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Abstract A new matrix product, called semi-tensor
product of matrices, is introduced. Using this, an algebraic
expression of logic is proposed, where a logical variability
is expressed as a vector, a logic function is expressed as a
matrix and the function values are obtained by the product
of matrix with its arguments’ vectors. Under this frame-
work, the problem of solving logic equations is investi-
gated. For a static logic equation, we convert it into a set of
linear algebraic equations. Then the solution becomes
obvious. Some examples are presented to show that it is
useful for logic infection.

Keywords logic equation, semi-tensor product, structure
matrix, logic inference

1 Introduction

Logic plays an important role in many control problems.
For instance, for discrete event systems, to check whether a
min-max expression is inseparable, a logic equation has to
be considered [1]. Multi-valued logic and fuzzy logic are
the foundation of fuzzy control [2]. Logic-based control
has been widely used in flight control [3,4]. Recently,
inspired by the Human Genome Project, a new view of
biology, called the systems approach, has emerged. We
refer to Refs. [5,6] for a general introduction to system
biology. The Boolean network, introduced first by Kauff-
man [7], and then developed by many other researches,
becomes a powerful tool in describing, analyzing, and
simulating the cell networks. Hence, it has received the
greatest attention, not only from the biology community,
but also from physics, systems science, etc. A Boolean
network is a dynamic logic equation [8].
Roughly speaking, there are two different evolution

processes in nature. One is the quantity-based process,

which can be described by differential or difference
equations. The motions of suns, plants, and satellites,
running of machines, cars, etc., are of this type. For this
kind of process, people have very good understanding.
Another one is logic-based process, which may be
described by logic static and/or dynamic equations.
Playing games, gambling, control of discrete event
systems, etc., are of this type. People are, in general,
short of systematic tools to deal with this.
The purpose of this paper is to provide a method to

convert logic equations to algebraic equations. Then the
methods used for quantity-based process can be used for
logic-based process. This paper only considers static
equations. We refer to Refs. [9–11] for solving dynamic
equations under this framework.
The paper is organized as follows. Section 2 gives a brief

survey for semi-tensor product of matrices. The matrix
form of logic is explained in Sect. 3. In Sect. 4 the logic
equation and its solutions are rigorously defined. Then in
Sect. 5 we discuss how to convert a logic equation to a
linear system of algebraic equations. In this way, solving a
logic equation becomes a trivial task. Section 6 shows how
to use this method to solve the logic inference problems.
Section 7 is a brief conclusion.

2 Semi-tensor product

This section is a brief introduction to semi-tensor product
(STP) of matrices. It plays a fundamental role in the
following discussion. We restrict it to the definitions and
some related basic properties. In addition, only left semi-
tensor product for multiplying dimensional case is
involved in the paper. We refer to Refs. [12,13] for right
semi-tensor product, arbitrary dimensional case and much
more details. Throughout this paper “semi-tensor product”
means the left semi-tensor product for multiplying
dimensional case.
Definition 1 1) Let X be a row vector of dimension np,

and Y be a column vector with dimension p. Then we split
X into p equal-size blocks as X1, X2,…,Xp, which are 1�n
rows. Define the STP, denoted by ⋉, as
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X ⋉Y ¼
Xp
i¼1

X iyi 2 ℝn,

YT ⋉XT ¼
Xp
i¼1

yiðX iÞT 2 ℝn:

8>>><
>>>:

(1)

2) Let A 2 Mm�n and B 2 Mp�q. If either n is a factor of
p, say nt = p and denote it as A�t B, or p is a factor of n,
say n = pt and denote it as A�t B, then we define the STP
of A and B, denoted by C ¼ A ⋉B, in the following: C
consists of m� q blocks as C ¼ ½C ij� and each block is

C ij ¼ Ai ⋉Bj, i ¼ 1,2,:::,m, j ¼ 1,2,:::,q,

where Ai is the ith row of A and Bj is the jth column of B.
We use some simple numerical examples to describe it.
Example 1 1) Let

X ¼ 1 2 3 – 1½ �,

Y ¼ 1

2

" #
:

Then

X ⋉Y ¼ 1 2½ �$1þ 3 – 1½ �$2 ¼ 7 0½ �:
2) Let

A ¼
1 2 1 1

2 3 1 2

3 2 1 0

2
64

3
75,

B ¼ 1 – 2

2 – 1

" #
:

Then

A ⋉B ¼

½1 2 1 1� ⋉ 1

2

" #
½1 2 1 1� ⋉ – 2

– 1

" #

½2 3 1 2� ⋉ 1

2

" #
½2 3 1 2� ⋉ – 2

– 1

" #

½3 2 1 0� ⋉ 1

2

" #
½3 2 1 0� ⋉ – 2

– 1

" #

2
66666666666664

3
77777777777775

¼
3 4 – 3 – 5

4 7 – 5 – 8

5 2 – 7 – 4

2
64

3
75:

Some fundamental properties of the STP are collected as
follows.
Proposition 1 The STP satisfies (as long as the related

products are well defined)
1) (Distributive rule)

A ⋉ ðαBþ βCÞ ¼ αA ⋉Bþ βA ⋉C,

ðαBþ βCÞ ⋉A ¼ αB ⋉Aþ βC ⋉A,
α,β 2 ℝ:

(
(2)

2) (Associative rule)

A ⋉ ðB ⋉CÞ ¼ ðA ⋉BÞ ⋉C: (3)

Proposition 2 Assume A�k B. Then

A ⋉B ¼ AðB�IkÞ: (4)

Assume A�t B. Then

A ⋉B ¼ ðA�IkÞB: (5)

Proposition 3 1) Assume that A and B are of proper
dimensions such that A ⋉B is defined. Then

ðA ⋉BÞT ¼ BT ⋉AT: (6)

2) In addition, assume that both A and B are invariable.
Then

ðA ⋉BÞ – 1 ¼ B – 1 ⋉A – 1: (7)

Proposition 4 Assume that A 2 Mm�n is given.
1) Let Z 2 ℝt be a row vector. Then

A ⋉Z ¼ Z ⋉ ðI t�AÞ: (8)

2) Let Z 2 ℝt be a column vector. Then

Z ⋉A ¼ ðI t�AÞ ⋉Z: (9)

Note that when ξ 2 ℝn is a column or a row, ξ ⋉ � � � ⋉ ξ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
k

is well defined. We denote it briefly as

ξk :¼ ξ ⋉ � � � ⋉ ξ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
k

:

In general, let A 2 Mm�n and assume either m is a factor
of n or n is a factor of m. Then

Ak :¼ A ⋉ � � � ⋉A|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
k

is well defined.
Remark 1 Denote by δim the ith column of the identity

matrix Im and set Δm ¼ fδimji ¼ 1,2,:::,mg:
A matrix A 2 Mm�n is called the logic matrix if m = 2p

and n = 2q, for some p,q 2 ℤþ, where ℤþ is a set of natural
numbers, and the columns of A satisfy

ColðAÞ � Δ2m :

Denote the set of logic matrices by LB. Then it is clear
that for any A,B 2 LB, the semi-tensor product A ⋉B is
always defined. Later on, one will see that in the Boolean
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network related to matrix forms, the matrices are all in LB.
If a matrix A ¼ ½δi1m,δi2m,:::,δinm�, then we express it in a
condensed format A ¼ δm½i1,i2,:::,in�.
Next, we define the swap matrix, which is also called

permutation matrix and is defined implicitly in Ref. [14].
Many properties can be found in Ref. [12]. The swap
matrix, W[m,n] is an mn� mn matrix constructed in the
following way: label its columns by [11,12,…,1n,…,m1,
m2,…,mn] and its rows by [11,21,…,m1,…,1n,2n,…,mn].
Then its element in the position ((I,J),(i,j)) is assigned as

wðI ,JÞ,ði,jÞ ¼ �I , Ji, j ¼ 1, I ¼ i and J ¼ j,

0, otherwise:

(
(10)

When m = n we briefly denote W ½n� :¼ W ½n,n�.
Example 2 Let m = 2 and n = 3, the swap matrixW[2,3]

is constructed as

W ½2,3� ¼

ð11Þ ð12Þ ð13Þ ð21Þ ð22Þ ð23Þ
1 0 0 0 0 0

0 0 0 1 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 1 0 0 0

0 0 0 0 0 1

2
66666666664

3
77777777775

ð11Þ
ð21Þ
ð12Þ
ð22Þ
ð13Þ
ð23Þ

:

Let A 2 Mm�n, i.e., A is an m�n matrix. Denote by
Vr(A) the row stacking form of A, that is,

V rðAÞ ¼ ða11,a12,:::,a1n,:::,am1,am2,:::,amnÞT,
and by Vc(A) the column stacking form of A, that is,

V cðAÞ ¼ ða11,a21,:::,am1,:::,a1n,a2n,:::,amnÞT:
The following “swap” property shows the meaning of

the name.
Proposition 5 1) Let X 2 ℝm and Y 2 ℝn be two

columns. Then

W ½m,n� ⋉X ⋉Y ¼ Y ⋉X ,

W ½n,m� ⋉Y ⋉X ¼ X ⋉Y :

(
(11)

2) Let A 2 Mm�n. Then

W ½m,n�V rðAÞ ¼ V cðAÞ,
W ½n,m�V cðAÞ ¼ V rðAÞ:

(
(12)

3) Let X i 2 ℝni , i = 1,2,…,m. Then

ðIn1þ���þnk – 1�W ½nk ,nkþ1��Inkþ2þ���þnmÞX1⋉ � � � ⋉X k

⋉X kþ1 ⋉ � � � ⋉Xm ¼ X 1 ⋉ � � � ⋉X kþ1 ⋉X k ⋉ � � � ⋉Xm: (13)

Proposition 6 The swap matrix is an orthogonal matrix

as

W T
½m,n� ¼ W – 1

½m,n� ¼ W ½n,m�: (14)

Proposition 7

W ½pq,r� ¼ ðW ½p,r��IqÞðIp�W ½q,r�Þ: (15)

Taking transposition on both sides of Eq. (15) yields

W ½r,pq� ¼ ðIp�W ½r,q�ÞðW ½r,p��IqÞ: (16)

The swap matrix can also be constructed in the
following way.
Proposition 8

W½m,n� ¼ ðδ1n ⋉ δ1m � � � δnn ⋉ δ
1
m � � � δ1n ⋉ δ

m
m � � � δnn ⋉ δ

m
mÞ:
(17)

In Ref. [14], Eq. (17) is used as the definition.
Remark 2 It is obvious that if A 2 Mm�s and

B 2 M s�n, i.e., the conventional matrix product AB exists,
then

AB ¼ A ⋉B:

Hence, the semi-tensor product is a generalization of
conventional matrix product. Based on this, the notation
“⋉” can be omitted. In the following, all the matrix
products are assumed to be semi-tensor product and the
notation “⋉” is always omitted. As the conventional matrix
product exists, the product turns to be conventional matrix
product automatically.

3 Matrix expression of logic

In this section, we consider the matrix expression of logic.
Under matrix expression, a logical variable is expressed as
a vector and an r-ary logical operator is expressed by a
2�2r matrix, called the structure matrix of the operator.
Then the logical action of the operator over r logical
variables becomes a matrix product of the structure matrix
with r vectors. We refer to Refs. [13,15,16] for details.
First, we give some necessary notations and concerning

results for logic.
Definition 2 1) A logical domain, denoted by D, is

defined as

D ¼ fT ¼ 1,F ¼ 0g: (18)

2) An n-ary logical operator is a function t : Dn ! D. n
is called the arity of t, denoted by ar(t)= n [17].
To use matrix expression we identify each element

in D with a vector as T~
1

0

" #
and F~

0

1

" #
, and denote

Dv ¼
1

0

" #
,
0

1

" #( )
:
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Using this vector expression, we can define the structure
matrix of a logical operator.
Definition 3 A 2�2s matrix M� is called the structure

matrix of an s-ary logical operator �, if

�ðP1,P2,:::,PsÞ ¼ M�P1P2 � � �Ps, (19)

where P1,P2,:::,Ps 2 Dv.
If such a matrix exists, it uniquely determines the logic

operator. To show the existence of such a matrix for each
logical operator, we need some preparations. Define a
matrix, called the power-reducing matrix, as

M r ¼ δ4 1 4½ �: (20)

Its name is from the following property.
Lemma 1 Let P 2 Dv. Then we have

P2 ¼ M rP: (21)

In a logical expression a logical variable is constant if its
value is assigned in advance, it is called an argument if its
value is variable. Using this concept and above lemma, we
can easily prove the following.
Theorem 1 Any logical function L(P1,P2,…,Ps) with

logical arguments P1,P2,:::,Ps 2 Dv can be expressed in a
canonical form as

LðP1,P2,:::,PsÞ ¼ MLP1P2 � � �Ps, (22)

whereML is a 2�2s matrix, called the structure matrix of L.
Next, we give some examples to illustrate structure

matrix.
Example 3 1) Consider a fundamental unary operator:

Negation, :P, and four fundamental binary operators [18]:
Disjunction, P _ Q; Conjunction, P ^ Q; Implication,
P ! Q; Equivalence, P↔ Q. Their structure matrices
are as follows:

M: :¼ Mn ¼ δ2 2 1½ �,
M_ :¼ Md ¼ δ2 1 1 1 2½ �,
M^ :¼ M c ¼ δ2 1 2 2 2½ �,
M! :¼ M i ¼ δ2 1 2 1 1½ �,
M↔ :¼ Me ¼ δ2 1 2 2 1½ �:

(23)

2) Assume

LðP,QÞ ¼ ðP ! QÞ _ ð:PÞ:
Using vector form of logic variables, Proposition 4 and

the order-reducing matrix, we have

LðP,QÞ ¼ MdðM iPQÞðMnPÞ
¼ MdM iðI4�MnÞPQP
¼ MdM iðI4�MnÞPW 2½ �PQ

¼ MdM iðI4�MnÞðI2�M 2½ �ÞP2Q:

We conclude that

ML ¼ MdM iðI4�MnÞðI2�W ½2�ÞM r ¼ δ2 1 2 1 1½ �:
Remark 3 1) In fact, there are 22

r

r-ary logical
operators.
2) For any binary logical operator �, we have

P�Q ¼ M�PQ, P,Q 2 Dv:

3) In the study of Boolean Networks mod 2 algebra is
used. It is easy to figure out that the mod 2 product is
exactly the conjunction. That is,

P � Q ðmod 2Þ ¼ P ^ Q, P,Q 2 D: (24)

The mod 2 addition can be expressed as

P þ Q ðmod 2Þ ¼ :ðP↔ QÞ, P,Q 2 D: (25)

So its structure matrix is

Mþ ¼ MnM e ¼ δ2 2 1 1 2½ �: (26)

In logic it is called the Exclusive OR [18].
In the following we use D and Dv alternatively for

logical variables P, Q, etc., without explanation. From the
contents it is easy to figure out which form is used then.

4 Solutions to logic equations

A logic variable p is called a logic argument or logic
unknown if it can take a value p 2 D ¼ fT ,Fg to suit a
certain logic requirement. A logic constant c is an invariant
value c 2 D.
Definition 4 A standard logic equation is expressed as

f1ðp1,p2,:::,pnÞ ¼ c1,

f2ðp1,p2,:::,pnÞ ¼ c2,
:::

fmðp1,p2,:::,pnÞ ¼ cm,

8>>><
>>>:

(27)

where fi, i = 1,2,…,m, are logic functions; pi, i = 1,2,…,n,
are logic arguments (unknowns); ci, i = 1,2,…,m, are logic
constants. A set of logic constants di, i = 1,2,…,n, which
make

pi ¼ di, i ¼ 1,2,:::,n, (28)

satisfy Eq. (27), is said to be a solution to logic Eq. (27).
Example 4 Consider the following system:

p ^ q ¼ c1,

q _ r ¼ c2,

r↔ ð:pÞ ¼ c3:

8><
>: (29)

1) Assume the logic constants are c1= 1, c2= 1, c3= 1. A
straightforward verification shows that
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p ¼ 1,

q ¼ 1,

r ¼ 0

8><
>:

is the only solution.
2) Assume the logic constants are c1= 1, c2= 0, c3= 1.

Then one can check that there is no solution.
3) Assume the logic constants are c1= 0, c2= 1, c3= 0.

Then there are two solutions

p1 ¼ 1,

q1 ¼ 0,

r1 ¼ 1,

8><
>:

and
p1 ¼ 0,

q1 ¼ 1,

r1 ¼ 0:

8><
>:

Example 4 is heuristic. It shows that the solutions of
logic equations are quite different from the ones of linear
algebraic equations where the type of equations depends
only on the coefficients of the systems.

5 Convert to algebraic equation

This section considers how to solve logic Eq. (27). The
basic idea is: first, convert the logic Eq. (27) into a linear
algebraic equation, then solve the algebraic equation. To
do this, we need some preparations.
Lemma 2 Let pi, i = 1,2,…,n, be logic variables. We

define

x ¼ ⋉ni¼1 pi:

Then pi, i = 1,2,…,n, are uniquely determined by x.
Proof We prove this by giving a formula to calculate pi.

First of all, since pi 2 Δ2, it follows that x 2 Δ2n . Now we
can assume x ¼ δi2n . Split x into two equal segments as

x ¼ x1
x2

� �
,

where either x1 2 Δ2n – 1 and x2 ¼ 02n – 1 or x1 ¼ 02n – 1 and
x2 2 Δ2n – 1 . According to the definition of semi-tensor
product, if x2 ¼ 02n – 1 then p1= 1, and if x1 ¼ 02n – 1 then
p1= 0. Then we can split non-zero segment, say x1≠02n – 1 ,
into two equal parts as

x1 ¼
x11
x12

� �
,

and do the same judgment for p2, and so on. The result
follows.

Based on the argument in the proof of the last lemma, we
give an algorithm as follows:
Algorithm 1 Let ⋉nk¼1 pk ¼ δi2n , where pk 2 Δ2 are in

vector form. Then
1) {pk} can be calculated from i inductively by the

following method:
Set

q0 : 2
n – i:

Calculate pk and qk, k = 1,2,…,n, (in scalar form)
recursively by

pk ¼
qk – 1
2n – k

� �
,

qk ¼ qk – 1 – pk2
n – k ,

k ¼ 1,2,:::,n,

8>><
>>: (30)

where in the first equation [a] is the largest integer less than
or equal to a.
2) i can be calculated from {pk} (in scalar form) by

i ¼
Xn
k¼1

ð1 – pkÞ2n – k þ 1: (31)

We give an example to show this.
Example 5 Assume x = p1p2p3p4p5 and the value of

x is known as x ¼ δ732. Then we try to get the values of pi, i
= 1,2,…,5. Using Algorithm 1, we have

q0 ¼ 25 – 7 ¼ 32 – 7 ¼ 25:

It follows that

p1 ¼ ½q0=16� ¼ 1, q1 ¼ q0 – p1 � 16 ¼ 9,

p2 ¼ ½q1=8� ¼ 1, q2 ¼ q1 – p2 � 8 ¼ 1,

p3 ¼ ½q2=4� ¼ 0, q3 ¼ q2 – p3 � 4 ¼ 1,

p4 ¼ ½q3=2� ¼ 0, q4 ¼ q3 – p4 � 2 ¼ 1,

p5 ¼ ½q4=1� ¼ 1:

We conclude that p1 ¼ 1 ~ δ12, p2 ¼ 1 ~ δ12, p3 ¼ 0 ~ δ22,
p4 ¼ 0 ~ δ22, and p5 ¼ 1 ~ δ12.
Next, we construct a matrix, which may be called the

group power reducing matrix, as follows. For k≥1, define

Φk ¼
Yk
i¼1

I2i – 1�
�
ðI2�W ½2,2k – i�ÞM r

�
: (32)

Then we have
Lemma 3 Assume zk ¼ p1p2 � � � pk , where pi 2 Δ2,

i ¼ 1,2,:::,k, then

z2k ¼ Φkzk : (33)

Proof It is proved by mathematical induction. When k
= 1, using Lemma 1

z21 ¼ p21 ¼ M rp1:
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In the above formula,

Φ1 ¼ ðI2�W ½2,1�ÞM r:

Note that W[2,1]= I2, it follows that Φ1 ¼ M r. Hence,
Eq. (33) is true for k = 1. Assume Eq. (33) is true for k = s,
then for k = s+ 1 we have

P2
sþ1 ¼ A1A2 � � �Akþ1A1A2 � � �Akþ1

¼ A1W ½2,2k �A1ðA2 � � �Akþ1Þ2

¼ I2�W ½2,2k �
� �

A2
1ðA2 � � �Akþ1Þ2

¼ I2�W ½2,2k �
� �

M r

h i
A1ðA2 � � �Akþ1Þ2:

Using induction assumption to the last fact of the above
expression, we have

z2sþ1 ¼ I2�W ½2,2s�
� �

M rp1
Ys
i¼1

I2i – 1� I2�W ½2,2s – i�
� �

M r

h i !

⋉ p2p3 � � � pkþ1

¼ I2�W ½2,2s�
� �

M r

� 	 Ys
i¼1

I2i� I2�W ½2,2s – i�
� �

M r

h i !

⋉ p1p2 � � � pkþ1:

The conclusion follows.
Before presenting another lemma we have to introduce

another concept, which is a dummy operator, σd, by
dummy operator

�dðp,qÞ ¼ q, 8p,q 2 D: (34)

It is easy to figure out that the structure matrix of the
dummy operator is

Ed :¼ δ2 1 2 1 2½ �: (35)

It follows from definition that for any two logic variables
X and Y,

EdXY ¼ Y or EdW ½2�XY ¼ X : (36)

Lemma 4 Denote x ¼ ⋉ni¼1 pi. Using vector form, each
logic equation

fiðp1,p2,:::,pnÞ ¼ ci, i ¼ 1,2,:::,m,

in Eq. (27) can be expressed as

M ix ¼ ci, i ¼ 1,2,:::,m, (37)

where M i 2 M2m�2n are Boolean matrixes.
Proof Assume fi is a logic equation on p1,p2,…,pn. Let

Mi be the structure matrix of fi. Then we have Eq. (37)
immediately. Assume some pj#s do not appear into fi.
Using the dummy operator technique, we can still get
Eq. (37) by adding dummy variables.

Now we are ready to present the main result, which
converts logic Eq. (27) into an algebraic equation.
Theorem 2 Let x ¼ ⋉ni¼1 pi, b ¼ ⋉mi¼1 ci. Then the logic

Eq. (27) can be converted into a linear algebraic equation
as

Lx ¼ b, (38)

where Mi are defined in Eq. (37) and

L ¼ M1 ⋉
n
j¼2½ðI2�M jÞΦn�: (39)

Proof Note that from Lemma 3 we have

xðtÞ2 ¼ ΦnxðtÞ:

Multiplying Eq. (37) together yields

b ¼ M1xðtÞM2xðtÞ � � �MnxðtÞ
¼ M1ðI2�M2ÞxðtÞ2M3xðtÞ � � �MnxðtÞ
¼ M1ðI2�M2ÞΦnxðtÞM3xðtÞ � � �MnxðtÞ
¼ � � �
¼ M1ðI2�M2ÞΦnðI2�M3ÞΦn � � � ðI2�MnÞΦnxðtÞ:

Eq. (39) follows.
Remark 4 1) For a particular logic equation to get its

algebraic form, we need not use Eq. (39). In most cases, L
can be obtained by a direct computation.
2) Using Lemma 2, as long as x is solved from algebraic

Eq. (38), the logic unknown pi, i = 1,2,…,n, are easily
solvable.
3) In Eq. (38), the coefficient matrix L 2 M2m�2n is a

logic matrix, and the constant vector b 2 Δ2m .
Since L 2 LB and b 2 Δ2m , it is clear that algebraic

Eq. (38) has solution x 2 Δ2n , if and only if b 2 ColðLÞ.
Express L in condensed form as L ¼ δ2m ½i1,i2,:::,i2n �, we

define a set

Λ ¼ fl j δil2m ¼ b, 1£l£2ng:
Then the following result is obvious:
Theorem 3 Using the above notation, the solution of

Eq. (38) is

x ¼ δl2n , l 2 Λ: (40)

As an application, we re-consider Example 4.
Example 6 Consider the system (29) again. We have its

algebraic form as

Mcpq ¼ c1,

Mdqr ¼ c2,

MerðMnpÞ ¼ c3:

8><
>: (41)

Multiplying three equations together yields
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M cpqMdqrM erMnp ¼ c1c2c3 :¼ b: (42)

Next, we simplify the left hand side of Eq. (42):

M cpqMdqrM erMnp

¼ McðI4�MdÞpq2rM erMnp

¼ McðI4�MdÞðI16�M eÞpq2r2Mnp

¼ McðI4�MdÞðI16�M eÞðI32�MnÞpq2r2p
¼ McðI4�MdÞðI16�M eÞðI32�MnÞpW ½2,16�pq

2r2

¼ McðI4�MdÞðI16�M eÞðI32�MnÞðI2�W ½2,16�Þ
⋉ p2q2r2

¼ McðI4�MdÞðI16�M eÞðI32�MnÞðI2�W ½2,16�Þ
⋉M rpM rqM rr

¼ McðI4�MdÞðI16�M eÞðI32�MnÞðI2�W ½2,16�Þ
⋉M rðI2�M rÞðI4�M rÞpqr

:¼ Lx:

It is easy to calculate that

L ¼ McðI4�MdÞðI16�M eÞðI32�MnÞ
⋉ ðI2�W ½2,16�ÞM rðI2�M rÞðI4�M rÞ

¼ δ8 2 1 6 7 5 6 5 8 �:½
Now let b ¼ δ18. Then Λ ¼ f2g, that is, the second

column of L equals b. The solution is x ¼ δ28. Back to
Boolean form we have:

b ¼ δ18, iff , c1 ¼ 1, c2 ¼ 1, c3 ¼ 1;

x ¼ δ28, iff , p1 ¼ 1, p2 ¼ 1, p3 ¼ 0:

We list all possible constants and their corresponding
solutions in Table 1.

When the number of unknowns is not very small,
calculating the coefficient matrix by paper and hand will be
very difficult. A simple routine can do this easily. We give
another example.

Example 7 Consider the following logic system:

p1 ^ p2 ¼ c1,

p2 _ ðp3 ↔ p2Þ ¼ c2,

p5 ! ðp4 _ p3Þ ¼ c3,

:p3 ¼ c4,=

p4 _ ðp5 ^ p2Þ ¼ c5,

ðp6 _ p2Þ ^ p6Þ ¼ c6,

ð:p10Þ ! p7 ¼ c7,

p5 ^ p6 ^ p7 ¼ c8,

ðp6 _ p9Þ↔ p3 ¼ c9:

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

(43)

Its algebraic form is

Mcp1p2 ¼ c1,

Mdp2M ep3p2 ¼ c2,

M ip5Mdp4p3 ¼ c3,

Mnp3 ¼ c4,

Mdp4M cp5p2 ¼ c5,

McMdp6p2p6 ¼ c6,

M iMnp10p7 ¼ c7,

M2
cp5p6p7 ¼ c8,

MeMdp6p9p3 ¼ c9:

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

(44)

Of course, we can convert Eq. (44) into an algebraic
equation as

L ⋉9i¼1 pi ¼ ⋉9i¼1 ci,

or Lx ¼ b:
Then L2M512�1024. To save space, the first and last few

columns (in condensed form) are given as follows:

δ29 ½33 33 33 33 35 39 35 39 43 43 44 44 43 47 44 48

35 35 35 35 35 39 35 39 43 43 44 44 43 47 44 48

33 33 33 33 35 39 35 39 43 43 44 44 43 47 44 48

51 51 51 51 51 55 51 55 59 59 60 60 59 63 60 64

2 2 2 2 4 8 4 8 12 12 11 11 12 16 11 15

� � �
268 272 267 271 260 260 260 260 260 264 260 264 268

268 267 267 268 267 267 271 338 338 338 338 340 344

340 344 348 348 347 347 348 352 347 351 276 276 276

276 276 280 276 284 284 284 283 283 284 288 283 287�:

Next, give a special set of logic constants, we solve the
logic equation. Assume c1= 1, c2= 1, c3= 1, c4= 0, c5= 1,
c6= 1, c7= 1, c8= 0, c9= 1. Then

b ¼ ⋉9i¼1 ci ¼ δ3529 :

Table 1 Solutions of Eq. (29)

b (c1,c2,c3) Λ x (p1,p2,p3)

δ18 (1,1,1) {2} δ28 (1,1,0)

δ28 (1,1,0) {1} δ18 (1,1,1)

δ38 (1,0,1) Φ — —

δ48 (1,0,0) Φ — —

δ58 (0,1,1) {5,7} δ58, δ
7
8

(0,1,0), (0,0,1)

δ68 (0,1,0) {3,6} δ38, δ
6
8

(1,0,1), (0,1,0)

δ78 (0,0,1) {4} δ48 (1,0,0)

δ88 (0,0,0) {8} δ88 (0,0,0)
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Next, we can find the set of Λ, such that the columns of
L, Ll= b, l 2 Λ. It is easy to calculate by computer that

Λ ¼ f5,7,17,18,19,20,21,23,37,39g:
According to Theorem 3, there are 10 corresponding

solutions, which can be easily calculated as
1) x1 ¼ δ529 , or

p1 ¼ 1, p2 ¼ 1, p3 ¼ 1,

p4 ¼ 1, p5 ¼ 1, p6 ¼ 1,

p7 ¼ 0, p8 ¼ 1, p9 ¼ 1:

8><
>:

2) x2 ¼ δ729 , or

p1 ¼ 1, p2 ¼ 1, p3 ¼ 1,

p4 ¼ 1, p5 ¼ 1, p6 ¼ 1,

p7 ¼ 0, p8 ¼ 0, p9 ¼ 1:

8><
>:

3) x3 ¼ δ1729 , or

p1 ¼ 1, p2 ¼ 1, p3 ¼ 1,

p4 ¼ 1, p5 ¼ 0, p6 ¼ 1,

p7 ¼ 1, p8 ¼ 1, p9 ¼ 1:

8><
>:

4) x4 ¼ δ1829 , or

p1 ¼ 1, p2 ¼ 1, p3 ¼ 1,

p4 ¼ 1, p5 ¼ 0, p6 ¼ 1,

p7 ¼ 1, p8 ¼ 1, p9 ¼ 0:

8><
>:

5) x5 ¼ δ1929 , or

p1 ¼ 1, p2 ¼ 1, p3 ¼ 1,

p4 ¼ 1, p5 ¼ 0, p6 ¼ 1,

p7 ¼ 1, p8 ¼ 0, p9 ¼ 1:

8><
>:

6) x6 ¼ δ2029 , or

p1 ¼ 1, p2 ¼ 1, p3 ¼ 1,

p4 ¼ 1, p5 ¼ 0, p6 ¼ 1,

p7 ¼ 1, p8 ¼ 0, p9 ¼ 0:

8><
>:

7) x7 ¼ δ2129 , or

p1 ¼ 1, p2 ¼ 1, p3 ¼ 1,

p4 ¼ 1, p5 ¼ 0, p6 ¼ 1,

p7 ¼ 0, p8 ¼ 1, p9 ¼ 1:

8><
>:

8) x8 ¼ δ2329 , or

p1 ¼ 1, p2 ¼ 1, p3 ¼ 1,

p4 ¼ 1, p5 ¼ 0, p6 ¼ 1,

p7 ¼ 0, p8 ¼ 0, p9 ¼ 1:

8><
>:

9) x9 ¼ δ3729 , or

p1 ¼ 1, p2 ¼ 1, p3 ¼ 1,

p4 ¼ 0, p5 ¼ 1, p6 ¼ 1,

p7 ¼ 0, p8 ¼ 1, p9 ¼ 1:

8><
>:

10) x10 ¼ δ3929 , or

p1 ¼ 1, p2 ¼ 1, p3 ¼ 1,

p4 ¼ 0, p5 ¼ 1, p6 ¼ 1,

p7 ¼ 0, p8 ¼ 0, p9 ¼ 1:

8><
>:

Before ending this section we consider a general form of
logic equations:

f ðp1,p2,:::,pnÞ ¼ gðq1,q2,:::,qmÞ: (45)

Consider a logic equation as Eq. (45), we want to find its
algebraic form. To see why it is necessary to consider this
kind of equations, we consider the following example. In
Ref. [18], it is defined that a min-max expression is called
an inseparable map if the logic equation

Fð0,xÞ ¼ x, x 2 Dk , (46)

has only solutions ½1 � � � 1� or ½0 � � � 0�. It is obvious that
Eq. (46) has the form of Eq. (45).
Proposition 9 The algebraic form of logic Eq. (45) is

MeM f ðI2n�MgÞp1p2 � � � pnq1q2 � � � qm ¼ δ12: (47)

Proof Denote p :¼ f ðp1,p2,:::,pnÞ and
q :¼ gðq1,q2,:::,qmÞ.
Equation (45) means either both p and q are “True” or

both p and q are “False”. That is, p↔ q ¼ 1. In algebraic
form we have M eM fp1p2 � � � pnMgq1q2 � � � qm ¼ δ12.
Note that

p1p2 � � � pnMg ¼ I2n�Mgp1p2 � � � pn:
Equation (47) follows immediately.

6 Logic inference

The purpose of the section is to deduct logic inference by
solving logic equation. We will discuss it by examples.
Example 8 A said: “B is a liar”, B said: “C is a liar”, C

said: “both A and B are liars”. Who is the liar?
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To solve this problem we define three logic variables as
p : A is honest; q : B is honest; r : C is honest.
Then the three statements can be converted in logic

version as

p():q,
q():r,
r () ½ð:pÞ ^ ð:qÞ�:

8><
>: (48)

Let c ¼ δ12. Then Eq. (48) can be converted into algebraic
form as

M epMnq ¼ c,

M eqMnr ¼ c,

M erM cMnpMnq ¼ c:

8><
>: (49)

It is easy to convert Eq. (49) into an algebraic form as

Lx ¼ b,

where x = pqr, b ¼ c3 ¼ δ18.
It is easy to calculate that

L ¼ δ8 8 5 3 2 4 1 5 8½ �:
Since only L6 = b, we have unique solution x ¼ δ68,

which implies that p = 0, q = 1, r = 0.
It was said that only B is honest.
Example 9 A competition of five players is going on a

simple-rotating way, which means each player has to play
with all the others. We have the following information
about the result:
1) C beat E;
2) A won 3 games;
3) E won 1 game;
4) Among B, C, D, there is one player, who beat the

other two;
5) Each of B, C, D won 2 games;
6) Each of A, C, D, E won some and lost some.
Using AB to denote “A beat B” and so on, it is clear from

the definition that

BA ¼ :AB, CA ¼ :AC,:::
Next, each statement is converted into a logic expres-

sion.
1) C beat E

CE ¼ 1:

2) A won 3 games

ðAB ^ AC ^ ADÞ _ ðAB ^ AC ^ AEÞ
_ðAB ^ AD ^ AEÞ _ ðAC ^ AD ^ AEÞ ¼ 1,

AB ^ AC ^ AD ^ AE ¼ 0:

8><
>: (50)

3) E won 1 game

AE ^ BE ^ DE ¼ 0,

ðEA ^ EBÞ _ ðEA ^ ECÞ _ ðEA ^ EDÞ
_ðEB ^ EDÞ _ ðEC ^ EDÞ ¼ 0:

8><
>:

Since EC ¼ :CE ¼ 0, it can be removed from the
above expression to simplify it to be

AE ^ BE ^ DE ¼ 0,

ðEA ^ EBÞ _ ðEA ^ EDÞ _ ðEB ^ EDÞ ¼ 0:

(
(51)

4) Among B, C, D, one player beat the other two

ðBC ^ BDÞ _ ðCB ^ CDÞ _ ðDB ^ DCÞ ¼ 1: (52)

5) Each of B, C, D won 2 games
i) B won 2 games:

ðBA ^ BCÞ _ ðBA ^ BDÞ _ ðBA ^ BEÞ
_ðBC ^ BDÞ _ ðBC ^ BEÞ _ ðBD ^ BEÞ ¼ 1,

ðBA ^ BC ^ BDÞ _ ðBA ^ BC ^ BEÞ
_ðBA ^ BD ^ BEÞ _ ðBC ^ BD ^ BEÞ ¼ 0:

8>>>><
>>>>:

(53)

ii) C won 2 games: Note that CE = 1 can be used to
simplify the expression. Then we have

CA _ CB _ CD ¼ 1,

ðCA ^ CBÞ _ ðCA ^ CDÞ _ ðCB ^ CDÞ ¼ 0:

(
(54)

iii) D won 2 games:

ðDA ^ DBÞ _ ðDA ^ DCÞ _ ðDA ^ DEÞ
_ðDB ^ DCÞ _ ðDB ^ DEÞ _ ðDC ^ DEÞ ¼ 1,

ðDA ^ DB ^ DCÞ _ ðDA ^ DB ^ DEÞ
_ðDA ^ DC ^ DEÞ _ ðDB ^ DC ^ DEÞ ¼ 0:

8>>>><
>>>>:

(55)

6) Each of A, C, D, E won some and lost some
Obviously, this statement does not contain additional

information.
Next, Eqs. (50)–(55) are converted into algebraic form.

To save space, denote

p ¼ AB, q ¼ AC, r ¼ AD, s ¼ AE, t ¼ BC,

u ¼ BD, v ¼ BE, α ¼ CD, β ¼ DE:

Using De Morgan’s law to the second equation of
Eq. (51) and equations in Eq. (55), and putting all the
algebraic equations together yield
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M3
dM

2
cpqrM

2
cpqsM

2
cprsM

2
cqrs ¼ vT,

M3
cpqrs ¼ vF,

M2
csvβ ¼ vF,

M2
cMdsvMdsβMdvβ ¼ vT,

M2
dMctuM cMntαMcMnuMnα ¼ vT,

M5
dMcMnptMcMnpuMcMnpvM ctuvMctvMcuv ¼ vT,

M3
dM

2
cMnptuM

2
cMnptvM

2
cMnpuvM

2
c tuv ¼ vF,

M2
dMnqMntα ¼ vT,

M2
dMcMnqMntMcMnqαM cMntα ¼ vF,

M5
cMdruMdrαMdrMnβMduαMduMnβMdαvMnβ ¼ vF,

M3
cvM

2
druαM

2
druMnβM

2
drαMnβM

2
duαMnβ ¼ vT,

(56)

where

vF ¼ δ22, vT ¼ δ12:

Now multiplying all the equations in Eq. (56) together
and using the standard procedure, we have an algebraic
form as

Lx ¼ b, (57)

where x = pqrstuvαβ. Using Eq. (31) yields

b ¼ vTv
2
Fv

3
TvFvTv

2
FvT ¼ δ791211 :

L is a 211�29 matrix. The first and last few columns are

δ211 ½5 261 15 269 277 405 287 413
:::

1812 1939 1812 1940 1972 1971 1972 1972�:
A routine shows that

L69 ¼ L135 ¼ L140 ¼ L284 ¼ b:

So the solutions of Eqs. (50)–(55) are

x1 ¼ δ6929 , x2 ¼ δ13529 , x3 ¼ δ14029 , x4 ¼ δ28429 : (58)

Using Eq. (30) yields Table 2.

Next, we modify the last statement “Each of A, C, D, E
won some and lost some” to the following:

Among the group A, C, D, E, each won some and lost
some.
Now it is obvious that the new information is: A cannot

win all C, D, E; E cannot lose to all A, C, D, (equivalently
to A and D). All other parts of information have already
been implied by previous statements. Then we have two
more equations:

q ^ r ^ s ¼ 0,

s ^ β ¼ 0:

(
(59)

Equivalently, we have algebraic equations as

M2
cqrs ¼ vF,

Mcsβ ¼ vF:

(
(60)

One way to solve this problem is to add Eq. (60)
to Eq. (56) and solve this system of equations again.
Obviously, this is a heavy job. From Table 2, it is easy to
check that only x3 satisfies Eq. (60). So in this case x3 is the
unique solution.

7 Conclusions

Logic is an important tool in control. However, there are
few general tools to deal with logical problems. In this
paper, the semi-tensor product of matrixes was introduced.
Then it was used to express logic equations. Under this
framework, a logic equation can be converted into a linear
algebraic equation. Then it is easily solvable. Some
interesting examples were included to demonstrate that
this new approach is applicable to logic inference.
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