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Design for Noninteracting Decomposition of Nonlinear 
Systems 

DAIZHAN CHENG 

Abstract-This note tackles the general input-output noninteracting 
decomposition problem of nonlinear systems. Under less regularity 
assumptions we give an alternative proof of the same necessary and 
sufficient conditions as in [4]. Our result gives an algorithm which 
constructs the feedback law a and /3 explicitly. Finally, we prove that the 
decomposed form is a canonical form. 

I. INTRODUCTION 

Consider an affine nonlinear system 

( 1.1 .a) 

y = h ( x )  (1.1 .b) 

where x E M; f ( x ) ,  gi(x) E V(M ); h : M + N is a C” mapping: M and 
N are C” manifolds with dimensions n and r, respectively. The input- 
output noninteracting decomposition problem (NDP) may be stated as 
follows. Given a partition of the outputs y, whether there exist a feedback 
control 

U =  .(X) + P ( x ) u  (1 4 

and a partition of the controls U, such that each block of U completely 
controls the corresponding block of y ,  and does not affect the other blocks 
of the outputs. 

The NDP has been studied extensively and from various points of view. 
The discussion for linear systems is founded in [l], [2], etc. 

Recently, the NDP of nonlinear systems has been studied in [3] and 
[4]. Reference [3] gives precise formulation and solves NDP for the 
single-input and block-output case by “controllability distribution” 
approach. Reference [4] proves the same results for the block-input and 
block-output case under more regularity assumptions by using the concept 
of zeros at infinity. 

The main goal of this note is to give an alternative proof of the same 
result of [4] under less regularity assumptions as required in [3]. Our 
proof is constructive, thus it yields an algorithm. Using it, an input-output 
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decomposed form has been obtained. Finally, we prove that the 
decomposed form obtained is a canonical form. 

For investigating the decoupling problem of linear systems, the 
geometric concepts of (A, E)-invariant subspaces and controllability 
subspaces play a very important role. In the geometric approach to 
nonlinear systems, the concept of (A, B)-invariant subspaces has been 
extended to that of (f, g)-invariant distributions [SI, [6], and the concept 
of controllability subspaces has also been extended to that of controllabil- 
ity distributions [7], [8]. 

Since our discussion depends particularly upon the concept of ( f, g)- 
invariance, we state the following definition which is slightly different 
from the original one given in [6]. 

For the sake of compactness, let C ; ( U )  be the set of rn x 1 vectors 
with the entries in C m ( U ) ,  and Gl(rn, C ” ( U ) )  be the set of rn x rn 
nonsingular matrices with the entries in C m ( U )  too, where U is an open 
subset of M. 

Definition I .  1: A distribution A is said to be weakly (f, g)-invariant at 
p E M if there exists a neighborhood U of p, such that on U 

Lf, AI C A + G ,  ( 1.3 .a) 

[g,,  A] C A+G, i = l ,  ... , m  (1.3.b) 

where G = Sp { g, , . * , g, } . A is said to be strongly ( f, g)-invariant at p 
E Mifthereexistaneighborhood U o f p , a  E C;(U)andp E Gl(rn, 
Cm(U)), such that on U 

[ f + g a ,  AI C A. (1.4.a) 

[(go),,  AI C A, ; = I ,  . . .  , m. (1.4.b) 

The local equivalence of these two kinds of ( f ,  g)-invariances is proved 
in [6] and [12] independently. 

U. COMPATIBLE (f, g)-INVARIANCE 

To study decoupling problems of nonlinear systems, we have to 
consider several ( f, g)-invariant distributions simultaneously. Thus, we 
introduce the concept of compatible (f, g)-invariance. 

.., Ak be k weakly (f, g)-invariant 
distributions atp.  AI, . . . , Ak are said to be compatible (f, g)-invariant at 
p, if there exist a neighborhood U o f p ,  a E C ; ( U )  and E Gl(rn, 
C ” ( U ) ) ,  such that on U 

Definition 2.1: Let AI, 

[ f + g a ,  4 1  C A, (2.1 .a) 

(2.1.b) 

Let A be an involutive distribution with constant dimension. According 
to Frobenius’ theorem, there exists a local coordinate chart (U, (x, y ) ) ,  x 
= (XI, . . * , xp) ,  and y = ( y l ,  

[(go),, A,] C A,, j =1 ,  . . e ,  m; i = l ,  ..., k. 

. , yn-p ) ,  such that 

This coordinate chart is called a flat chart [lo]. Let (W, (x’, U’)) be 
another flat coordinate chart and W n U # d. Then on W n U 

Y ’  =v’(u). (2.2) 

Assume a vector field X i s  expressed in a flat chart (x, y) as 

X=(a1,  . * . ,  a,)T E T ( ( I ) .  

Then the canonical projection ir(X) of X on TM/A is defined as 

7f (W=(up+1,  ..., (2.3) 

and denoted as X/A. Using (2.2), it is easy to prove that X/A is 
independent of the choice of the flat frame. 

Likewise, for a distribution G we may define the canonical projection 
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r ( G )  as 

G / A = s ( G ) = S p { a ( X ) ( X  E G } .  (2.4) 

Now if (x, y) is a flat chart, then (r(a/ayl) ,  * * * , ~ ( a / a y ~ - ~ ) )  is a basis 
of TM/A. We say G/A has constant rank if r restricted to G has constant 
rank. 

Now let Do, D I ,  . . e ,  Dk be k + 1 simultaneously integrable 
distributions [ I l l  and locally around p E U, Di = T ( U ) .  We 
construct k distributions A,, . . . , Ak as follows: 

Ai=Do+Di,  i = l ,  ..., k. (2.5) 

Consider the compatible ( f, g)-invariance of AI,  * * , Ak around the point 
p ;  we have the following theorem. 

a ,  Ak be k distributions constructed as above. 
Assume G/Do is nonsingular at p and 

Theorem 2.2: Let A,,  

G = G  A l + ' . . + G  n Ak. (2.6) 

Then A,,  . . . , Ak are compatible ( f, g)-invariant if and only if, each Ai is 
weakly ( f, g)-invariant at p. 

Proof: The necessity is trivial. We prove the sufficiency only. 
Choose local coordinates x, such that [ I  I ]  

Set 
D i = c  DJ,  i = l ,  e.., k.  

J + l  

From (2.6), (2.7), and the fact that G/Do is nonsingular, one may see that 
G/D' is also nonsingular, i = 1, . . * , k. Thus, 

dim ( G / D ' )  : = t,sdim (G n A,). 

Let 63, be any basis of G/D, .  Fix flat coordinate frame x ;  63, may be 
expressed as a matrix B,. Then there exists (pointwise) a t, X m matrix E, 
with rank (E,) = t , ,  such that 

(g' , ,  . . . , g k ) =  B,E,,  i = l ,  ..., k.  

It follows that 

G2 := [': ...';]=[" ... Bk ] [ : ] : = B E .  Ek (2.8) 
g: g: 

E may be solved from (2.8) as 

E =  (BTB)-'ETG2.  (2.9.a) 

Thus, it is clear that E is a t x m smooth matrix. Similarly, we may also 
express B by Gz as 

G2E r( EE T )  - ' = B .  (2.9.b) 

Note that 

k 

rank (E)=rank (B)=C ti := t s m .  

Using this fact, one may find an m x (m - t) smooth matrix Q such that 

rank (Q, ET(EET)- I )=rn .  

i =  I 

1071 

Set 

W= Q - E '( EE ') -'EQ, (2.10.a) 

L=E'(EET)-' ,  (2.10.b) 

Bo=(W, L ) .  (2.10.c) 

It follows from (2.8) and (2.10) that 

(2.11) 

where X stands for some uncertain elements, 4 means direct sum of 
matrices. Next we denote 

B,(X') := B,(xi ,  ..., x ; - ' . x ' , x ; + ~ ,  . . . , x E ) ,  

i.e., set all block coordinates x J ,  except xi, to be x i ,  which is the j th  
block coordinates of the point p. Then BT(x')B,(x) is locally nonsingular 
because it is nonsingular at p. Setting 

f l , = ( B : ( ~ , ) B , ( x ) ) - ~ ,  i = l ,  ..a, k (2.12) 

we construct a and p as follows: 

(2.13.a) 

p= p o ( l m - , $  p1 i . . . i p k )  (2.13 .b) 

where L and /30 are constructed by (2.10) and 

D =  (Bjpli ' ' ' $Bkpk). 

Using the canonical form (2.7) of Di and the fact that A;s are weakly (f, 
0 

In the above proof, the feedback law (a, 0) and a decoupling form have 
g)-invariant, one may verify that the above cy and 

been constructed carefully. It will be used later on. 

satisfy (2.1). 

III. NONINTERACTING DECOMPOSITION THEOREM 

Consider the nonlinear system (1.1) again. The noninteracting decom- 

Definition 3.1: Given a partition of the output (1.1 .b) as 
position problem is described precisely as follows. 

y = ( y ' ,  . . . , y k }  := { h ' ,  ..., hk} 

the noninteracting decomposition problem (NDP) is solvable aroundp E 
M, if there exists a neighborhood U o f p ,  Q E C ; ( U )  and p E G l ( m ,  
C m ( U ) ) ,  such that by using the feedback control U = Q ( X )  + p(x)u ,  
there exists a partition of the input U, say uo,  U I ,  * . , uk, such that i) U' 
does not affect y J (  j # i), and ii) U' completely controls y ' ,  i = 1, 2 ,  . . . , 
k. 

Next we give some notations and conventions. Denote 

K, := n ker ( h i ) ,  i = l ,  ..., k.  
J*I 

Let W, be the largest weakly (f, g)-invariant distribution contained in K,, 
and R, the largest controllability distribution in K, .  Set R = R I ;  W 
= W,;H, = Z,+,WJ; andR,:  theinvolutiveclosureofH,, i.e., the 
smallest involutive distribution containing H,. 

In order to state and prove the theorem of NDP, a few preliminary 
results are necessary. 

Lemma 3.2 [3]: Assume the NDP is solvable, then 

G = G  n R l + . . . + G  n Rk. (3.1) 

Lemma 3.3 131: Assume the system (1.1) is strongly accessible [14], 
. + G n Rk. Then R = T ( U ) ,  i.e., locally dim 

Lemma 3.4: Let AI and A2 be two weakly (f, g)-invariant distribu- 

and G = G n R I  + 
( R )  = n. 
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tions, G = G n AI + G n A2. Then their intersection AI n A2 is 
another weakly ( f, g)-invariant distribution. 

Proof: Let X E AI fl A2, then there exist Yl E A, ,  Y2 E A2, and 
gl, g2 E G, such that 

We will decompose it with respect to coordinates z .  Thus, we define a set 
of distributions by z coordinates as 

D,=Sp {L; -:  j = 1 ,  ...,n,] , i = O ,  1 ,  .a., k. (3.4) 

If, XI=  Y1+g,= yz+g2. 
Under z coordinates, it is clear that 

Thus, 
dz; E H; C W:, j = l ,  ..., k ;  s = l ,  ..., n,; j + i .  

Yl- Y2=g2-gl E G .  
Thus, we have 

Since G = G fl AI + G f l  A2, there exist g; and g;, such that g,' E 
G n A I ,  g; E G fl A2, and Yl - Y2 = g; + g;. Set (dz:, W , ) = O ,  j # i .  

y3 := Y , - g ; = y , + g ;  E n A,. 

Then 

It follows that 

W, C Do+D, ,  i = l ,  ..., k.  (3.5) 

i.e., 

[f, A1 fl A,] C AI fl A2+G. 

Similarly 

[ g ; .  n A,] c A,  n A ~ + G .  

Remark 3.5: Since Ri C Wi, it follows that 

k 

w= w,= T (  U), 
, = I  

G = G  n w , + . . . + G  n wk. 

H , = C  W, c D,, i = l ,  ..., k.  
I+' Jet 

Since the right-hand side of (3.6) is involutive, it follows that 

H8 c D,, i = l ,  ... , k.  (3.7) 
J t l  

To reveal the relations between W, , I?,, i = 1, * . . , k and the canonical 

Lemma 3.7: 
distributions D,, i = 0, . . . , k, we prove the following lemmas. 

(3.2) 
k 

D,,=C w, n H , .  (3.8) 
(3.3) , = I  

Now we are ready to present the following theorem which solves NDP. 
Theorem 3.6: Assume that the affine nonlinear system (1.1) has strong 

accessibility property and all a,, i = 1, . . . , k as well as G/(Cf= I W ,  n 
HI) are nonsingular. Then the NDP is solvable if and only if 

Proof: Let X E Do, since Wl + * . . + W, = T ( U ) ,  there exist X, 
E W,, i = 1, . * * ,  k,  such that X = X I  + * * * + xk. Using (3.16), we 
have 

(dz;, X )  =(dz; ,  X,) ,  j =  1, . . . , k. 
G = G  n w,+...+G n wk. 

But X E Do, it follows that (dz; ,  X,) = 0.  Thus, 
Note that there is an "illegal" use of the notation G/(Xf= I W, fl I?,) in 

the Theorem's statement because we do not know whether W, n HI x, E (Sl,)'=H,. 
is nonsingular and involutive or not. But in the following proof, Lemma 
3.7 will show its legality. 

Proof: The necessity fo~~ows  from Lemma 3.2 and Remark 3.5, 
Thus, we have only to prove the sufficiency. 

According to Frobenius' theorem, we can find a set of C" functions z' 
= (ti,, . . * ,  zb,), where ni = n - dim (R;), such that 

Conversely, if X E I Wi n Hi,  then there exist Xi  E Wi n Hi, 
* * ' 9 k ,  such that x = XI + . ' ' + xk. Since xi E Hi = 

Qt, (dzf,  X I )  = 0.  Since Xi  E W, too, (dz; ,  X I )  = 0, j # i .  Then it is 
'Iear that xi E DO3 = ' 9  * * ' 7  k p  and so is x. 

= 

Lemma 3.8: 

H : = S p { d z ; :  j = 1 ,  .... n , } ,  i = l ,  ..., k .  

We claim that the codistributions Q, : = H: are linearly independent. 
Assume there exists a w, E Q, such that w, = C,,,aJw,, where U, E QJ. 
Then 

and 

w, E w;, 
i.e., 

w, E Wl=T(U)L=O. 

Thus, we can choose z o  = (zy, . . * ,  ~ 0 . ~ ) .  such that n, = n and 
(zo,  zl, . . . , zk) forms a local coordinate frame. Now the original system 
may be expressed in the z coordinates as 

k 

Do+D,= W,+c ( W ,  fl e), i = l ,  ..., k.  (3.9) 
J = 1  

Proof: Equations (3.5) and (3.8) imply that the right-hand side of 

Conversely, if X E D,, as in the proof of Lemma 3.7, there exist XI E 
(3.9) is contained on the left-hand side. 

w,, i = 1, ..-, k, such tha tx  = X I  + f . .  + xk. Then 

(dZ$ X ) = ( d z i ,  X,). 

But since X E D,, it is clear that 

(d ; ,  X,)=O, j # i .  

Thus, X, E Do, j # i, and hence X E DO + W,, i.e., D, C DO + W,.  
0 

Now we continue the proof of Theorem 3.6. 
First, we claim that Do + D, is weakly ( f, g)-invariant. It is easy to see 

that the summation of several weakly (f, g)-invariant distributions is 
another weakly (1, g)-invariant distribution. Thus, H, is weakly (f, g)- 
invariant, and so is HJ, the involutive closure of H, [9]. According to 
Lemma 3.8, to prove that Do + D, is weakly (f, g)-invariant it is enough 

The conclusion follows from Lemma 3.7 immediately. 
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to show that W, n I?, is weakly (f, g)-invariant. Since G = G n W ,  + 
... + G r l  W k c G n  W , + G n H , , i t f o U o w s t h a t G = G n  w,+ 
G fl HJ. Using Lemma 3.4, the claim is obviously true. 

As in the above, one may also see that 

G = G  n w , + . . . + G  n W,=G n (D,+D,)+. . .+G n ( D ~ + D ~ ) .  

Now it can be readily verified that for Do + D,, i = 1 ,  . . . , k, all the 
requirements of Theorem 2.2 are satisfied. Thus, we can construct a and 
0, as in the proof of Theorem 2.2, such that 

[ f + g a ,  Do+41 C Do+Q, (3.10.a) 

[ ( g o ) , ,  Do+D,] c Do+D,, j = 1 ,  * . . , m ;  i = l ,  ..., k. (3.10.b) 

According to (3.10) and the canonical form (3.4) of D,, a straightfor- 
ward computation shows that the feedback system z = f + ga  + g0u has 
the following decomposed form: 

iO=fO(z) +gO(z)u 

z' = f ' ( z ' )+g ' ( z ' )u '  

Now it is obvious that U' does not affect z', j = 1 ,  * * 1 ,  k,  j # i .  To 
show that U' does not affect hJ,  it is enough to show that hJ = hJ(z'). 
Since W, C ker (h&) = ( S p { d h ' } ) l ,  j # i, it follows that 

(Sp{dh ' } ) l  3 H, .  

Note that the left-hand side of the above equation is involutive, thus 

(Sp{dh ' } ) l  3 H, .  (3.12) 

It follows that 

dh' E H:=Cl,=Sp{dz;: j = 1 ,  ..., n , )  

which means that 

hJ=hJ(zJ ) ,  j =  1, . . . , k .  (3.13) 

To see that U' completely controls h', a simple computation shows that 

R,J, c D,lz, z E U ,  i = l ,  ..., k. 

Using this fact and the equation (3.13), one may easily see that 

rank (Jhj)=dim ( h i ( & ) )  

where J,,, is the Jacobian matrix of h'. Thus, U' controls h' completely.0 

IV. NONINTERACTING FORM 

Summarizing the previous constructive proofs, we obtained the 
following algorithm. 

Algorithm 4.1 
Step I :  Verify that the system is strong accessible. 
Step 2: Compute K, : = n,,, ker (h:) and W,, the largest weakly (f, 

Step 3: Set 
g)-invariant distribution contained in K,. 

H , = X  W,, i = l ,  ..., k .  
J f I  

Compute f?, and verify that H,'s are nonsingular. 
Step 4: Check that 

G = G  n w , + . - . + G  n w,. 
Step 5: Choose coordinates z = (zy, . . . , z : ~ ;  z l ,  . . . , zA1; . . .; z;, 

. . . , z;,) such that 

H:=Sp{dz ; :  j = l ,  ..., n,}, i = l ,  . . .  , k.  

Step 6: Choose any basis B; of G/D' where 

D 1 = C  DJ. 
J f l  

Step 7: Follow the procedure of (2.8)-(2.13) to construct the feedback 
law a, 0, and the feedback control system 

z = f ( z )  + g ( z ) a  +g(z)Pu, 

y = h ( z ) .  (4.1) 

The following theorem shows that the above Algorithm is workable. 
Theorem 4.2: Under the assumptions of Theorem 3.6, the NDP is 

solvable if and only if, Algorithm 4.1 is executible and under the 
coordinates z the feedback control system (4.1) has the following 
noninteracting form: 

iO=fo(z) +gO(z)u 

z' = f ' ( z ' ) + g ' ( z ' ) u '  

zk=fk(z,)  +g,(z')uk, 

y,=h'(z ' ) ,  i = l ,  ..., k.  (4.2) 

Proof: It follows from the constructive proofs of Theorems 2.2 and 
3.6. 0 

To reveal the physical meaning of the decomposed substates of (4.2), 
let us turn back to the proof of Theorem 3.6. By (3.11) we have W, c Do 
+ D,. Clearly, Do + D, C nJt, ker h/* and Do + D, is (f, g)-invariant. 
Hence, Do + D, = W, is the largest weakly ( f, g)-invariant distribution 
contained in n,,, ker h/* .  Moreover, from (4.2) it is also clear that Do is 
the largest weakly ( f, g)-invariant distribution contained in nF= I ker h$, . 
The decomposed form (4.2), therefore, has significant physical meaning. 

Using (3.9), (4.2) shows that Do + D,, i = 1, . * .  , k are compatible 
(f, g)-invariant. In [3] the controllability distributions R, are shown to be 
compatible (f, g)-invariant. Now we prove the following. 

Proposition 4.3: Under the assumptions of Theorem 3.6 the largest 
weakly (f, g)-invariant distributions W, C n,,, ker h$, are compatible 
( f, g)-invariant. 

The rest of this section will be devoted to showing that the 
noninteracting decomposed form (4.1) is a canonical form. 

Acoordinateframez = (zy, . * * , Z : ~ ; Z ~ ,  * * . , z A l ;  . . * ; z ; ,  ..., z;,) 
is called a flat coordinate frame with respect to H I ,  . . . , H k ,  if 

. . .  

H:=sp{dz ; :  j = l ,  ..., n,}, i = l ,  ... , k. 
In the noninteracting decomposed system (4. I), we call each subsystem 

z '= f ' ( z ' )  +g'(z')u' 

y '=h'(z ' ) ,  i = l ,  ..., k 

the input-output noninteracting subsystem. 
The noninteracting form (4.2) is a canonical form in the following 

sense. 
Theorem 4.3: Let x be another flat coordinate frame with respect to 

H I ,  . . -, f?k .  If under the coordinates x ,  one obtained another 
noninteracting decomposed form 

X O = P ( x )  +gO(x) w 

X'  = J ' ( x ' )  + g ' ( x ' )  w '  

Xk=j,(xk)+gk(xt)wk 

y , = h ' ( x ' ) ,  i = l ,  ..., k (4.3) 

. . .  

where g' has full rank, i = 1 ,  . . . , k. Comparing it to (4.2). there exist 
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substate diffeomorphisms F,:z‘ + x‘, i = 1, . e . ,  k; and substate 
feedback laws Q,(x’),  &(x’),  i = 1 ,  . . . , k, such that 

f ’ = ( F , ) Z + ( F , ) * g ’ %  

h ’ = (F;  ‘)*h . (4.4) 

That is, each input-output noninteracting subsystem is unique, modulo a 
subsystem substate diffeomorphism, and a subsystem substate feedback 
control. 
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Low-Resolution Implementation of High-Resolution 
Position Control 

HERBERT HANSELMANN 

Abstract-Digital implementation of position or path control using 
high-resolution encoders may require high resolution for control al- 
gorithm computations too if the controller state variables carry high- 
precision absolute position information. If the control algorithm is 
reformulated in a form in which the controller state is continuously offset 
according to the possibly nonconstant setpoint, then much less arithmetic 
wordlength may be sufficient. 

I. INTRODUCTION 

State-of-the-art high-precision position control systems may easily be 
equipped with digital position encoders yielding 18 or more bits. A 
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position signal spanning a range of 2 m, for instance, is then quantized 
with about 8 pm resolution, and this resolution may indeed be necessary 
to achieve the design goals, as in the example given in Section IV. 

Usually, implementation of position control based on such position 
sensor signals directly requires arithmetic resolution even higher than the 
sensor resolution. This may be in conflict with the capabilities of some 
target processors (such as digital signal processors [l], [2]), but is 
undesirable at least whenever the standard wordlength supported is 
exceeded. 

Fig. 1 shows a typical control system. It performs path control, i.e., the 
position reference signal is usually not constant. In robotics it is common 
to feedforward velocity and acceleration reference signals in addition to 
the position reference in order to minimize path-following errors. The 
system in the dash-lined box is not part of the final control system, but 
models the feedforward signals during design. Besides the position there 
may be several auxiliary measurement signals, some of which may also be 
high resolution position signals. All signals are collected in the measure- 
ment vector y,. 

The design of the controller may be performed according to the 
structure from Fig. 1. The problem, however, is that in this case the 
absolute position will be represented in the state variables of the 
controller, and, typical of most practical position control applications, full 
control action will be produced for position errors many orders of 
magnitude smaller than the absolute position range. Since the full absolute 
position which may be accurate to, say, 18 bits must be represented within 
the limited wordlength of the target processor arithmetic, but only a few 
least significant bits are responsible for producing the control signal, there 
may be severe quantization effects or else the wordlength demand 
becomes excessive. 

This situation can be alleviated by implementing the control in an error 
form as sketched in Fig. 2 (the error signals are e, and e,,), along with a 
nonconstant controller state variable offset leading to a reformulated 
controller. It is the purpose of this note to present a systematic technique 
to eliminate the absolute position information from the state variables of 
the controller. The controller state variables will then be zero in any 
stationary position, and the arithmetic precision available can be fully 
used for the transient deflections which produce the control action. 
Eliminating absolute position information is particularly important when 
short wordlength fixed point arithmetic (say 16 bits) has to be used. But 
note that even a standard 32 bit floating point format accommodates only 
24 bits in the mantissa, so the problem at hand may also be of importance 
in this case. 

Using position error signals in the control algorithm has always been 
the standard technique with conventional cascade type position control 
systems. For other types of compensators such as those derived via 
optimal control theory, an appropriate technique does not seem to be 
available. The problem discussed has some connection with the constant 
nonzero setpoint issue as discussed, for instance, in [3], but note that we 
do not stick to a particular controller configuration such as state-feedback, 
nor do we restrict the reference signal to being constant. 

The proposed reformulation technique can be applied both to a 
continuous controller which later on might be discretized, or to an already 
discrete controller, be it designed in the discrete domain or be it a 
discretized version of a continuous controller. The continuous case, which 
already shows the main ideas, is considered first in Section II. The 
discrete case is a little bit more involved and requires separate discussion 
which is given in Section III. For clarity, all derivations are made for the 
situation shown in Figs. 1 and 2, but can easily be adapted to different 
sensor signal situations. The technique is illustrated by an industrial 
application example in Section N. 

n. REFORMULATION OF A CONTINUOUS CONTROLLER 

Let the original controller be given in state-space form as 

(1) x= Ax+ byy + b,r+ bayo+ bvy,,,v + b,r+ b,r 
“€So 
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