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State–Space Analysis of Boolean Networks
Daizhan Cheng, Fellow, IEEE, and Hongsheng Qi

Abstract—This paper provides a comprehensive framework for
the state–space approach to Boolean networks. First, it surveys the
authors’ recent work on the topic: Using semitensor product of ma-
trices and the matrix expression of logic, the logical dynamic equa-
tions of Boolean (control) networks can be converted into standard
discrete-time dynamics. To use the state–space approach, the state
space and its subspaces of a Boolean network have been carefully
defined. The basis of a subspace has been constructed. Particularly,
the regular subspace, -friendly subspace, and invariant subspace
are precisely defined, and the verifying algorithms are presented.
As an application, the indistinct rolling gear structure of a Boolean
network is revealed.

Index Terms—Basis, Boolean (control) network, indistinct
rolling gear structure, state space, subspace.

I. INTRODUCTION

B ECAUSE of the development of systems biology, the
study of Boolean networks becomes a new cross-disci-

pline hot topic. Kauffman is the pioneer on this field [15] and
provides [16] a less academic but more intuitive description for
the role of Boolean network in cellular regulation.

Using semitensor product and the matrix expression of logic,
we have developed a new systematic approach to the analysis
and control of Boolean (control) networks [4]–[6]. The engine
of this new approach is the state–space approach of the logical
dynamic systems. Summarizing our previous results, this paper
intends to build a comprehensive framework for the state–space
approach to the Boolean networks. Certain new results have
been added to make this engine structurally complete.

Denote by

the set of logical values. A logical variable is an independent
variable which can take any value from . A logical function
with logical variables as its arguments is a mapping

.
Now assume that are a set of time-varying logical

variables. Their involvement subjects to the following logical
dynamic equations:

... (1)
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Fig. 1. Boolean network.

Fig. 2. Boolean control network.

where , are logical functions. We call (1) a
discrete-time logical dynamic system.

For a discrete-time logical dynamic system if there are some
additional inputs, called the controls, and some outputs, it be-
comes a discrete-time logical dynamic control system. Its dy-
namics can be expressed as

... (2)

where and are logical func-
tions, , are controls, , are out-
puts.

A logical dynamic (control) system is also called a Boolean
(correspondingly, control) network, which was first introduced
by Kauffman [14]. Boolean network has attracted a considerable
attention from biologists, physicians, and system scientists, be-
cause it has been proved to be a proper tool to describe cellular
networks [11], [15].

Physically, a Boolean network consists of nodes, denoted
by , and a set of edges, denoted by

. means there is a directed side from to .
Physically, it means the dynamics of node is affected by node

directly. Using to describe the th node, which can take
values from , (1) is a proper way to describe its dynamics.
The dynamics of a Boolean control network is described by (2).

We give two simple examples for a Boolean network and a
Boolean control network, respectively. (We refer to [12] and
[17] or any other standard textbook of mathematical logic for
the logical operators used in the sequel.)
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Example I.1:
1) Consider a Boolean network depicted in Fig. 1. Its dy-

namics is described as

(3)

2) Consider a Boolean control network depicted in Fig. 2,
which is obtained from Fig. 1 by adding two inputs and

and one output . Its dynamics is described as

(4)

One of the milestones in modern control theory is the
state–space description of the control systems, proposed by
Kalman. Observing (1) and (2), one sees that they are formally
the same as the state–space description of dynamic (control)
systems. Unfortunately, they are essentially different from the
conventional dynamic (control) systems. Let us first investigate
this. Denote . In linear case, is in a linear
vector space, say, , and in nonlinear case, could be in an

-dimensional manifold, which could be or locally diffeo-
morphic to an open set of . But in logical case, ,
which does not have vector space structure such as . So
the state–space approach seems not directly applicable to the
Boolean (control) networks. In our previous series works, we
have gradually introduced the concepts of coordinate trans-
formation, regular subspace, invariance subspace, etc., to the
logical systems, which make it possible to use the state–space
approach to logical dynamic systems. The purpose of this
paper is to systemize what we proposed in previous works
with certain necessary new techniques to form a systematic
state–space approach to logical dynamic (control) systems.

The main tool for this approach is the new matrix product,
called the semi-tensor product of matrices (denoted by ).
It is a generalization of conventional matrix product to the case
when the column number of the first factor matrix is not the
same as the row number of the second factor matrix . Using it,
a logical equation can be expressed as an algebraic equation. We
refer to [2] or [3] for a systematic introduction to this new matrix
product. Throughout this paper, the matrix product is assumed to
be semitensor product. When the dimension matching condition
is satisfied for two matrices and , the product
becomes the conventional matrix product.

II. ALGEBRAIC FORM OF LOGICAL DYNAMICS

To use matrix expression of logic, we need the following no-
tations.

• : the th column of the identity matrix .
• .
• : the set of columns of .

TABLE I
STRUCTURE MATRIX OF LOGICAL OPERATORS

• A matrix is called a logical matrix, if

Denote the set of logical matrices by .
• If can be expressed as ;

for the sake of condense, is denoted as

• Vector form of logical values; we identify

then the vector form of the set of logical values is , that
is, .

The following result is one of the key points in our approach.
Theorem II.1 [2], [3]: Let be a logical function of ar-

guments. Then, there exists a unique , called the
structure matrix of , such that

(5)

It is worth noting that the products on the right-hand side of
the above equality are semitensor product of matrices, and the
symbol is omitted. In conventional sense, they are not defined.

Denote . Then, (5) can also be expressed as

(6)

Note that , which maps
is a bijective mapping. The converting formula was given in

[6].
In Table I, we list the structure matrices for some basic logical

operators (LO), which are used in the sequel.
A logical function can be expressed by some fundamental

logical operators. For instance, since is an adequate
set [12], any logical function can be expressed by them. Then,
the structure matrix of a logical function can be calculated
by using the structure matrices of some fundamental logical op-
erators as in Table I and some properties of semitensor product.
It was briefly reviewed in [4].

The structure matrix of can also be calculated directly
as follows. Denote . Let

. We can uniquely calculate out from . Say,
we have . Then, the th column
of is

(7)

Using Theorem II.1 and some properties of semitensor
product of matrices, we can convert a logical dynamic (control)
system into its algebraic form.
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Theorem II.2 [6]:
1) Consider system (1). Define . Then, there ex-

ists a unique , called the transition matrix of
the system, such that

(8)

Equation (8) is called the algebraic form of (1).
2) Consider system (2). Define

. Then, there exist unique , and
unique such that

(9)

Equation (9) is called the algebraic form of (2).
To illustrate this, we recall Example I.1.
Example II.3: Consider Example I.1.

1) Let . Then, the algebraic
form of system (3) is

where

2) Let , and
. Then, the algebraic form of system (4) is

where

and

A logical dynamic (control) system is commonly expressed
in its logical form (1) [respectively, (2)]. It can be converted into
its algebraic form (8) [respectively, (9)] and vise versa. In fact,
logical form and algebraic form are equivalent. We refer to [5]
for converting algorithms from one to the other.1

III. STATE SPACE AND SUBSPACE

Consider a conventional linear system

The state space can be expressed as

(10)

In fact, the state space is spanned by . So we can
write

(11)

Now, each spans a 1-D subspace of , denoted as

(12)

Generally, a subset of elements can span a
-dimensional subspace, denoted by

(13)

Alternatively, we may consider as a coordinate
frame of the state space . Each can be expressed
uniquely as

Under this consideration, the state space is the set of linear
functions of . Denote the set of linear functions of

by , then we can express the state
space alternatively as

(14)

Similarly, (12) can be expressed alternatively as

(15)

Equation (13) can be expressed alternatively as

(16)

In fact, here we define a subspace in “dual” way. That is, a set
of linear functions determined a subspace, which is the domain
of this set of functions.

Now consider the logical dynamic system (1). Similar to con-
ventional dynamic systems, we can define the state space as

(17)

Motivated by (14)–(16), we give the following definition.
Definition III.1: Denote the state space of system (1) by

1A toolbox for all the related computations is available at http://lsc.
amss.ac.cn/~dcheng/
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which is the set of logical functions of the arguments
.

Throughout this paper, of a set of logical variables means
the set of logical functions with the logical variables as their
arguments.

Remark III.2: Since a logical function is compounded from
(unary or binary) logical operators, a logical space means a set of
logical variables, which is closed under logical operators. Since

is a commonly used adequate set, we can also say that
a logical space is a set of logical variables, which are closed
under .

Definition III.3: Let . is called a subspace of , if
is closed under .
Note that both state space and subspace are sets. There

is no special topological structure, or only the trivial discrete
topology is applicable.

Definition III.4: Let be a subspace. Consider a finite
set . is called a generator of

, if . A generator with minimum number
is called a basis of the subspace.

Remark III.5: Let be a set of independent
logical variables. Then, from Theorem II.1, it is clear that

contains different elements. Independence
means each cannot be expressed as a logical function of

.
For any subspace , there is at least one generator,

because the set of all its elements, which is a finite set, is its
generator. Now the following two problems are natural. i) Given
a subspace, how to find its basis? ii) Is this basis unique in certain
equivalent sense?

Let be a generator of . That is,
. Denote and . From

the previous section, we know that we can express as

(18)

where . We call (18) the algebraic form of the
subspace with respect to the generator .

We first seek for a generator with minimum number of el-
ements. Assume is another generator of with

. Since , we can find a logical matrix ,
such that

(19)

Since is also a generator of , we can find another
logical matrix , such that

(20)

Using above notations, we have the following.
Theorem III.6: Let

be a subspace with its algebraic form with respect to the gener-
ator as in (18). Let be an integer, such that

(21)

Then, there exists at least one generator of elements, which
is the generator with minimum number of elements, i.e., it is a
basis.

Proof: Comparing (20) with (18), since the coefficient ma-
trix is unique, we have

where (22)

Since , it can be expressed as

It is obvious that is the number of different en-
tries in .

We claim the following.
Fact 1: Let . Then, to meet (22), we must have

that the th column of is .
To see this, let be the th column of and

. It follows from (22) that . So
the th column of must be .

According to Fact 1, the columns of have been determined
uniquely. Moreover, these fixed columns are enough to assure
(22). Hence, the other columns of can be chosen freely.

Next, we try to find logical matrices and such that
. It is worth noting that

(23)

which means if a generator has number of elements, then
. Let be the unique integer satisfying (21). Then, if a generator

contains exactly elements, it is a basis.
First, we assume . Choosing different columns from
to form a matrix , that is

then we set . Note that are distinct num-
bers. It follows that

where is a zero vector. Replacing the zero columns
of by any element in yields a matrix . Set

. Note that by construction it is clear that the th
column of , denoted by , is

Then, the th column of , denoted by , is

(24)

where is the th column of . Equation (24) shows that
satisfies Fact 1.

Note that the (semitensor) product of two logical matrices is
still a logical matrix. So .

As for , in addition to the different columns from ,
we can choose additional columns such that the

columns are linearly independent. Then, they form the logical
matrix . Using the same procedure as above, we can
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also construct a logical matrix such that satisfies
Fact 1.

Let be determined by

By construction, we have

which means is a generator of . Recalling (23) and the argu-
ment after it, is a basis of .

In fact, the above constructive proof provides an algorithm
for constructing a basis. We summarizing it as follows.

Proposition III.7: Let a subspace be given with gen-
erator . The following Algorithm III.8 provides a
basis of .

Algorithm III.8: Step 1: Get the algebraic form of with
respect to the generator as

(25)

where , with . Find satisfying (21).
Step 2: Choose distinct columns of , say,

and add linearly independent to form a
matrix

Step 3: Set and replace the zero columns of by
any to get a matrix .

Step 4: Set . Then is a basis of .
We use the following examples to show how to find a basis.
Example III.9: Consider .

1) Assume

We want to find a basis for . Setting
, and , then it is easy to calculate

that

where

Choosing different columns, we can form as

Then, we have

where . Replacing by , for any
, say, setting , we have

Setting

it is easy to check that . Hence

with

is a basis of . Back to logical form, set , where

then it is easy to calculate that

It follows that

2) Assume

We want to find a basis for . It is easy
to calculate that

where

Choosing three different columns and adding one more lin-
early independent column, say, , we can form as

Then, we have

Replacing by, say, , we have

Setting

it is easy to check that . Hence

with

is a basis of . Back to logical form, set , where

then it is easy to calculate that
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It follows that

In the above, it was shown that a subspace has at least a basis.
In general, it is hard to say whether the basis is unique (under
certain equivalent sense). It will be discussed in the next section
for regular case.

IV. COORDINATE TRANSFORMATION AND REGULAR SUBSPACE

In the previous section, the subspace and its basis have been
discussed in detail. There is a special subspace, which plays
an important role in analysis (synthesis) of Boolean (control)
networks.

Definition IV.1: Consider system (1). Let

be a subset of the state variables. The set

is called a regular subspace of of dimension .
From the logical dynamic equation (1), Definition IV.1 is

very natural. Here “regular” is used to emphasize that it is not
an arbitrary subset of . It has a subsystem structure in system
dynamics. In [4], it was shown that if a regular subspace is in-
variant, the structure of the network is heavily depending on it.
Precisely, it provides a rolling gear structure for the cycles of
the system. But the above definition depends on the expression
of the system. We need a coordinate-free definition.

In modern control theory, the state–space approach is pow-
erful in analysis and control design. Particularly, the invariant
subspace, the output kernel space, and the controllable (observ-
able) subspace are of fundamental importance in the synthesis of
control systems. To define and apply similar subspaces of dis-
crete-time dynamic (control) systems, the coordinate transfor-
mation is also essential. The coordinate transformation of log-
ical dynamic systems was first proposed in [7].

Definition IV.2: Let be defined by

... (26)

The mapping , defined by

is called a coordinate transformation (briefly, coordinate
change), if is one to one and onto.

Denote and . Then, we can get the
algebraic form of (26) as

(27)

where is called the transfer matrix.
Theorem IV.3 [7]: Using the above notations, is a coordi-

nate transformation, iff its transfer matrix is nonsingular.

In fact, the algorithms for converting a logical dynamic
system into its algebraic form and vice versa can also be used
to construct the coordinate change. We give a simple example
to illustrate this.

Example IV.4: Consider a set of mappings

(28)

whose algebraic form is

Setting and , we have

where . Since is nonsingular, (28)
is a logical coordinate transformation.

It is easy to check that if is invertible, then
. Hence is the algebraic form of , which are

the logical functions of .
Using the standard process given in [7], we can get the inverse

transformation of (28) as

Now we can give a coordinate-free definition of a regular sub-
space.

Definition IV.5: Let .
is called a -dimensional regular subspace of , if there are

, such that
is a coordinate transformation.

Definition IV.5 is very general. It will be powerful in the syn-
thesis of logical dynamic control systems, provided we are able
to verify it and to construct a new coordinate system, which has
the basis of as part of the coordinates. We will briefly describe
how to verify it.

Since , they can be expressed as

... (29)

Define , and . Then, we can easily get
the algebraic form of (29) as

(30)

where , which can be expressed as

...

Using the above notations, we have the following theorem,
which is of fundamental importance.

Theorem IV.6 [7]: Assume that a set of logical variables
satisfies (27). Then,
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is a -dimensional regular subspace, iff the corresponding coef-
ficient matrix satisfies

(31)

If condition (31) is satisfied, Cheng et al. [7] provide a me-
chanical way to construct a new coordinate frame, which has
as part of its coordinates.

We give some examples to illustrate the regular subspace.
Example IV.7: Assume that a state space is given as

. Set .
1)

(32)

Let . Then, its algebraic form can be expressed
as

Since is not a regular
subspace.

2)

(33)

where

Let . Then, its algebraic from can be expressed
as

Since is a regular
subspace. Setting , we are ready to check that

is a coordinate transformation.
A natural question is: if , can we claim that
is a -dimensional subspace and using the normal routine in

linear algebra to construct a basis of ? The answer is “no.” This
shows the difference between logical subspace and the linear
subspace. As a counter example, space (32) has ,
but it is not a 1-D subspace.

The concept of regular subspace is very important in
constructing controllable/uncontrollable (observable/unobserv-
able) subspaces, which provide the controllable (observable)
canonical forms of logical dynamic control systems [5].

Let . Consider a set of functions
, which may come from the outputs of

system (2). Theorem IV.6 tells us how to check whether
is a regular subspace of . In case is

not a regular subspace, we need to find a regular subspace ,
such that . is called the -friendly (regular) subspace.
It is important in decoupling problems [9]. Let and

. Assume that the algebraic form of is

(34)

where . Set

where is the cardinality (number of the elements) of the set.
Using above notations and statements, we have the following
result. (For statement ease, a factor of the form is called a
2-type factor.)

Theorem IV.8 [9]: Assume that has algebraic form
.

1) There is a regular subspace of dimension , such that
, iff have a common factor .

2) Assume that the largest 2-type common factor of
is . Then, the smallest regular sub-

space, containing , is of dimension .
Given , a detailed algorithm for constructing -friendly

subspace is given in [9].

V. INVARIANT SUBSPACE

Consider system (1) again. If it can be expressed (under a
suitable coordinate frame) as

(35)

then is called an invariant
subspace of (1).

In general sense, a subspace is invariant with respect to
system (1); if starting from a point , then the trajectory
of (1) will remain on .

An invariant subspace is very important in investigating the
topological structure of a network [4]. Note that in [4] the in-
variant subspace was only defined under the original coordinate
frame. But, obviously, the invariant subspaces in general sense
play the same role in determining the topological structure of
the network. Let and , and
set . Then, we have the following result.

Theorem V.1: Consider system (1) with its algebraic form
(8). Assume that a regular subspace with

has the following algebraic form:

(36)

where . Then, is an invariant
subspace of system (1), iff

(37)

where is in (8), i.e., it is the transition matrix of the algebraic
form of system (1).

Proof: Since is a regular subspace, there is a set
such that form a

new coordinate frame.
(Sufficiency) From (36), we have

(38)

Since , there exists such that
. Hence

(39)
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Converting the algebraic form (38) back to logical form, say,
is the logical form of , we have

(Necessity) Converting into algebraic
form, we have

(40)

Comparing (40) with (38), we have , which implies
(37).

Note that in (37) the Span is the span over . Precisely, (37)
means there exists an such that

(41)

It is easy to check that the product of logical matrices is still a
logical matrix. Now, is a logical matrix, and hence so is .
Note that since is a regular subspace, has full row rank,
which means . Hence

. That is, . Hence, we have the following.
Corollary V.2: Using the notations in Theorem V.1, is an

invariant subspace, iff there exists an , such that
(41) holds.

Example V.3: Consider the following Boolean network:

(42)
Let , where

(43)

Set . Then, we have

where

and the algebraic form of (42) is

where

It is easy to calculate that

which satisfies (37). Hence, is an invariant subspace of (42).

In fact, we can choose such that

(44)

is a coordinate transformation. Moreover, under coordinate
frame , system (42) can be expressed into the cascading form
(35) as

(45)

VI. INDISTINCT ROLLING GEAR STRUCTURE

Consider system (35). Assume its algebraic form (in a decom-
posed form) is

(46)

Denote and . It
was proved in [4] that the cycle of (35) is compounded by the
cycle in and a “formal cycle” in . Precisely, let

be a cycle of length , with
. Then, for any , without loss of generality,

say, , there exists an as a factor of ,
such that

is a cycle in the subspace . Moreover, define

We can construct an auxiliary system

(47)

Then

is a cycle of (47), where . Finally, the cycle is de-
composed as

(48)

We call this the compounded cycle of and , denoted
by .
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Remark VI.1:
1) As long as the dynamics of a Boolean network has a

cascading structure as (35), its cycles have such a “com-
pounded structure,” which is called the rolling gear
structure, described in [4].

2) is a real cycle, which involves only part of nodes (pre-
cisely, nodes). is not a real cycle. It is a cycle of the
auxiliary system (47).

3) To the best of our knowledge, in current lectures (for in-
stance, [1], [6], [11], [13], [18], and the references therein)
only overall node cycles and fixed points are considered.
Cycles and fixed points involving part of nodes, such as

, are ignored. They can be found only in the cascading
form.

If a system is not originally in a cascading form but under
a suitable coordinate frame, it has cascading form. The system
still has the cycles and/or fixed points involving part of state
variables. Moreover, the rolling gear structure still exists, which
will be called the indistinct rolling gear structure. We investigate
it through the following example.

Example VI.2: Consider the following Boolean network:

(49)
Setting , the algebraic form of the system (49) is

(50)

where

Using the method proposed in [6], it is easy to calculate that
the attractive set of (49) consists of four cycles of length 8. They
are

Under this coordinate frame, we are not able to find cycles,
which contained in smaller invariant subspaces. Therefore, we
are not able to reveal the rolling gear structure for the network.

To find tiny cycles and the rolling gear structure of the
network, we try to convert (49), if possible, into a cascading
form to investigate its indistinct rolling gear structure. Note
that Theorem V.1 says that is a standard
invariant subspace. So the standard tools from linear algebra
can be used to find the invariant subspaces. We skip the tedious
and straightforward computation and consider the following
two nested spaces:

Set . It is easy to calculate that

where

Similarly, set . We have

where
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Using Theorem IV.6, it is easy to check that are
two nested regular subspaces.

To see they are invariant subspaces of system (49), it suffices
to find , such that (38) holds. That is, .

can be calculated as

It is not difficult to find and , such that
is a coordinate transformation

(We refer to [9] for the mechanical procedure of finding addi-
tional coordinate variables to make a basis of a regular subspace
into a coordinate transformation.)

The algebraic form of is

(51)

where

Now under the coordinate frame we have the algebraic
form of system (49) as

(52)

where

A mechanical procedure was provided in [6] to convert the al-
gebraic form of a Boolean network back to logical form. Using

it, we can convert (52) into a logical form as (omitting the me-
chanical procedure)

(53)

From this cascading form, one sees easily that
and are invariant

subspaces.
The subsystem with respect to has one cycle of length 4,

which is

and the subsystem with respect to has two cycles of length
4, which are

The corresponding cycles of system (49) become

It is easily seen that the cycle of is implicitly contained in
the cycles of (marked with underline), and similarly, the cy-
cles of are implicitly contained in the cycles of (49). They
form several groups of three assembled gears, which form the
so-called indistinct rolling gear structure.
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Note that cycles and , are exactly the
same. (We have put them in a point–point corresponding
way. The only difference is caused by the different coordinate
frames.)

VII. CONCLUSION

Recently, the authors have developed a systematic new ap-
proach to the analysis and control of logical dynamic (control)
systems, by using the semitensor product of matrices and the
matrix expression of logic, proposed by the authors. A key
point in this new approach is to convert a logical dynamic (con-
trol) system into a discrete-time dynamic system. It makes the
state–space technique applicable to logical dynamic (control)
systems.

Since in logical systems the state space is not a vector
space, some additional techniques have to be developed to
deal with “state space” and “subspaces.” Defining a space by
a set of logical functions, we introduced some new concepts
such as “regular subspace,” “ -friendly subspace,” “invariant
subspace,” etc. They have both clear physical meanings and
neat verifying formulas.

Using the well-defined different subspaces, the controllability
and observability [5], stability and stabilization [8], disturbance
decoupling, and other decoupling problems [9], [10] have been
investigated.

As another interesting application, the tool of invariant sub-
space has been used to convert a Boolean network into a cas-
cading form, if possible. Then, the indistinct rolling gear struc-
ture of a Boolean network under arbitrary coordinates is re-
vealed.
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