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SUMMARY

This paper is to investigate the normal form representation of control systems. First, as numerical tools we
develop an algorithm for normal form expression and the matrix representation of the Lie derivative of
a linear vector "eld over homogeneous vector "elds. The concept of normal form is modi"ed. Necessary and
su$cient conditions for a linear transformation to maintain the Brunowsky canonical form are obtained. It
is then shown that the shift term can always be linearized up to any degree. Based on this fact, linearization
procedure is proposed and the related algorithms are presented. Least square linear approximations are
proposed for non-linearizable systems. Finally, the method is applied to the ball and beam example.

The e!orts are focused on the numerical and computer realization of linearization process. Copyright
� 2002 John Wiley & Sons, Ltd.
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1. PRELIMINARY

Consider a dynamic system

xR "f (x). (1)

The normal form is a powerful tool in dynamic system analysis. (cf. References [1, 2]). In this
paper we will use normal form to consider the feedback equivalence of nonlinear systems,
particularly, the problem of approximate linearization.

A lot of work has been done in this "eld [2}14]. These works provided necessary and su$cient
conditions and algorithms for the approximate linerization of di!erent control systems. Parti-
cularly, a homological equation is derived in References [3, 4] (refer also to References [13, 14])



to characterize a linearizable systems. Two sets of canonical forms were found in Reference [13].
The second canonical form is a system without shifting term. Furthermore, a canonical form is
also found for g (x).

Our goal in this paper is to provide an easily computable conditions for approximate
linearization. We emphasize on the mechanical and computer realization.

We "rst recall the normal form of (1) and some related properties. Let H�
�

be the set of kth
degree homogeneous polynomial vector "elds in R�. Then the following facts are obvious:

1. H�
�
is a linear vector space over R.

2. Let ¸3H�
�

be a given vector "eld. Then the Lie derivative

ad
�
: H�

�
PH�

�

is a linear mapping.
Now "x ¸3H�. According to above fact the range of the mapping ad

�
:H�PH� is a subspace

of H�. Then we can decompose H� as

H�"ad
�
(H�) �G

�

where G
�
is a complement of ad

�
(H�). Note that G

�
is not unique. The following theorem provides

a normal form expression of system (1).

Theorem 1.1. (Guckenheimer and Holmes [1])
Consider system (1) with f (0)"0. Let ¸"J

�
(0)x, where J

�
(0) is the Jacobian matrix of f at

zero. Then there exists a local di!eomorphism x"x (z) around zero such that (8.1.1) can be
locally expressed as

zR "g
�
(z)#g

�
(z)#2#g

�
(z)#R

�
(z) (2)

where

g
�
(z)"J

�
(0)z; g

�
(z)3G

�
; i"2,2, r; R

�
(z)"o (�z����)

Equation (2) is called a normal form of (1).
For convenience in further discussion, we give a mild modi"cation to the normal form

expression (2) as follows:

Let E
�
Laa

�
(H�) be a subspace and

H�"E
�
�G

�
. (3)

Then equation (2) is called a modi,ed normal form if g
�
(z)3G

�
; i"2,2, r where G

�
is de"ned by

relationship (3). Since we enlarged the subspace G
�
, a normal form is also a modi"ed normal form

for any modi"cation. The following algorithm is suitable for both the normal and modi"ed
normal form expression. This formulation will be helpful in the sequel.

Algorithm 1.2
Step 1: Use the Taylor expansion to express system (1) as

xR "J
�
(0)x#�

�
(x)#R

�
"Ax#�

�
(x)#R

�
(x), �

�
(x)3H�

�
. (4)
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Step 2: (From Step 2 on is a loop, starting with i"1.) Assume g
�
, i"1,2, k!1, are as

required. That is, at step i"k!1 (8.1.2) is obtained as

zR "Az#g
�
(z)#2#g

���
(z)#�

�
(z)#R

���
(z). (5)

Choose G
�
and decompose �

�
(z) as

�
�
"h

�
#g

�
(6)

where h
�
3E�Lad

�
(H�), g

�
3G

�
.

Step 3: Find ¹(z)3H� such that

h
�
(z)"ad

�
(¹(z)) (7)

where ¸"Ax.
Step 4: Modify the right hand side of (4) by replacing z by z#¹(z) and then multiply it by

a proper approximation of [I#J
�
(z)]��. Precisely, modify (4) as follows:

zR "Q
�
(z)[g

�
(a#¹(z))#2#g

���
(z#¹(z))#�

�
(z#¹(z))

#R
���

(z#¹ (z))] (8)

where

Q
�
(z)"I!J

�
(z)#J�

�
(z)$2#(!1)	J	

�
(z) (9)

and the order j in the above equation is

j"min�t � t*
r!1

k!1� (10)

If k(r, replace (5) by (8) then go back to step 2. Else end the algorithm.

Theorem 1.3
After r!1 recursive computations the above algorithm provides the required modi"ed normal

form.

Proof. First of all, it is easy to check that under the j de"ned in (10), we have

(I#J
�
(z))��"Q

�
(z)#o (�z����).

Secondly, a straightforward computation shows that

zR "(I!J
�
(z))(Az#A¹(z))#g

�
(z)#2#g

���
(z)#����(z)#o(�z����)

"Az!ad
�
¹ (z)#�

�
(z)#g

�
#2#g

���
(z)#o (�z����).

Thus

�
�
(z)!ad

�
¹(z)"�

�
(z)!h

�
(z) :"g

�
(z)3G

�

and the conclusion follows. �
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Table I. The dimension of B�
�
.

k�dim(n) 1 2 3 4 5 6 2

0 1 1 1 1 1 1
1 1 2 3 4 5
2 1 3 6 10
3 1 4 10
4 1 5
5 1
2

2. MATRIX REPRESENTATION OF ad
�

It can be seen in previous section that the vector space of kth homogeneous vector "elds, H�
�
,

plays an important role in normal form representation. We investigate some properties of it in
this section.

Proposition 2.1
The dimension of H�

�
is

dim(H�
�
)"

n (n#k!1)!

k !(n!1)!
, k*0, n*1. (11)

Proof. Let B�
�
be the set of homogeneous polynomial of degree k in R�. Then

H�
�
" ��

�	�
h�
�

where h�
�
"B�

�
��

�
.

Throughout this paper �
�
is used for a vector with all zero elements except the kth component,

which is 1. By "xing the degree of one variable, one sees easily that

dim(B�
�
)"

�
�
�	


dim(B�
���

) .

Using the equality

�
n!1

0 �#�
n

1�#2#�
n#k!1

k �"�
n#k

k � (12)

the conclusion follows via mathematical induction. �

It is interesting that the dimension of B�
�

can be obtained quickly by Table I which is
constructed as follows: achieving each number by adding the upper and left numbers. Then
dim(H�

�
)"n dim(B�

�
).

Later on, we denote s"s�
�
"dim(B�

�
).

Consider the Algorithm 1.2. To get a "xed matrix representation of ad
�
, we have to unify the

order of the elements in a natural basis of H�
�
.
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First, we order the monic monomial elements of degree k as follows: Let b
�
"x���

�
2x���

�
,

b
�
"x���

�
2x���

�
. De"ne b

�
�b

�
if k�



"k�



, s"1,2, t and k�

���
'k�

���
for some 0)t(n. Denote

the set of such ordered monomials by B�
�
, or simply B� if there is no confusion: e.g.

B�
�
"(x�

�
, x

�
x
�
, x

�
x
�
, x�

�
, x

�
x
�
, x�

�
)

B�
�
"(x�

�
, x�

�
x
�
, x�

�
x
�
, x

�
x�
�
, x

�
x
�
x
�
, x

�
x�
�
, x�

�
, x�

�
x
�
, x

�
x�
�
, x�

�
) .

The basis �B�
�
�
�
,2, B�

�
�
�
� of H�

�
is called the natural basis.

For X3H�
�
, X can be expressed as

X"(r�
�
,
2

, r�


, r�

�
,
2

, r�


,
2

, r�
�
,
2

, r�


)3R��
 (13)

Precisely, let �e
	
, j"1,

2
, s� be the natural basis of B�

�
. Then

X"

�
�
�	�



�
		�

r�
	
�
�
e
	
"�



�
		�

r�
	
e
	
,2,



�
		�

r�
	
e
	�

�
. (14)

In later discussion we need these two forms of X. We will call (13) the expanded form, while (8.1.12)
the vector ,eld form.

A matrix expression of ¸
�

can be explained as to "nd a matrix M�
�
such that

¸
�
X"M�

�
X, X3R��
 .

Now assume ¸ has a canonical form as

¸"�
0 1 0 2 0

0 0 1 2 0

2

0 0 0 2 1

a
�

a
�

a
�

2 a
�
�x . (15)

We use �
�
for �/�x

�
. Then

ad
�
X"�



�
		�

r�
	
�
�
e
	
,2,



�
		�

r�
	
�
�
e
	

2



�
		�

r�
	
�
�
e
	
,
2

,


�
		�

r�
	
�
�
e
	 � ¸x!¸ �



�
	

r�
	
e
	

2



�
	

r�
	
e
	 �

"�
���
�
�	�

x
���



�
		�

r�
	
�
�
e
	
#

�
�
�	�

a
�
x
�



�
		�

r�
	
�
�
e
	
!



�
		�

r�
	
e
	

2

���
�
�	�

x
���



�
		�

r���
	

�
�
e
	
#

�
�
�	�

a
�
x
�



�
		�

r���
	

�
�
e
	
!



�
		�

r�
	
e
	

���
�
�	�

x
���



�
		�

r�
	
�
�
e
	
#

�
�
�	�

a
�
x
�



�
		�

r�
	
�
�
e
	
!

�
�
�	�

a
�



�
		�

r�
	
e
	 � . (16)
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From (13) it is clear that the matrix expression, M�



of ad
�

can be expressed as

ad
�
"�

D !I 0 2 0

0 D !I 2 0

2

!a
�
I !a

�
I !a

�
I 2 D!a

�
I� (17)

where D is determined by the following mapping:



�
		�

r
	
e
	

>

���
�
�	�

x
���



�
		�

r
	
�
�
e
	
#

�
�
�	�

a
�
x
�



�
		�

r
	
�
�
e
	
. (18)

Example 2.2
Consider the following system:

�
xR
�

xR
�

xR
�
�"�

x
�
e��

x
�
#x

�
sin x

�
ax

�
#bx

�
#cx

�
#x

�
x
�
�

"�
x
�

x
�

ax
�
#bx

�
#cx

�
�#�

x
�
x
�

x
�
x
�

x
�
x
�
�#o (�x��). (19)

Then we have

¸"J
�
(0)x"�

0 1 0

0 0 1

a b c�x.

Using (14), when n"3 the representation of ad
�
:H�

�
PH�

�
is

ad
�
"�

D !I 0

0 D !I

!aI !bI D!cI� (20)

where D can be calculated by comparing coe$cients of (18). For k"2, D is expressed as

D"�
0 0 a 0 0 0

2 0 b 0 a 0

0 1 c 0 0 2a

0 1 0 0 b 0

0 0 1 2 c 2b

0 0 0 0 1 2c
� . (21)
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To simplify the computation let a"b"c"0. According to the form of D one can choose
G

�
as

G
�
"Span�x�

�
�
�
, x

�
x
�
�
�
, x

�
x
�
�
�
, x�

�
�
�
�.

Then H�
�
"ad

�
(H�

�
)�G

�
. Moreover, matrix D provides that

�
�
"!t

�
!t

�
#s

where t
�
"ad

�
(x

�
x
�
�
�
#x�

�
�
�
)3H�, t

�
"ad

�
(x

�
x
�
�
�
)3H� and s3G

�
. Following Algorithm 1.2,

set

x"z#�
0

!x
�
x
�

!x
�
x
�
!x�

�
� .

Approximating (I#J
�
)�� by I!J

�
with

J
�
"�

0 0 0

0 !x
�

!x
�

!x
�

!x
�

!2x
�
�

we obtain the following normal form:

�
zR
�

zR
�

zR
�
�"�

z
�

z
�
0 �#�

0

0

z�
�
#2z

�
z
�
�#o (�x��). (22)

In the above example if we had chosen k"3, then we would have had to choose I!J
�
#J�

�
to

approximate (I#J
�
)�� and would have had to keep the third order terms at each step. Instead of

equation (19), we would have then obtained

�
zR
�

zR
�

zR
�
�"�

z
�

z
�
0 �#�

0

0

z�
�
#2z

�
z
�
�#�

!�
�
z
�
z�
�
!z

�
z�
�

z�
�
#z

�
z
�
z
�

!z�
�
z
�
#3z

�
z�
�
#2z�

�
z
�
�#o (�x��)

and then would have had to use the table for ad
�
: H�PH� to "nd a new ¹.

For general n and k, the algorithm for D is essential for further discussion. We consider the
matrix representation of ad

�
: H�PH� for a "xed ¸ as in the Brunowsky canonical form. In fact,

this matrix representation is a Lie algebra representation: let ¸"Ax and A3gl(n, R) be
arbitrary, then APad

�
is a Lie algebra homomorphism and when we identify ad

�
with its matrix

representation as a matrix, say M
�
3gl (t, R), where t"ns"dim(H�

�
), then the natural mapping

becomes a Lie algebra homomorphism from gl(n, R) to gl (t, R).
To construct the representation form, we have to "nd the position of a monic polynomial

x��
�

x��
�

2x��
�

in B�
�
, denoted by p�

�
(k

�
,2, k

�
). It is basic for calculating the matrix form of the

representation of ad
�

on H�
�
. We prove a formula as follows:

415REPRESENTATION OF CONTROL SYSTEMS

Copyright � 2002 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2002; 12:409}433



Theorem 2.3
The position p�

�
is given by

p�
�
(k

�
,2, k

�
)"

(k!k
�
) (k!k

�
#1)2(k!k

�
#(n!2))

(n!1)!

#

(k!k
�
!k

�
) (k!k

�
!k

�
#1)2(k!k

�
!k

�
#(n!3))

(n!2)!

#2#

(k!k
�
!2!k

���
)

1
#1. (23)

Proof. Consider k
�

as a "xed number. The following recursive expression is obtained by
assigning k

�
"k, k!1,2, k

�
#1 to get the size of the corresponding blocks.

p�
�
(k

�
,2, k

�
)"p


���
(0,2, 0)#p�

���
(0,2, 0, 1)#p�

���
(0,2,0, 2)

#2#p������
���

(0,2, 0, k!k
�
!1)#p����

���
(k

�
,2, k

�
) . (24)

Using Equation (24), we can derive Equation (23) by mathematical induction with respect to n.
Equation (23) is obviously true for n"2. Assume it is true for n, then

p�
���

(k
�
,2, k

���
)"p


�
(0,2, 0)#p�

�
(0,2, 0, 1)#p�

�
(0,2, 0, 2)

#2#p������
�

(0,2, 0, k!k
�
!1)#p����

�
(k

�
,2, k

���
)

:"P
�
#P

�
(25)

where P
�

contains all but last terms, which, by induction assumption, is

P
�
"(1#0#0#2#0)#�1#1#

1�2

2!
#2#

1�2�(n!1)

(n!1)! �
#�1#2#

2�3

2!
#2#

2�2�n

(n!1)! �#(2)#�1#(k!k
�
!1)

#

(k!k
�
!1)�(k!k

�
)

2!
#2#

(k!k
�
!1)�2�(k!k

�
#n!3)

(n!1)! �
and P

�
is the last term in Equation (25), which is

P
�
"p����

�
(k

�
,2, k

���
) .

Comparing Equation (25) with the expression of p�
���

(k
�
, k

�
,2, k

���
), one sees easily that we

must show

P
�
"

(k!k
�
) (k!k

�
#1)2(k!k

�
#(n!1))

n!
.

Observe that the sum of the "rst elements in each parenthesis of P
�

is

�
k!k

�
k!k

�
!1� .
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Adding it to the sum of second elements in each parenthesis and applying the formula (12), one
sees easily that the sum of the elements of the "rst two columns is

�
k!k

�
#1

k!k
�
!1�

Repeat the procedure by adding to it the sum of the third elements, using formula (12) and
continuing we "nally have

P
�
"�

k!k
�
#n!1

k!k
�
!1 �

which complete the proof. �

For instance, consider p�
�
(0, 2, 2). Using (8.2.4),

p�
�
(0, 2, 2)"

k (k#1)

2!
#

k!1

1!
#1"13.

Hence x�
�
x�
�

is the 13th element in B�
�
.

Using Theorem 2.3, one can easily obtain the matrix representation of ad
�
:H�

�
PH�

�
. For

linearization, we are particularly interested in the form when ¸"(x
�
, x

�
,2, x

�
, 0)�. For such

¸ we have the following application.

Proposition 2.4
If ¸"(x

�
, x

�
,2, x

�
, 0)�, the ad

�
:H�

�
PH�

�
can be expressed as in (17), where D is constructed as

follows: For all k
�
*0, i"1,2, n, ��

�	�
k
�
"k, set

j"p�
�
(k

�
, k

�
,2, k

�
)

i"p�
�
(k

�
,2, k

�
!1, k

���
#1,2, k

�
), k

�
'0, r"1,2, n!1.

Then the elements D
�	

of the matrix D of dimension s�s, which is the matrix form of the
representation of ad

�
, are determined as

d
�	
"�

k
�
, k

�
O0, for above (i, j)

0 otherwise.
(26)

Proof. First of all, by de"nition di!erent (k
�
,2, k

�
) corresponds di!erent j. Then for same

j di!erent s corresponds di!erent i. So (26) is well de"ned. Next, from (18) it is clear that for each
term of ax��

�
,2, x��

�
D maps it to a(k



)x��

�
2x����

�
x������
���

2x��
�
, for r"1,2, n!1. It is not

di$cult to see that D, de"ned in (26), realizes this mapping. �

The following example is used to describe the constructing process.

Example 2.5
Let n"3 and k"4. To construct D, we "gure out its entries "rst. Denote by K



"(k

�
, k

�
, k

�
),

K
�
"(k

�
!1, k

�
#1, k

�
), K

�
"(k

�
, k

�
!1, k

�
#1) where K

�
corresponds to r"1 and K

�
corresponds to r"2. Then the entries d

�	
can be calculated in Table II.
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Table II. Matrix representation of ad
�

on H�
�
.

K



j K
�

i d
�	

K
�

i d
�	

400 1 310 2 4 * * *

310 2 220 4 3 301 3 1
301 3 211 5 3 * * *

220 4 130 7 2 211 5 2
211 5 121 8 2 202 6 1
202 6 112 9 2 * * *

130 7 040 11 1 121 8 3
121 8 031 12 1 112 9 2
112 9 022 13 1 103 10 1
103 10 013 14 1 * * *

040 11 * * * 031 12 4
031 12 * * * 022 13 3
022 13 * * * 013 14 2
013 14 * * * 004 15 1
004 15 * * * * * *

Then D follows as

ig
g
gg
g
g
k

0 0 0 0 0

4 0 0 0 0

0 1 0 0 0

0 3 0 0 0

0 0 3 2 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

eg
g
gg
g
g
h

D"

0 0 0 0 1

0 0 0 2 0

0 0 0 0 2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 3 0 0 0

2 0 2 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

.

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

4 0 0 0 0

0 3 0 0 0

0 0 2 0 0

0 0 0 1 0

In fact, the constructing procedure is particularly suitable for computer realization. A program
can be created easily to calculate it.
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Now assume X"(x�
�
x�
�
, 2x

�
x�
�
, x�

�
x
�
)� :"(X

�
, X

�
, X

�
)�. Then in the expanded basis X

�
can be

expressed as

X
�
"(0 0 0 1 0 0 0 0 0 0 0 0 0 0 0)�

X
�
"(0 0 0 0 0 0 0 0 0 0 0 0 0 2 0)�

X
�
"(0 0 1 0 0 0 0 0 0 0 0 0 0 0 0)� .

Let >"ad
�
X. Then

�
>
�
>
�
>
�
� �

D !I 0

0 D !I

0 0 0 � �
X

�
X

�
X

�
� "�

DX
�
!X

�
DX

�
!X

�
DX

�
� .

It turns out easily that

>
�
"(0 0 0 0 2 0 2 0 0 0 0 0 0 !2 0)�

>
�
"(0 0 !1 0 0 0 0 0 0 0 0 0 0 0 2)�

>
�
"(0 0 0 0 3 0 0 0 0 0 0 0 0 0 0)� .

That is

ad
�
X"�

B�
�
>
�

B�
�
>
�

B�
�
>
�
�"�

2x�
�
x
�
x
�
#2x

�
x�
�
!2x

�
x�
�

2x�
�
!x�

�
x
�

3x�
�
x
�
x
�

� . �

Later on, to get a normal form expression of a control system, the expresentation (17) is not
convenient. To get more convenient matrix expression of the linear mapping ad

�
: H�

�
PH�

�
, we

prefer to use the following transformation, which itself is interesting:

¹"�
I 0 0 2 0

D I 0 2 0

D� 2D I 2 0

	 �

D��� �
n!1

1 �D��� �
n!1

2 �D��� 2 I � . (27)

Its inverse is

¹��"�
I 0 0 2 0

!D I 0 2 0

D� !2D I 2 0

	 �

(!D)��� �
n!1

1 � (!D)��� �
n!1

2 � (!D)��� 2 I � . (28)
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Using the transformation ¹ to the natural basis, we get a new basis as

(N
�

N
�
2N

�
)"(B�

�
�
�

B�
�
�
�
2B�

�
�
�
)�¹

which is called the normal basis.
Assume the expanded form of X3H�

�
under original natural basis is X

�
and under new normal

basis is X
�
. Then

X
�
"¹��X

�
. (29)

Using (17), it is clear that under normal basis the matrix expression of ad
�

becomes

¹��¸
�
¹"�

0 !I 0 2 0

0 0 !I 2 0

	 �

D� �
n

1�D��� �
n

2�D��� 2 �
n

n!1�D � . (30)

The following proposition is obvious, but we will "nd it useful in the linearization problem.

Proposition 2.6
Let ad

�
:H�

�
PH�

�
, where ¸ is de"ned as (15). Then

(i)

codim(ad
�
(H�

�
))"

n (n#k!1)!

k!(n!1)!
!dim(D�).

(ii) Consider the normal form decomposition: H�
�
"ad

�
(H�

�
) �G�

�
. The complement of the image,

G�
�
, may be chosen as a subspace of Span�N

�
�, which is Span�B�

�
�
�
�.

(iii) Let=�
�
LH�

�
be the subspace of H�

�
generated by=�

�
"Span�N

�
, N

�
,2, N

�
�. If we restrict

ad
�

to=�
�
, then ad

�
:=�

�
PH�

�
is a one to one mapping. Moreover, if E�

�
:"ad

�
(=�

�
) is used to

replace ad
�
(H�

�
), for the modi"ed normal form with respect to E�

�
, statement (ii) remains true.

Proof. The conclusion follows immediately by Equation (30) and the Brunowsky canonical
form. Particularly, from the structure of ¹ it is obvious that Span�N

�
�"Span�B�

�
�
�
�. �

Remark
For multi-input case we have

¸"diag(¸
�
, ¸

�
,2, ¸



)

¹"diag(¹
�
, ¹

�
,2, ¹



)

¹��ad
�
¹"diag(¹��

�
ad

��
¹

�
, ¹��

�
ad

��
¹

�
,2, ¹��



ad

�

¹



) .

420 D. CHENG AND C. F. MARTIN

Copyright � 2002 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2002; 12:409}433



3. ON LINEAR EQUIVALENCE

Linearization is one of the most basic and useful topics in the geometric theory of nonlinear
control systems. We refer to References [15, 16] for necessary and su$cient conditions for the
local feedback linearization of a$ne nonlinear systems and to Reference [17] for other
linearization problems. The approximate linearization problem has received considerable study.
The reader may refer to References [6}15] for related works and many useful results on this problem.

Consider the following system:

xR "f (x)#g(x)u"f (x)#


�
�	�

g
�
(x)u

�
, x3R� (31)

where f(x) and g
�
(x), i"1,2, m, are C� vector "elds over R�, f (0)"0. Taking into consideration

a state feedback control with non-zero leading linear terms, we always assume u"o(�x�), that is
u has the same order as x. For instance, both x� and x�u are considered as elements of o (�x, u��).

The approximate linearization is de"ned as follows:

Dexnition 3.1
System (31) is said to be kth degree linearizable at zero, if there exists a neighbourhood N U 0,

a local di!eomorphism z"z(x) from N to z(N), and a state feedback u"
 (x)#� (x)v, with
non-singular � (x), such that the feedback system has the following form:

zR "Az#Bv#o (�x, u����) (32)

with the pair (A, B) in Brunowsky canonical form.

Before constructing the transformation, we consider the following problem: How much
freedom do we have for linear equivalence and in particular, for kth order linear equivalence with
state feedback?

The main purpose of this argument is to restrict the searching class of di!eomorphisms.
Consider again system (32) and let the pair (A, B) be the linear approximation of the system, i.e.

A"J
�
(0)

B"g (0)"(g
�
(0),2, g



(0))

then an obvious necessary condition for linearizability is that (A, B) is a controllable pair. If this
condition is satis"ed, we can convert system (31) to

xR "Ax#Bu#o (�x��)#o (�x, u��) (33)

We call system (33) the "rst order linearized form, where (A, B) is assumed to be in Brunowsky
canonical form. If a system satis"es this necessary condition, it is said that the linear rank
condition is satis"ed.

If system (31) is kth degree linearizable for any k'1, it should be convertible to "rst degree
linearized form as in Equation (32). Thus, we may start from Equation (33). From now on, we will
only consider systems in the form of Equation (33).

Next, we want to investigate the set of di!eomorphisms, which preserves the Brunowsky
canonical form. To "nd the particular form of such di!eomorphisms we need some preliminary
results.
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Dexnition 3.2
A square matrix A is said to have Brunowsky A-form if

A"�
0 1 0 2 0

0 0 1 0

�

0 0 0 1

a
�

a
�

a
�

2 a
�
� .

A vector b is said to have Brunowsky b-form if

b"(0 2 0 b


)�

A matrix N

��

is called a Brunovsky null-form if all but the last row elements are zero. That is

N"�
0 0 2 0

�

0 0 2 0

n
�

n
�

2 n


� .

For multi-input case, Brunowsky-A-form, Brunowsky B-form and Brunowsky null-form are
de"ned similarly. That is:

A"diag(A
�
, A

�
,2, A



)

B"diag(b
�
, b

�
,2, b



)

and N is the matrix of n�n with all zero elements except the last rows n
�
, n

�
#n

�
,2, n at each

block.

Lemma 3.3
Let A

���
and A


�

be two matrices with Brunowsky A-form, b

�
and b

�
be two vectors of

dimensions n and m, respectively, as of Brunowsky b-form and N

��

be a Brunowsky null-form.
J

��

is any matrix.
J satis"es the following conditions:

J�b
�
"b

�
(i)

J�A
���

"A

�


�J#N (ii)
(34)

if and only if

J"�
j
�

j
�

2 j
��
��

0 2 0

0 j
�

j
��


j
��
��

0

� �

0 0 2 j
�

j
�

2 j
��
��

� (35)

where j
�
,2, j

��
��
are n!m#1 real numbers.
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Proof. (Necessary): From (i) the elements in the last column of J are all zero except the last one.
Then consider the equation in (ii). The result follows by equalizing the elements in the "rst m!1
rows and using mathematical induction.

(Su.ciency): A straightforward computation shows su$ciency. �

The following corollary is obvious but useful in the proof of the following theorem.

Corollary 3.4
Suppose J satis"es the conditions in Lemma 3.3.

(i) If m"n, then J"�I where �3R;
(ii) If m'n, J"0.

In fact, Lemma 3.3 and Corollary 3.4 tell us how much freedom we have if we want to preserve
the Brunovsky canonical form. A larger Brunovsky block can be multiplied by a matrix (33) and
added to smaller one to keep the Brunovsky form of the block unchanged. Corollary 3.4. claims
the following fact: Each set of sequential m rows are multiplied by same number. If two blocks
have the same size the only operation allowed is adding a constant multiple of one block to
another one. A larger block may not be added to a smaller one.

For instance, assume for system (1) there are two di!eomorphisms: 
 :x >y and � : x >z, such
that



*
( f )"�

0 1

0 0

0 1 0

0 0 1

0 0 0� y#o (�y��)

�
*
( f )"�

0 1

0 0

0 1 0

0 0 1

0 0 0� z#o (�z��)

Then the Jacobian matrix of 
��� at zero should be

J�(���
"�

I

�
0

J �I
�
�

where 
, � are non-zero real numbers and J is as in (35).
We hereafter will, without loss of generality, assume in Brunowsky, A-form all a

�
are zero and in

Brunowsky B-form all b


"1. A pre-state feedback can be used to realize this.

The next theorem plays a fundamental role in the following linearization argument.
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Theorem 3.5
Consider system (33). If it is kth degree linearizable, then there exists a di!eomorphism

x"z#� (z), which realized the linearization.

Proof. Let x"¹(z) be a di!eomorphism, which realized the linearization, then it should keep
the Brunowsky canonical form unchanged. For notational ease, we assume m"2. The proof for
m'2 is basically the same but involves a messy set of indexes. As for m"1, as a particular case
(with one block disappeared in the following proof ), it is much easier.

If ¹ realizes the kth degree linearization, it should convert system (33) into the following form:

zR "�
A

�
N

�
N

�
A

�
� z#�

b
�
0 � u

�
#�

0

b
�
� u

�
#�

o (�x����)�n
�
!1

o(�x��)

o (�x����)�n
�
!1

o (�x��) �
#�

o (�x��)�n
�
!1

o(�x�)

0 � u
�
#�

0

o (�x��)�n
�
!1

o (�x�) � u
�

(36)

where A
�

and A
�

are Brunowsky A-forms, b
�

and b
�

are Brunowsky b-forms, N
�

and N
�

are
Brunowsky null-forms. Assume the original Brunowsky canonical form in Equation (33) is

A"�
A�

�
N�

�
N�

�
A�

�
� , B"�

b�
�

0

0 b�
�
�

and the Jacobian matrix of ¹ at zero is

J
�
"�

J
��

J
��

J
��

J
��
� .

Since J
��

b
�
, J

��
b
�
, J

��
b
�

and J
��

b
�

should be Brunowsky b-forms, the elements in the last
columns of J

�	
, i"1, 2; j"1, 2, are all zero except the last one. If follows that for any Brunowsky-

null form N, both J
�	
N and NJ

�	
(if the dimensions are proper for multiplication) remain as

a Brunowsky null-form.
Comparing the linear terms of (33) and (36) yields

�
A�

�
N�

�
N�

�
A�

�
� �

J
��

J
��

J
��

J
��
�"�

J
��

J
��

J
��

J
��
� �

A
�

N
�

N
�

A
�
� .

Multiplying and setting corresponding blocks equal yields

A�
�
J
��

"J
��

A
�
#N

A�
�
J
��

"J
��

A
�
#N

A�
�
J
��

"J
��

A
�
#N

A�
�
J
��

"J
��

A
�
#N
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where N is some Brunowsky null-form with proper dimension. Now using Lemma 3.3 and
Corollary 3.4,

J
��

"aI; J
��

"dI.

If n
�
"n

�
J
��

"bI; J
��

"cI.

If n
�
'n

�

J
��

"0; J
��

"�
j
�

j
�������

� �

j
�

j
�������

�
where a, b, c, d, j

�
,2, j

�������
are real numbers.

Case 1: n
�
"n

�
. Since J

�
is non-singular, the inverse

�
a b

c d�
��

"�

 �

� ��
exists. Hence we can de"ne a linear transformation as

S : z"�

I

�
�I

�
�I

�
�I

�
� y, n"n

�
"n

�
. (37)

Now the Jacobian matrix of the composed mapping S
3
¹ at zero is

J
� 3�

(0)"
�x

�z
(0)�

�z

�y
(0)"J

�
�J

�
"I

�����
. (38)

Note that S is a linear transformation. Using Equation (37) and the su$cient part of Lemma 3.3,
it is clear that S leaves Equation (33) unchanged. (Precisely, only the remaining higher degree part
may have been changed.) Then Equation (38) implies that S

3
¹, expressed as x"y#o (�y��) is

the required di!eomorphism.
Case 2: n

�
'n

�
. De"ne a linear transformation S as

1

a
I 0

S : z"�!1

a �
j
�

j
�������

� �

j
�

j
�������

� 1

d
I � y. (39)

It is easy to check that Equation (39) satis"es Equation (38) and has the particular form required
by Lemma 3.3. The arguments in Case 1 remain correct. �

Remark
The physical meaning of the transformation discussed above is: In Case 1 the two blocks have

been changed by block non-singular linear combination; while Case 2 means adding a larger
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block to a smaller block in such a way that multiplying each set of sequential n
�
rows by the same

numbers ("rst set by j
�
, second set by j

�
, etc.) and then adding them to the smaller block. It is

obvious that the Brunowsky canonical form remains unchanged. Basically, Lemma 3.3 says that
only these two kinds of linear transformations are allowed if the Brunowsky canonical form is to
remain invariant.

4. LINEAR APPROXIMATION

Now we consider the linearization problem. For shifting term we have

Dexnition 4.1
System (33) is shifting term kth degree linearizable, if there exists a di!eomorphism and a state

feedback such that (33) becomes

xR "Ax#o (�x����)#Bv#g���(x)v (40)

where g���(x)"o(�x�) and (A, B) has feedback Brunowsky canonical form.

¹heorem 4.2
System (33) is always shifting term kth degree linearizable for any k*1.

Proof. We prove it by induction. To begin with, we assume m"1. For k"1 the conclusion is
trivial. Suppose (31) is already shifting term kth degree linearized. We rewrite (40) as

xR "Ax#f �����(x)#o(�x����)#Bv#g���(x)v

where f �����(x)3H���
�

. We express f �����(x) under the normal basis as f �����"col(

�
,2, 


�
).

Correspondingly, we can use a di!eomorphism as x"z#� (z), where �(z)3H���
�

is chosen as

�"!(N
�


�
#N

�


�
#2#N

�


���

).

It follows from (30) that

ad
�
�"�



�

2



���

���
�
�	

�
n

i�D���

���� . (41)

Now we can choose

u"!f ���
�

#

���
�
�	

�
n

i�D���

���

.

Then

ad
�
�"f#Bu.

So the normal form transformation x"z#�(z) converts (40) into a (k#1)th degree linearized
form.

For multi-input systems, we can simply do the above process block-wise. �
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For systems with a single input the same result as Theorem 4.2 for quadratic case was proved in
Reference [13].

Next, we provide a detailed algorithm for approximate linearization. The basic result is an
algorithm of the kth degree linearization for a (k!1)th degree linearized system, which leads to
a system of linear algebraic equations. That is, the (k!1)th degree linearized system is kth degree
linearizable, if and only if, the algebraic equations have solution.

Assume we have already obtained a (k!1)th degree linearized system in the form

xR "Ax#f ���(x)#Bu#g�����(x)u#o (�x, u����) (42)

where f ���(x)3H�
�
, g�����

�
(x)3H���

�
, i"1,

2
,m.

To state our main algorithm, we need a little preparation and some additional notation.
First we express f ��� in normal basis as

f ���"(N�
�
(


�
,2, 


�
))� (43)

where 

	
3R
, s"s�

�
.

Denote by

C"�n
�
, n

�
#n

�
, n

�
#n

�
#n

�
,2, n�

which corresponds the rows with controls of the linearized system. Let its complement be denoted
by ;, i.e., ;"�1, 2,2, n��C. We use C

�
for ith element in C.

It should be emphasized that whether natural basis or normal basis is used, the transformation
T assures that the index set C always corresponds to the rows with linear inputs.

Since we started from system (42), where the pair (A, B) has canonical Brunowsky form,
a di!eomorphism should be chosen to keep them unchanged. Note that feedback can only a!ect
the rows in ;. According to Theorem 3.5 and the proof of Theorem 4.2, a di!eomorphism,
x"z#� (z), where � (z)3H�

�
should be chosen as

�(z)"(�
�
,!


�
,2, !


����
, �

�
, !


��
,2, !


�������
,2,

�


, !


���2��
����
,2, !


���
)� (44)

The above form is expressed as an expanded form with respect to the normal basis. 

�
3R


are known from (43), which are used to eliminate the kth degree terms of f ���
	

, j3; rows. �
�
3R
���

�

will be chosen in the following to eliminate the (k!1)th degree terms of (g�����)�
	

i3;.
Denote by

D"�1, n
�
#1, n

�
#n

�
#1,2, n

�
#n

�
#2#n


��
#1�

which corresponds the �
	

blocks in � (z). Let its complement be denoted by <, i.e.,
<"�1, 2,

2
, n��D, which corresponds the 


	
blocks in � (z).

Using Equations (8) and (9), one sees that to obtain the Brunowsky B-form up to o (�z�)�), we
need

�I!

��
�x� (B#g�����)"B#O

�
(45)

where B is a Brunowsky B-form and O
�
is a Brunowsky null-form. Only (k!1)th degree terms

should be considered. So it is required that

!

��
�

�x
��

"(g�����
�

)
�
"0, r3;, i"1,2, m. (46)
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Table III. Derivative operator.

p(x) J
�
(p(x)) J

�
(p (x)) J

�
(p (x))

j i J
�	

i J
�	

i J
�	

1 1 4 * * * *

2 2 3 1 1 * *

3 3 3 * * 1 1
4 4 2 2 2 * *

5 5 2 3 1 2 1
6 6 2 * * 3 2
7 7 1 4 3 * *

8 8 1 5 2 4 1
9 9 1 6 1 5 2

10 10 1 * * 6 3
11 * * 7 4 * *

12 * * 8 3 1 7
13 * * 9 2 8 2
14 * * 10 1 9 3
15 * * * * 10 4

Now the problem becomes: Find �
	
for � (z) in (44) such that the di!eomorphism x"z#�(z)

satis"es (46). The next e!ort will be focused on express (46) into an easily solvable linear algebraic
equations.

Let J
�
"�/�x

�
, then J

�
may be considered as a mapping J

�
: B�

�
PB���

�
, and expressed as

an s���
�

�s�
�
matrix.

Using Theorem 2.3, the following algorithmic formula for J
�

is obtained.

Algorithm 4.3
The derivative J

�
, or precisely (J�

�
)
�
, can be constructed as follows: For all k

�
*0, i"1,2, n,

��
�	�

k
�
"k, if k

�
O0, set

j"p�
�
(k

�
, k

�
,2, k

�
)

i"p�
�
(k

�
,2, k

�
!1, k

���
,2, k

�
).

Then the elements J
�	

of the matrix (J�
�
)
�
of dimension dim(B���

�
)�dim(B�

�
), are determined as

J
�	
"�

k
�
, k

�
O0, for above (i, j)

0, otherwise.
(47)

The following example explains the matrix J
�
.

Example 4.4
Assume n"3 and k"4. Now for instance if we consider a monic p(x)"x

�
x�
�
3B�

�
p (x) is the

10th element in B�
�
. So j"10. Now

�p

�x
�

"x�
�
,

�p

�x
�

"0,
�p

�x
�

"3x
�
x�
�
.

428 D. CHENG AND C. F. MARTIN

Copyright � 2002 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2002; 12:409}433



So for J
�

we have i"10, and J
�
��


"1, for J
�

we did not get non-zero value, and for J
�

we have
i"6, and J


��

"3. Overall we have the following:

Then J
�
, J

�
, and J

�
are obtained immediately. Say,

0 1 0 0 0

0 0 0 2 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 3 0 0 0

0 0 2 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

J
�
"� �0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

4 0 0 0 0

0 3 0 0 0

0 0 2 0 0

0 0 0 1 0

.

The next thing is to express (46) into an easily solvable linear algebraic equation of �
�
.

Express g
�
in a vector form with respect to the natural basis as

g
�
"(B���

�
(��

�
,2, ��

�
))�, i"1,2, m (48)

where ��
	
3R
���

� .
Note that the expression of � (z) in (44) is in normal basis. In natural basis it becomes ¹� (z).

Di!erentiate it with respect to x
��

is (J
��

� I
�
) (¹�). Hence (46) can be expressed as

[(J
��

� I
�
) (¹�)]

	
"��

	
, j3;, i"1,2, m. (49)

Now denote by ¹"(¹�	), i, j"1,2, n. Where ¹��	 are (s�
�
)�(s�

�
) matrices. For notational ease we

denote X"col(�
�
,2, �



). Then (49) can be rewritten as

(J
��

¹	��, J
��

¹	��,2, J
��

¹	�
)X"J
��

�
���

¹	�

���

#��
	

j3;, i"1,2, m. (50)

Summarizing the above argument yields the following.

Theorem 4.5
System (42) is kth degree linearizable if and only if Equation (50) has a solution,

X"col(�
�
,2, �



). Moreover, if the solution exists, putting any such solution into Equation (44),

a di!eomorphism x"z#� (z) and a proper state feedback transforms (42) into a kth degree
linearized form.

Remark 2
1. In fact, Theorem 4.5 may be considered as an algebraic realization of the corresponding

characterization conditions for a linearizable systems in References [6, 7]. (Also refer to Refer-
ences [16, 17].) The advantage of Theorem 4.5 is that it is linearly comparable.
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2. If (1) does not have solution, we may "nd the least-square approximate solution. Such an
approximate solution provides a feedback kth linear approximation to the system (4.3). In a later
example it will be seen that this kind of approximation is also meaningful. This approximation is
co-ordinate depending.

5. SYSTEM OF BALL AND BEAM

In this section we apply the algorithm introduced above to the ball and beam example, which was
introduced and discussed in Reference [12]. After the Taylor expansion, a simple linear
transformation the system of ball and Beam can be written as

�
xR
�

xR
�

xR
�

xR
�
�"�

x
�

x
�

x
�
0 �#�

0

x
�
x�
�
!x�

�
0

0 �#�
0

0

0

1� u#o (�x��). (51)

Since Equation (51) is a second linearized form, our question is: Is it third linearizable? We have
only to check whether Equation (50) has a solution.

We "gure the indeces "rst. For (51) we have

C"�4�, ;"�1, 2, 3�, D"�1�, <"�2, 3 , 4�.

Then system (50) becomes

J
�
¹	�x"J

�

�
�
�	�

J	�

���

#�
	
, i"1, 2, 3. (52)

The corresponding entries are

0 0 0 1 0

0 0 0 0 0

0 0 0 1 0

0 0 0 1 0

0 0 0 1 0

0 0 0 0 0

0 1 0 0 0

0 0 0 1 0

0 0 0 0 2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
J
�
"� �0 0 0 1 0

0 0 0 1 0

0 0 0 1 0

0 0 0 1 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

2 0 0 0 0

0 0 1 0 0

0 0 0 2 0

0 0 0 0 3
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� �
¹"�

I 0 0 0

D I 0 0

D� 2D I 0

D� 3D� 3D I �
0 0 0 0 0

3 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 2 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 2 0 2

0 0 0 2 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

1 0 0 0 0

0 1 2 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

D"
0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0

3 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 2 2 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 3 0 0 0

1 0 2 0 0

0 0 0 1 0



�
"


�
"


�
"0 and all elements but two of 


�
are zero:



�
"�

�

!�

��

�
�
"0, i"1, 2, 3, 4.
Equation (52) can be further simpli"ed as

�
J
�

J
�
D

J
�
D��X"�

0



�

2D

�
#


�
� . (53)
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The program veri"ed Equation (53). The conclusion is: The system is not third degree
linearizable.

The program also showed that the least square solution is

�"�
�


.

Using Equation (44), the transformation becomes

x"z#�
0

0

!z
�
z�
�
#z�

�
!z

�
z�
�
#3z�

�
z
�
� . (54)

Now a straightforward computation shows that in the co-ordinate z, after a suitable state
feedback, that system (51) can be transformed to

�
zR
�

zR
�

zR
�

zR
�
�"�

z
�

z
�

z
�
0 �#�

0

0

0

1� v#�
0

0

2z
�
z
�

0 �#o (�x��). (55)

Equation (55) is the same as the approximated linear form obtained in Reference [12].

6. CONCLUSION

Using the modi"ed normal form this paper presented a normal form representation of a class of
a$ne nonlinear systems which have a controllable linear approximation. An algorithm has been
developed to approximately linearize such a nonlinear system via solving an algebraic equation.
In fact, it can be proved that by using the normal form approximation the arguments in the
algebraic equations have been reduced to a minimum. Least square linear approximation is
proposed for a system, which is not kth degree linearizable, to obtain the best kth degree linear
approximation. The main purpose in this paper is to provide a mechanically computable formula
procedure for the linearization of nonlinear systems. So it can be realized in computer.

REFERENCES

1. Guckenheimer J, Holmes P. Nonlinear Oscillations, Dynamical Systems and Bifurcations of <ector Fields. Springer:
Berlin, 1983.

2. Arnold VI. Mathematical Methods of Classical Mechanics. Springer: New York, 1978.
3. Krener AJ. Approximate linearization by state feedback and coordinate change. System and Control ¸etters 1984;

5:181}185.
4. Krener AJ, Karahan S, Hubbard M, Frezza R. Higher order linear approximations to nonlinear control systems.

Proceedings of the IEEE Conference Decision and Control, Los Angeles 1987; 519}523.
5. Krener AJ. Mew approaches to the design of nonlinear compensators. Proceedings of Berkeley-Ames Conference on

Nonlinear Problems in Control and Fluid Dynamics, Matrin C, Hunt R (eds). Mathematical Sciences Press: Brookline,
MA, 1984.

6. Krener AJ, Karahan S, Hubbard M. Approximate normal forms of nonlinear systems. Proceedings of the IEEE
Conference on Decision and Control, San Antonio 1991; 1223}1229.

432 D. CHENG AND C. F. MARTIN

Copyright � 2002 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2002; 12:409}433



7. Krener AJ. Nonlinear controller design via approximate normal forms. In Signal Processing, Part II: Control ¹heory
and its Applications, Grunbaum A, Helton JW, Khargonekar P (eds). Springer-Verlag: Berlin 1990; 139}154.

8. Krener AJ, Maag B. Controller and observer design for cubic systems. In Modeling, Estimation and Control of Systems
with ;ncertainty, Dimasi GB, Gombani A, Kurzhansky AB (eds). Birkhauser: Boston 1991; 224}239.

9. Krener AJ, Hubbard M, Karahan S, Phelps A, Maag B. Poincare's linearization method applied to the design of
nonlinear compensators. In Algebraic Computing in Control. Jacob G, Lamnahbi-Lagarrigue F. (eds). Springer: Berlin
1991; 76}114.

10. Reboulet C, Champetier C. A new method for linearizing nonlinear systems: The pseudolinearization. International
Journal of Control 1984; 40:631}638.

11. Xu Z, Hauser J. Higher order approximate feedback linearization about a manifold for multi-input systems. IEEE
¹ransations Automatic Control 1995; 40(5):833}840.

12. Hauser J, Sastry S, Kokotovic P. Nonlinear control via approximate input-output linearization: the ball beam
example. IEEE ¹ransactions Automatic Control 1992; 37(3):392}398.

13. Kang W, Krener AJ. Extended quadratic control normal form and dynamic feedback linearization of nonlinear
systems. SIAM Journal Control and Optimization 1992; 30:1319}1337.

14. Kang W. Extended controller form and invariance of nonlinear control systems with a single input. Journal of
Mathematical Systems, Estimation and Control 1996; 6:27}51.

15. Jakubczyk B, Respondek W. On linearization of control systems. Bulletin of Academic Polonaise Science Series Science
Mathematics 1980; 28:517}522.

16. Hunt LR, Su R, Meyer G. Design for multi-input nonlinear systems. In Di+erential Geometric Control ¹heory,
Brockett RW, Millman RS, Sussmann HJ (eds). Birkhauser: Boston, MA 1983; 268}298.

17. Cheng D, Isidori A, Respondek W, Tarn TJ. Exact linearization of nonlinear systems with outputs. Mathematical
Systems ¹heory 1988; 21:63}83.

433REPRESENTATION OF CONTROL SYSTEMS

Copyright � 2002 John Wiley & Sons, Ltd. Int. J. Robust Nonlinear Control 2002; 12:409}433


