under which an affine system

question whether such assumption would be realistic. For the Intemglgcally feedback equivalent to, via a change of coordinates and restricted
when some links are carrying multiple TCP connections, it is possibdmooth state feedback, a generalized normal form calleg—normal form,

for there to be a steady-state packet drop rate on those links, and for#high includes Brunovsky canonical form and feedback linearizable sys-
(instant) arrival rate at those links to equal or slightly exceed the Iir{%mS in a lower-triangular form as its special cases. We also give an algo-
rithm for computing the appropriate coordinate transformations and feed-

capacity. Future work will include investigating whether the results igh .k control laws.
this note provide a good approximation to this environment. ) ) ] ]
Itis known that the exponential assumption on the document size, ofdex Terms—Differential geometric approach, feedback equivalence,
I . . Iocal diffeomorphism, nonlinear systemsp-normal form, state feedback.
a connection is often violated in the real network. Can we relax this
assumption in our model so that the stability result would be more ro-
bust? We believe that the relaxation would be a significant but chal- |. INTRODUCTION
lenging step toward a better understanding of the network dynamics . .
Under the exponential assumption, the network can be modeled as he pgst two decades have witnessed a ra_pld g”’WFh of resea_rch
) . . . : . efforts aimed at the development of systematic analysis and design
continuous time Markov chain for which analytical tools are availabl€. . . ;
. .methodologies for nonlinear control systems. Many powerful analysis
To extend the model to allow more general document size assumptlgn svnthesis techniques have been developed based on the use of dif
itis necessary to keep track of remaining untransmitted document sifgg Y hniq P
. . ; erential geometric approach [5], [15].
on all connections in order to capture the network dynamics. For this,

o . . . ._The differential geometric approach was emerged in the 1970s and
purpose, more sophisticated stochastic model is required and studylg%ed strong momentum around 1980s due to a series of original work
the stability for the network model with exponential document size g u u u ! 'gial w

sumption would be helpful. 1, [4], [6]-[8]. _[10], [22], [23]. In [8], the problem of _equi_valen(_:e
between an affine system and a linear system was first investigated
and solved by a change of coordinates (local diffeomorphisitijout
ACKNOWLEDGMENT feedbackLater, Brockett gave a necessary and sufficient condition for
gtfﬁne systems to be locally diffeomorphic to linear controllable sys-
tems by using not only coordinate transformations but also state feed-
back of the type: = (&) +v. This is the so-called exact feedback lin-
earization problem which has been widely studied in the literature. For

The author would like to thank F. P. Kelly who interested him in thi
research and shared his insight

REFERENCES instance, the works by Jakubczyk and Respondek [7], Su [22], and Hunt
[1] D.Bertsekasand R. Gallag&ata Networks Upper Saddle River,NJ: €t al.[4] were stimulated directly by [1] and [8]. These papers provided
Prentice-Hall, 1992. a complete solution to the feedback linearization problem. Subsequent

[2] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weisszontributions by Kreneet al. [9], Marino [14], and Respondek [20]

(1998, Dec.) An Architecture for Differentiated Services. Internet Eng ; ; At ; P
gineering Task Force. [Online] ftp://ftp.ietf.org/rfc/rc2475. txt "addressed the partial feed_back Ilnearlz.atlon_problem by identifying a
[3] T. Bonald and L. Massoulie, “Impact of fairness on internet perforclass of systems that consists of a maximal linear subsystem cascaded

mance,” inProc. ACM SIGMETRICS 200Boston, MA, June 2001. by a lower-dimensional nonlinear subsystem. On the other hand, the
[4] G. de Veciana, T. J. Lee, and T. Konstantopoulos, “Stability and pegliscovery of “zero-dynamics” of a nonlinear control system [2], [5] and

fﬁggnﬁis\?ﬁméﬁ ngetvr\)/grlzs iﬂp%%rgngoﬂim ServideEE/ACM  systematic use of this notion which leads to Byrnes—Isidori’s normal
[5] F. G. Foster, “On the’ stochastil: matrices associated with certaflﬂrm (composed of a nonlinear zero dynamics driven by a chain of in-

queueing processesXhn. Math. Statistvol. 24, pp. 355-360, 1953.  tegrators), have led to a number of significant advances in the area of
[6] J.Y.Hui, “Resource allocation for broadband networkEEE J. Select. nonlinear feedback design, including asymptotic stabilization of min-
Areas Communvol. 6, pp. 1598-1608, Sept. 1988. imum-phase systems by state feedback, output regulation of nonlinear

[7] V. Jacobson, “Congestion avoidance and control,Pic. ACM SIG- ; ; ~
COMM '88 Conf, 1988, pp. 314-329. systems, feedback equivalence to a passive system and robust and adap

[8] F. P. Kelly, “Charging and rate control for elastic trafficur. Trans. V€ control of nonlinear systems. _ o
Telecommunvol. 29, pp. 1009-1016, 1997. When a control system is inherently nonlinear and is neither fully
[9] —— “Mathematical modeling of the internet,” Mathematics Unlim- - nor partially feedback linearizable (e.g., the linearized systemllor
ited—2001 and Beyon8. Engquistand W. Schmid, Eds. ~ Berlin, Ger-yncontrollable and the uncontrollable modes are associated with eigen-
many: Springer-Verlag, 2001, pp. 685-702.
[10] F. P. Kelly, A. Maulloo, and D. Tan, “Rate control in communication
networks: shadow prices, proportional fairness and stabilityQperat.

Res. Sogwvol. 49, pp. 237-252, 1998. Manuscript received February 22, 2002; revised April 11, 2003. Recom-
[11] J.F. C. Kingman, “The ergodic behavior of random wall&@metrika mended by Associate Editor J. M. A. Scherpen. The work of D. Cheng was

vol. 48, pp. 391-396, 1961. supported by CNNSF G59837270, G1998020308 of China and by the National
[12] S.Low, Aduality model of tcp and queue management algorithms, 2008ey Project. The work of W. Lin work was supported in part by the National

to be published. Science Foundation under Grant ECS-9875273, Grant ECS-9906218, Grant
[13] D.G. Luenberget,inear and Nonlinear Programming Reading, MA: DMS-9972045, and Grant DMS-0203387.

Addison-Wesley, 1984, pp. 369-371. D. Cheng is with the Institute of Systems Science, Chinese Academy of Sci-

[14] J. Mo and J. Walrand, “Fair end-to-end window-based congestion coences, Beijing 100080, China.
trol,” in Proc. SPIE '98 Int. Symp. Voice, Video, Data Communications W. Lin is with the Department of Electrical Engineering and Computer Sci-

1998, (http://www.path.berkeley.edu/~jhmo). ence, Case Western Reserve University, Cleveland, OH 44106 USA (e-mail:
[15] G.de Veciana, T. J. Lee, and T. Konstantopoulos, presented at the |Eli&vei@nonlinear.cwru.edu).
INFOCOM'99, New York, Mar. 1999. Digital Object Identifier 10.1109/TAC.2003.814270

0018-9286/03$17.00 © 2003 IEEE



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 7, JULY 2003 1243

values on the right-half plane), the papers by Respondek [21] and B} SoLvABILITY CONDITIONS OF THEp-NORMALIZATION PROBLEM

Cﬂ;kﬁvfkﬁgn?n'\l”rme??rr[ﬂ ;:u?'iedl thelﬁusi's#mnmwkrlett]kilertthe;e %T;]SISMotivated by the study of exact feedback linearization, we investi-
a higher order norma 1o atis focaily diffeomorpnic to an & ate in this section the question of when an affine system is locally

system. This important and fundamental issue will be further addres Sl dback equivalent to thenormal form (1), under some appropriate

in this note. In particular, we are interested in a class of nonlinear s%ss'sumptions. To begin with, we first introduce a number of basic con-
tems of the form

cepts related to the-normalization problem, which will be used in the

pr—1 rest of the note.
i o=ab + Z whdr (1) Definition 2.1: Given the vector fieldg (¢) andg(¢) in (2), if there
i—0 exists a sequence of vector fields defined as

Xo=9g and X, 41 = a‘dz\l":lfg k=0,1,...,m—2 (3)
Pn—1—1

. Pr P o whereq; > 0,0 < k < m — 2, are the smallest positive inte-
in_1=an" 4 Z 2ot (@1, way 1) Th+1 == p
=0

gers such thak, X1, ..., Xi11, are linearly independent at= 0,

P — B 1) system (2) is said to haversmrmalizable order» andminimum index
(qiyee-s (Imfl)-
wherez = (z1,...,2,)7 € R" andv € R are the system state and Associated vx_nth_the_ vector field¥o,..., X,.—1, one can define a
. » . e set of nested distributions
control input, respectively;,i = 1,...,n — 1, are positive integers,

and¢! : R' - R,i=1,...,pi—1,l =1,...,n—1, are smooth func- Ay = span{Xo, X1,.... Xi}, k=0,1,....m—1. (4
tions with¢!(0,...,0) = 0. For system (1) withp;, 1 < i < n — 1, _ o .

beingodd positive integers, a series of exciting results have been 0b_.The next concept is a natural generalization of the notion of the rel-
tained recently, including global strong stabilization by non-Lipschit3tive degree. _ _ _ _
continuous feedback [16], [17], global practical output tracking [18], Definition 2.2: The single-input—single-output (SISO) nonlinear

disturbance attenuation or decoupling [19], adaptive control of nonliYStem

early parameterized systems [12], [13]. E=1f(&)+ 9(&)u

Whenp; =1,i=1,...,n — 1, (1) reduces to a feedback lineariz- v =h(6) 5)
able system in a lower-triangular form, which has been extensively ’ R
investigated over the last decadeplf > 1,i = 1,...,n — 1, are with well-defined normalizable ordem» and minimum index
positive integers ang(z1....,2;) = 0foralli = 1.....p; =1, (qi,....qm_1)is said to have generalized relative degreeat¢ = 0
l=1,...,n -1, (1) becomes a chain of power integrators perturbégithere is an open neighborhodd containingé¢ = 0, such that

by a lower triangular vector field—a class of nonlinear systems that 1y 1\ 5(¢) = 0,0 < i < p — 2,V¢ € U;
received considerable attention recently [11], [16]. Finally, (1) also p) L\f h(0) # 0.
X

includes the class of systems in [21] and the well-known Brunovsky Remark 2.3: According to Definitions 2.1 and 2.2, a system in the
canonical form as its special cases. In view of the previous discussion§10Irrna| form (1) has a minimum inde,._; o, p1), normal-

. ) D
(1) can be naturally regarded as a generalized canonical form andi%le orden, and generalized relative degresvhen settingy = a1 .
For a feedback linearizable system, it is clear from [5] that its general-

refer it as gp-normal formthroughout this note.
The purpose of this note is to study the problem of when a singlgz relative degree is identical to the relative degreés normaliz-

input affine control system able order is equal to, and the minimum index gL, 1. ..., 1) with
. X; = (=1)'ad}g, A; = span{g,adyg,...,ad}sg}.
£=f()+g(&u, f(0)=0 (2) Lemma 2.4: Assume that a SISO nonlinear system

with f andg being smooth vector fields defined on an openlSeh £ =F(&) +9(&)u

IR" containingé = 0, is locally diffeomorphic to the-normal form y =h(¢) (6)

) by_a chan_ge o.f coordinates and restricted state feedback, i.e., byhtgg well-defined normalizable orderm, minimum  index
following actions:

(¢15...,¢m—1) and generalized relative degrge < m. Then,
i) alocal diffeomorphismx = T'(¢) defined onl; they are all invariant under the actions of a change of coordinates
ii) a smooth state feedback= «(¢) + Sv, with a(0) = 0,0 # 5 = T(¢) and a nonsingular state feedbacks a(€) + 3(¢)v, where
3 = constant, V¢ € U. B(€) #£ 0, ¢ € U, if the following conditions hold:
For the sake of convenience, the problem is calleghthermalization Al) Ay, k=1,...,p— 1, areinvolutive,
problem Accordingly, an affine control system that can be transformed A2)  ad’;,  f(£) € Ay V€ € U, whenever < gx.
into (1) is said to be-normalizable The proof of this lemma is given in the Appendix. Notably, the class

In this note, we shall address thenormalization problem and pro- of feedback: = «(&) + 3(€)v used in Lemma 2.4 is a general one
vide a partial answer in terms of differential geometric control theoryather than the restricted feedback= o(¢) + 3v.
In particular, we present a necessary and sufficient condition for theRemark 2.5: In the case of feedback linearizable systems j:e=
p-normalization problento be solvable for affine control systems. We .. = p,,_; = 1 in (1), conditions Al) and A2) are automatically
also give an algorithm that enables one to find the transformatien satisfied.
T(¢) and the state feedbaek = «(&) + Jv systematically. Finally, Now we are ready to present the main results of this note. The first
we use an example to demonstrate the theoretic results developerkult characterizes a necessary and sufficient condition for-tia-
this note. The example illustrates how an affine system with uncontrehalization problem to be solvable via a change of coordinates and the
lable linearization can be transformed into fhaormal form (1) viaa state feedback
change of coordinates and state feedback, althoughittifeedback
linearizable uw=a(&)+wv, cEel. 7
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Note that under an additional linear nonsingular transformation, (7)Inductively, whenk = i one can assume that = p, —;
is equivalent to T
u=«a(f)+ pv [ = counstant # 0, Eel. Xi=10,....0, pocileopnoilid, oo, *
Theorem 2.6: The analytic affine system (2) can be transformed into (n—i)th
thep-normal form (1) via a local diffeomorphism = T'(¢) and state b 9
feedback (7) if and only if the following conditions hold: and A; = span { 9z } :

ch) ((]3) ha; a norn;al)l.zable order and minimum index Then, a direct calculation rankXo(0), X1(0),..., X;(0)} =i + 1
m—1s Pr—29 ey D1 . . . . . . .
e bnmas s e P and the distributiong\;, & = 0,...,, are involutive. In addition,
A k= e, — 2 ; o .
C2) .dIStrIbl.,ItlonSAvk defined by (4),k 0,1, n , are C3)-C4) also hold fok = i + 1 With gi41 = pn—i_1. Finally
involutive onU, .
C3) ady,  f(§) € Ay V€ € U wheneverl < j < pnp, for
E=1,....,n—-1; Xivt = | 0,00, 0, peict e Pl ke e e
C4) ad’, f(€) € Ap_1, VE € U wheneverj > p,_y, for
k—1 (n—:i—1)th
kE=1,....n—1.
Remark 2.7: 1t is clear from Remark 2.3 that C1) and C2) are a and Ay = span {6i s GL}
Ln Tn—i—1

natural generalization of the well-known conditions of [5, Th. 4.2.6].
Indeed, in the case of exact feedback linearization (i.e., the minimds$ing the aforementioned inductive argument, we conclude that
index of (2) is prn—1,pn—2,...,p1) = (1,1,...,1)), C1) reduces C1)-C4) hold for (1).

to the controllability condition i) of [5, Th. 4.2.6], while C2) amounts (Sufficiency): Using the involutivity of A;, one can assume,

to the statement thah; defined by (4), withgz+1 = 1 and% without loss of generality (by the Frobenius Theorem), that in the new
0,1,...,n — 1, are involutive near the origin. AIthough the Iatter apcoordlnatez = ®(¢)

pears to be redundant and less intuitive than ii) of [5, Th. 4.2.6], it turns 9 9
out that they are identical in the feedback linearizable case. Conditiohs(&) = Ai(z) = span { EPRAREEY P } . i=0,1,...,n-1
C3) and C4) come from the highest order restriction on each power in- o "
tegral channel. andg(¢) can be represented ) = (0, ..., 0,1)".
Proof of Theorem 2.6 (NecessityJhe proofis carried outintwo ~ Denote f(z) = ((9®)/(9€))f(§ )|¢:<1>71(:)— (Fi(2),...,

steps. First, we show that C1)-C4) are invariant under the changefof=))”. Note that C1)-C4) are invariant under a change of coordi-
coordinates and state feedback= «(¢) + Fv. That is, if C1)-C4) nates and{, = . By C3), we have
hold for (1), they also hold for the system after the two actions and

vice versa.
Similar to the proof of Lemma 2.4, setting = constant in (36),
(37) results ing = Fg, Xo = 3X, and

k
L. CTTE ) .
ad&kf _ ’[j (.I Hi:l Pn—?)adjxkf =+ Zalj(ﬁ)xl (8)
=0
and, hence
. R k—1
(1 :/fg(Hizlp”*JXk + Za/i(f))(
i=0
A=A, i=1,2,...,n—1. 9)

Clearly, C1)—C4) are invariant under the state feedagko (&) 4+ 5v.

On the other hand, same arguments as the ones in Lemma 2.4 indi-

cate that C1)—-C4) are invariant under the local diffeomorphisea
T(8).

Next, we verify that C1)-C4) hold for (1). LekKo, =
0,...,0,1)Y and Ay =
observe that

g —
span{(9)/(8xxn)}. To verify C1)-C4),

' Po—1! i
ad’ f=10,...,0, ——— a0

*o < " (a1 = )

fpet e Jgn—1 *>T (10)
AR

wherex represents the last componenmdffgof.

From (10), it follows that ¢ = pn—1 and
X, =(0,...,0,po—1,%)". Hence

A; =span{Xy, X1} = span{ain &Laj}

Obviously, rank{ Xo(0), X1(0)} = 2 andA, is involutive. Moreover,
using (20) itis concluded thatl’x0 f € Ay whenj < ¢1 = pn—1 and
ad’ f € Ao whenj > ¢ = pn_1.

(1,(11&»0 f € A1

which implies that0f:)/(9zn) = 0forl < i < n — 2 and, therefore
fi(2)...., fn—2(z) are independent of, .

By analyticity of f..—:(z) and the Taylor expansion formula, we
have

_Ez 0(’7(41-,---~4n 1)~n

Fami (21

wherec;(-),i = 1,2,..., are smooth functions.
Using the previous relationship, th@ — 1)th component of the

 Zn—1y%n)

vector fieldad’, fis
P
(adxof)7171 _]' (717~~~-/~n 1)+ Z I—J)’
1=7+1
Xci(zl,...,zn_l)z,lfj j>1. (11)

By condition C3)ndf§,0f'(0) is linearly dependent witf, whenj <
Prn—1 andmlp"0 ' f is independent o, in the neighborhood of the

origin. Thus
¢;(0,...,0)=0 when 0<j<pp-1-1
o (Zyes2n) #0 Y(21,.. . 2—1) EV C R,

For those terms whose orders satigfy p.—1, using (11) and C4)
(i.e. “‘d])?of € Ag whenj > p,_1)vyieldscj(z1,...,2n—1) = 0,
VJ > Pn—1.

In view of the aforementioned arguments, we conclude that

F2) = (Filzr ez
~ ~ ~ T
fn—z(lla---wln—1:)7 fnfl(z)-/ fn(;/))
where foo1(2) =
Cp,_ 1(41 ----- Zn Dz 1+Zp” (2 m)5, with
epn_1(0,...,0) #0andec;(0,...,0) =0for0 <i < pn_1 — 1.
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Sincecpnil(:l, ey anl) # 0 V(Zl, N anl) eV C anl’
one can introduce the following transformation:

n—1
1
Zi=2z; iZn—1 and Z,_1= / — ds
, Cpr_1(21, 20 —2,8)
12)
which leads to
_ Tn—1
5 =g / ) { 1 ]
Zn—1 = Zi _ | ds
=1 Oz Cpn—1(21,2n—2,%)
0
1
+ oz +
Cppn_1(21,2n—2,7n 1)
Pn—1—1 )
X Z Ci(Z1,y ey Zne1) 2y (13)
=0
Sincez;,i = 1,...,n — 2, are independent of, andz,_, isonly a
function of z, .. ., z,,_1, it follows immediately from (13) that
2= filG. R
»:En72 = fan(gl) sy 2“71)
I S it T RN SR Ed
Lo=u+ fu(2). (14)

With this in mind, it is clear that

X = adil(’;’l_lf(i) = (0,000, 0, pnal, ).

Using exactly the same argument, one can prove that in the new co-

ordinates (with a little abuse of notations, we still yse, ..., %,) to
represent a new coordinate)
; ~ = 2Pn—: n—2—1 > = o
Fr—2(Ziyonny Znot) = 25_12 + E?:O ? ci(Z1, RS
Inductively, we have foi = 2,3,...,n — 2
o,
X = O,---,O, pnfi---pnfl!v Kyttt X
(n—1)th
b1 ~ ~ SPn—i— n—i—1—1x~
and fro—i—1(Z1,...y Zni)= szi oy Vp P T

Enmiz1)EN i i
Finally, using the state feedbaek= « + £, (2) = u + a(€) yields
the last equation of (1). This completes the proof. [ |

Observe that the condition C4) only plays a role in restricting the

1245

(see, e.g., [5]), which provides a systematic way to comfifte and
a(€) yielding a solution to the-normalization problem.
To this end, we define a set of vector fieldss as follows:
Vi =ad" U, i=1,...,

Then, one can prove the following result.
Lemma 3.1: Suppose C1)-C4) of Theorem 2.6 hold. k€t) be a
smooth function such that

dh € AL,

-t n—1.

(16)

and Lx ,h=1.

n—1
Then, the following coordinates transformation:
z1=h(§) P&, .., zn=Ly, Ly, ..

denoted as = T (¢), is a local diffeomorphism.

Proof: It suffices to show thatz;(0),k = 1,...,n, are linearly
independent. Assume that there exist real constants .. Cn, SUCh
thatZ}_; crdzi (0) = 0.

(&) = Sz ek

zp=Ly, Ly, h(€) (17)

n—1

(18)

Since C1)—C4) are true, by Theorem 2.6, there is a local transforma-

tionz = T'(¢) transforming (2) into

i =abt 4+ 2P ltigb,l(arl)

. Pn—1 ¥ 1—1 ¢ n—1
Tno1 =" LI a ol (v, a0,

Tn = — (T7 (;B)) + u.

w/l"nfl)

(19)

In this coordinate frame

Xe(@) = [ 00eees 0y Prceepnaly xoeee,x

(n—k)th
oT
= 85 /‘Xk )|§:T*1(x)

T

yNyk(r) = (07 .. ',Oﬂpn—lc! - - -pnfl!mn+lfk-, Ky a*)

(n—k)th
oT .
= Eyk(fﬂg:Tfl(x)

(20)

which implies
A(€) =

(21)

highest order in each integral channel of (1). Then, it is not difficult tflence

deduce the following result from Theorem 2.6.

Corollary 2.8: Theanalyticaffine system (2) is locally diffeomor-

phic to
B =abt + 2720 2, w50, (il)
Pr— i n—1
Tp—1 =Tn ! +ZL 0,i#py lTlnq);l (‘rlv'rzv--'amnfl)
dp =0 (15)

via the transformation = 7'(¢) and state feedback (7) iff C1)-C3) of

Theorem 2.6 hold. |

lll. p-NORMALIZATION ALGORITHM

In this section, we discuss how to find the change of coordinates
T(¢) and the state feedback = a(¢) + Sv when the conditions
C1)-C4) of Theorem 2.6 are satisfied. Our goal is to develop an algo-

Av_o (&) =h (T (x)) = ().
According to the forms of; and X, it is easy to show that
dLy _ heAy .y dLy Ly heA ...
dLg Ly ...Ly _ h€Aj.
Using (20)—(23) and the nonsingularity @I7'/9¢), we have
dLy, h € Ay dLy, ,Ly, h€An_,...
dLy,Ly, ... Ly,_,h € Ag.

(22)

(23)

n—1

(24)

Now, consider

n

chngk

k=1
—eiL,h(e) +
+ C,LLgLyl LYQ e

Ly®(&) =

-+ cn1LgLly, Ly, ..
Ly, Rh(§).

LYn 1] (é)

rithm, similar to the one for the problem of exact feedback linearizatiogkccording to (24), the firsk. — 1 terms are identical to zero. For the
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last term, using (24) repeatedly, we have
LyLy,Ly, ... Ly,  h(€) = (Laa,v, + Ly, Ly)
Ly, _ (&)
=Lad,v, Ly, ... Ly, _ h(§)
=Lx,Ly,...Ly, ,h(§)
)

><Ly2...

= (Lad)\ v, + Ly, Lx,

Ly, ,h(€)
1 h(E)

XLYR...

=Lx, ,

= (L”fl‘\'n 5 Yn—1
+Lyv, 1[‘an2) n(§)
=Lx,_,h(¢)#0.
Hence,c, = 0. Next, considel x, ®(£). A similar argument shows
thate,,—; = 0. Continuing this procedure, it is easy to prove that
0,fori =0,...,n. [ ]

Lemma 3.2: Under C1)—C4), there exists a smooth functigi)
such that

Ly,

dhe At , and Ly . h=1.

n—1
Proof: Using Theorem 2.6, we have (19). Then

AX-n l( ) (pl 7*)1 .

Choosé(z) = (x1)/(p1!...pn_1!). Clearly,h(¢) = h(x(£)) meets
the requirements. [ ]

Theorem 3.3: Assume that C1)—C4) hold and let¢) be the func-
tion obtained from Lemma 3.2. Then, thanormalization problem can
be solved by the state feedback= «(¢) + v with

a(&) = —L_[LylLyz C 111/7271 h(ﬁ)

and the coordinates transformatien= 7'(¢) defined as

z1=Ti(§) =

 Pn— 1,*7...

ciey Tp—1 = Tnfl(f) = Un—-1%2n—1,
Tn = Tn (5) = Zn
wherez; is given by (17) and

(25)

- k=2,3,...,n—1.
(26)
Proof: By Lemma 3.1, the coordinates transformatios ¥ (¢)
defined by (17) transforms the affine system (2) into

Pk
Ap—1 Ipn_rl and ap_; :pk,ﬂ(l,k

t=f(z)+§(2)u
where 5
Az Lyh(e)
N fa(z) LfLYn,lh(E)
f(z): : =
_):n(/‘.’) LfLVlLY Vn lh(f) E=w—1(2)
I Lyh(€) 0
LyLy, ,h(§) 0
i(2) = : =|.| @
LLyLy,Ly, ... Ly, ,h(£) fmu-1(2) 1

Now, we claim thatfol < ¢ <n —1
filz) =
If the claim is true, choosei = a;z; With «; defined by (26), and
u = a(f) + v with
a(€) = —fu (¥(€)) = ~LsLv, Ly, ... Ly, _, h(£).
Then, the resulted closed-loop system is ingtiormal form (1).

o l+1+2k N ck(n ,:L)zll‘Jrl (28)
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So, the only thing needed to be shown is the relation (28). To this

end, we first calculate
9f1 ~
Fzn
df2
dzp

adgf :

Ofn—1
CE
*

Lifa-1(2)
*
LyLsh()
LyLyLy, 1h(&)

L,LiLy, ...
*

LVn—lh(O

E=U—
(Laays + LyLy) h(S)
(Lurlgf +L:L, ) Ly,  h(§)

1(=)

(Larlgf + Lng) Ly) .
*

Ly, 1(£)
E=w—1(z)

; (29)
Laa,rLy, ... Ly, ,h(€)

* =)
The last step is a consequence of (24).

Similarly, a direct computation shows that the— 1)th component
of ad¥ f(2) is

- Ok fu
(wtif ), =5
LadkaY’>LYn 1
B ><h Ole=w—1(2)5 k< pn-1
- L')(7171]L(5) = 1 Lt = Pn-1
L2 i) =0,  k>pna

By the properties of the minimum indeX9* £, _1)/(9z%))(0) = 0
for k < p,.—1. Therefore

5 1 _ 11
fn—l(z) = ’Zgn ! + ZZ;OI C}.»(Zl, .

Pn—1-
Note thatfs(z),k = 1,...,n — 1, are independent of, . Hence
X =ady f(z) = (0....,0,1.0)".

Using a similar argument, one can caIcuIa@ f( ). From (24)
and the relationtad’. f( Voo = (0 f_2)/(02F_1), itis deduced
that

1
fn 2( ) 1;7112 _’_vpn 2— (k(/«l, .

' ’I

Repeating this procedure leads to (28). [ ]

On the basis of the previous discussions, we now are able to provide
the following algorithm resulting in a design procedure for pheor-
malization problem.

p-Normalization Algorithm : Consider an affine systefh: Fo+
g(&)u.

Step 1) CalculateX;’s, p;'s andA;’s using (3) and (4).

Step 2) Verify the conditions C1)—C4) of Theorem 2.6.

Step 3) If C1)-C4) are satisfied, solk€¢) from the partial differ-

ential equations

Lx,h(€)=0,i=0,1,...,n-2, Ly

72"—1)2:'

zn,2)25_1 .

h€)=1, ¥v¢ e U (30)

and calculate the vector fields 's from (16).

n—1



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 7, JULY 2003

Step 4) Construct the change of coordinates T'(¢) as follows:

1 = arh(§), z; = a; Ly Ly Ly, h(§)

n—i+1 n—i4+2 *° "
2<i<n—1 a,=LyLy,...Ly,_h(¢) (31)

where the coefficients;’s are given by (26).

Step 5) Compute the state feedbaclt) = «(&) + v, where

(l(é) = —L¢Ly, Ly, ... Ly7171]l(£).

After the change of coordinates and state feedback, the closed-g@fhse inverse mapping is given by
system is of thep-normal form (1) in the new coordinates,, _

(1,T2,. .., Tn).

IV. | LLUSTRATIVE EXAMPLE

We now present an example to illustrate the theoretic results devel-
oped so far. In particular, we show how an affine system that is not
feedback linearizable can be transformed intopth@rmal form via a

systematic procedure given in the previous section.
Example 4.1: Consider the smooth affine system

& = (& - é%)% +&s
{52 =&+ (6 - &+ &2) (& - €)" - 26 + 260 (32)
&=-&+u
(&2 —€3)° + &
where f(¢) = G+ (6 —E+E)(6—6)° - 2532] ,
—&s
0

g(&) = |2& |. Clearly, (32) is not locally feedback equivalent

1
to a linear controllable system because its Jacobian Iinearizationd'@ﬁne

uncontrollable.

On the other hand, a simple calculation gived,f =
(1,1—2¢, —1)" which is independent aX, = g(¢) at¢ = 0. Thus,
X1 = ﬂf]gf(f) andq1 = p2 = 1.

Note that ‘

[ 3(e—&)" -1

adx, f= [2(6 —&+&) (L —&)+26 -1
I 1

‘ [ 6(&—&)

adi, f=|2(4 —&+&)
I 0
76

ad, f = 0] )
0

Clearly, X, = ad%, f andgs = p1 = 3.

Now we are ready to verify if the conditions C1)-C4) of Theorem 2.8°
hold. According to the computations above, the minimum index of (32)
is (1,3) and the normalizable order is 3. Moreover, it is easy to che
that the distributions\;, i = 0, 1, 2, are involutive. C3) holds because

Xo € Ay anddim A, = 3. C4)is ensured by the fact tHadf,, X ] =
0 and[X, X»] = 0. By Theorem 2.6, (32) is normalizable.

In what follows, we apply Theorem 3.3 to explicitly construct a

smooth state feedback control law and a change of coordinates.
First, find a real-valued functioh(¢) € A satisfyingL x, h(¢) =
1, i.e. solve the following partial differential equations:

Oh Oh
oh oh Jh
0=Lx, () = oe T 8_62(1 —-26) - Prs
dh

L= Lo h(€) = 65

It is not difficult to see thah (&) = (1/6)(&1 — &2 + £3).

(33)
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Next, we calculate the vector field§'s: Y1 = ad, ' f = f, Y2 =
adi M f = [6(6 —€3), 2(& — & +£3), 0]". Using Theorem 3.3, we
introduce the following coordinates transformation:

n=h)=3%(G-&+6)
z=Ly,h(§)= (- &) -5 (L —&+&)
2= Ly Lnh(©) = & - § (& - )’
+3 (& -&+8) (&-4)
. = zm+4n, & =
22‘1-|—[23 —+ (1/3)(:2 — 221 )2 =+ 821 (22 — 223)2]2, and
€3 = 23+ 2(22 — 221)% + 821 (22 — 223)”. In the z coordinate

iE 0
1

. . 3 (23—122521+36312f—322f)
f(:)=—~f(5)|5:./71(7)= z3
a 2 z
¢ fa(z1, 22, 23)
By Theorem 3.3, the nonsingular transformation = zs,

¥y = z, 1 = 6z and the state feedback controller
u = —f3((1/6)x1, 22, x3)+v transform the systeth= f(z)+g(z)u
into the thep-normal form (1)

. 3 5.2 2 1.3
&1 = x5 — 2501 + row] — 5= 1]
ig =3 (34)

T3 = v.

APPENDIX

Proof of lemma 2.4:Under the change of coordinates= T'(¢),

: aT N or |
f(‘l) = a—gf(£)|£:l*1(9_) g(‘l) = 6—69(5”221*1(1)
Then, a direct computation gives
N oT —_
[9($>= f(x)] =% [9(). F(O]le=r—1(s) = [g. Fl(@).
This, in turn, implies that for anj
: T & —
ad‘]g(r)f(:v) = a—ga‘ds(g)f(f)k:jv_l(z) = adk f(x).
Consequently, denot&; (z) := ((0T)/(9€) Xi(E)le=r—1(+)- Since
(0T)/(9¢€) is invertible, normalizable order, and minimum indgss

are clearly unchanged by a change of coordinates. Observethat=
h(&)le=r-1(x)- Then

Ly () = Lx,M(&)lear—1(0)»

(35)

i=0,1,2,...

which implies that the generalized relative degree is invariant under the

ordinates transformation= 7'(¢).

On the other hand, using the nonsingular smooth state feedback

(&) + B(Sv yields £(§) = £(€) + g(&) () andg (&) = g(£)B(E).
ith this in mind, a straightforward calculation shows that

Xo =8(H)Xo
7—1
ad’, f =0 (ad)f + Y bi;(E)adyf + ag;(€)Xo
t=1
Jjz1
Using A1) and A2), it is not difficult to conclude that

(36)

R k—1
= {g (i) ) + w(@} Xi ) ain(§)X
1=0
ol i = [T @) 4 o] i, s

j—1 k
+ Y b(Qady, f+ Y ali ()X, j>1 (37)
t=1 =0



1248

wherea; . (£), aﬁ‘”j(g), andbfj(ﬁ) are real-valued smooth functions, and
v (0) = 0.

In fact, (37) can be proved inductively. Whén= 0, it is obvious
that (36) is a particular form of (37), withy (¢) = 0 andb; (¢) = 0.
Suppose (37) holds fdr. From the second equation of (37), we have

adf f=p UL (©ad £+ (0

x( G?jﬂﬂ@ﬁMH5WNorHr).

k411

Xad P f 4+ Y bii(€)adl
t=1

k41

>

=1

k
JAD ai(OX,
=0
By A2), the third term in the previous equality can be expressed as
qpy1—1 k41

Z bfj(ﬁ)a,df\ka = Zci(E)Xi
t=1 =1

wherec; (£) are smooth functions. Singg+ is a component of min-
imum index and < qx41, thenc,+1(0) = 0.
In view of the previous discussions, we have

%
X],3+1 + Z (0773 ({)‘Yl (38)

1=0

X = {8(1—[5: “) (&) + V41 (5)]

which proves the first equality of (37).
Next, we prove that the second equation of (37) also holdg fet .

First of all, a direct computation shows that the second equation of (37)

with k& + 1 is true whenj = 0. Assume that it holds fof. Define

_ k41
8= /3(Hi=1 ) (6) and ¥ = yeq1(8)-
Then

&
(B4+%) Xkt1 +Z i (§) X, (/§+§”)Jadjxk+1
j—1 -
+> b ]
t=1
from which it is not difficult to deduce that the second equation of (37)
holds, as long as

[Xi, a,d§(k+lf] € Apsr +span {a,d‘}Hlf, s < J} i < k. (39)

To prove (39), consider the case whes 1. Using the Jacobi iden-
tity and A1)-A2) gives

I:X“ ("d«\'k+1f] = [Xk‘+1a (lf]}(zf] + [f* [‘Xk+la X']]
€ [Xbr1, Apqa] + [fs Akg1] C Agyr +span {adx,,, f}
Now, suppose (39) is true fgr. Then

f= f

ad* =
X1

k1
G ©adk,,  f+ Z i (6)Xi
=0

[\’ adi! | f] - [XM, [X,-, adl, | f“
+ [ad’}(kﬂf-/ [XA»,+17XL']]

€ [Xk_,_hAk_*_l +span {a‘d%k“f,s < J}]
+ [adc) £ A

C Aj41+ span {adf\»Hlfv s<j+ 1}

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 7, JULY 2003

REFERENCES

[1] R. W. Brockett, “Feedback invariants for nonlinear systems,Piac.
6th IFAC World Congr.vol. 6, Helsinki, Finland, 1978, pp. 1115-1120.

[2] C.I.Byrnes and A. Isidori, “Local stabilization of minimum phase non-
linear systems,Syst. Control Lett.vol. 11, pp. 9-19, 1988.

[3] S. Celikovsky and H. Nijmeijer, “Equivalence of nonlinear systems

to triangular form: the singular caseSyst. Control Lett.vol. 27, pp.

135-144, 1996.

L. R. Hunt, R. Su, and G. Meyer, “Global transformations of nonlinear

systems,”IEEE Trans. Automat. Confrvol. AC-28, pp. 24-31, Jan.

1983.

[5] A. Isidori, Nonlinear Systems3rd ed.
1995.

[6] A.lsidori, A. Krener, A. J. Gori, and S. Monaco, “Nonlinear decoupling
via feedback: A differential geometric approachtEE Trans. Automat.
Contr, vol. AC-26, pp. 331-345, Apr. 1981.

[7] B.Jakubczyk and W. Respondek, “On linearization of control systems,”
Bull. Acad. Polonaise, Sci., Ser., Sci., Mathal. 28, pp. 517-522, 1980.

[8] A. J. Krener, “On the equivalence of control systems and the lin-
earization of nonlinear systemsSIAM. J. Optim. Contrglvol. 11, pp.
670-676, 1973.

[9] A.J.Krener, A. Isidori, and W. Respondek, “Partial and robust lineariza-

tion by feedback,” irProc. 22nd IEEE Conf. Decision Contydl983, pp.

126-130.

R. Hermann and A. J. Krener, “Nonlinear controllability and observ-

ability,” IEEE Trans. Automat. Contwol. AC-22, pp. 728-740, 1977.

W. Lin and C. Qian, “Adding one power integrator: a tool for global sta-

bilization of high-order cascade nonlinear systensg;t. Control Lett.

vol. 39, pp. 339-351, 2000.

[12] ——, “Adaptive control of nonlinearly parameterized systems: a non-

smooth feedback frameworKEEE Trans. Automat. Contwol. 47, pp.

757-774, May 2002.

[13] ——, “Adaptive control of nonlinearly parameterized systems: the

smooth feedback case|EEE Trans. Automat. Contrvol. 47, pp.

1249-1266, Aug. 2002.

R. Marino, “On the largest feedback linearizable subsyst&yst. Con-

trol Lett., vol. 7, pp. 345-351, 1986.

H. Nijmeijer and A. J. van der Schafijonlinear Dynamical Control

Systems New York: Springer-Verlag, 1990.

C. Qian and W. Lin, “Non-Lipschitz continuous stabilizers for nonlinear

systems with uncontrollable unstable linearizatidByst. Control Lett.

vol. 42, pp. 185-200, 2001.

——, “A continuous feedback approach to global strong stabilization

of nonlinear systems,/IEEE Trans. Automat. Contrvol. 46, pp.

1061-1079, 2001.

——, “Practical output tracking of nonlinear systems with uncontrol-

lable unstable linearization|EEE Trans. Automat. Confwol. 47, pp.

21-36, Jan. 2002.

[19] ——, “Almost disturbance decoupling for nonlinear systems via con-

tinuous feedback,” ifProc. 15th IFAC World CongrBarcelona, Spain,

July 21-26, 2002.

W. Respondek, “Partial linearization, decompositions and fiber linear

systems,” inTheory & Applications of Nonlinear ControC. I. Byrnes

and A. Lindquist, Eds. Amsterdam, The Netherlands: North-Holland,

1986, pp. 137-154.

——, “Global aspects of linearization, equivalence to polynomial forms

and decomposition of nonlinear systemslgy. Geomet. Meth. Nonlinear

Control, pp. 257-284, 1986.

R. Su, “On the linear equivalents of nonlinear systenSyst. Control

Lett, vol. 2, pp. 48-52, 1982.

H. Sussmann and V. Jurdjevic, “Controllability of nonlinear systems,”

J. Diff. Equat, vol. 12, pp. 95-116, 1972.

[4]

New York: Springer-Verlag,

(10]

(11]

(14]
(15]

[16]

(17]

(18]

(20]

[21]

[22]

(23]

which leads to (39). As a consequence of (37), normalizable order and

¢, i =1,2,...,p— 1, are unchanged. In view of (36) and (37), the
generalized relative degree remains same. [ ]
ACKNOWLEDGMENT

The authors would like to thank J. Wei for his helpful comments on
the earlier version of this note.




	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


