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a b s t r a c t

The controllability and observability of Boolean control networks are investigated. After a brief review on
converting a logic dynamics to a discrete-time linear dynamics with a transition matrix, some formulas
are obtained for retrieving network and its logical dynamic equations from this network transitionmatrix.
Based on the discrete-time dynamics, the controllability via two kinds of inputs is revealed by providing
the corresponding reachable sets precisely. Then the problem of observability is also solved by giving
necessary and sufficient conditions.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

A Boolean network is a network with nodes and directed edges,
denoted by (N , E), whereN is a finite set of nodes andE ⊂ N×N
is the edge set. A node can take a logic value from {0, 1} at a discrete
time 0, 1, 2, . . .. Assume that A, B ∈ N and (A, B) ∈ E , then it
means that in the network dynamics B(k+ 1) depends on A(k).
We give a simple example to describe it.

Example 1. In Fig. 1 we have a Boolean network with two nodes A
and B. Its dynamics is described as{
A(t + 1) = A(t) ∨ B(t),
B(t + 1) = A(t) ∧ B(t), (1)

where the disjunction ∨ (conjunction ∧) can be considered as
max(A(t), B(t)) (min(A(t), B(t))).

In 1960s, Jacob and Monod (Nobel Prize winners) found that
‘‘Any cell contains a number of ‘regulatory’ genes that act as
switches and can turn one another on and off.... If genes can
turn one another on and off, then you can have genetic circuits.’’
(Waldrop, 1992) Based on these Boolean-type actions in genetic
circuits, Kauffman proposed using the Boolean network to describe
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Fig. 1. A network.

the genetic circuits (Kauffman, 1969). Some general descriptions
of the Boolean network and its applications to biological systems
can be found in Kauffman (1993, 1995). Since then the Boolean
network has been investigated widely and has become a power
tool in analyzing and manipulating genetic circuits.
The first interesting problem concerns the topological structure

of a Boolean network, including its fixed points, its cycles, basin of
attractors, and transient times, etc. (Albert & Barabasi, 2000; Albert
& Othmer, 2003; Aldana, 2003; Drossel, Mihaljev, & Greil, 2005;
Harris, Sawhill, Wuensche, & Kauffman, 2002). The applications of
Boolean network to analysis of genetic regulation networks are
of particular interest (Akutsu, Miyano, & Kuhara, 2000; Heidel,
Maloney, Farrow, & Rogers, 2003; Huang, 2002; Huang & Ingber,
2000).
The control of Boolean networks is also a challenging problem.

There are some recent papers concerning this problem (Data,
Choudhary, Bittner, & Dougherty, 2003, 2004; Pal, Datta, Bittner,
& Dougherty, 2005, 2006). When the random Boolean network is
considered, the main interest lies on the stationary distribution of
the system. Only for the deterministic network, the reachability
problem as in control theory becomes a common concern (Akutsu,
Hayashida, Ching, & Ng, 2007).
Recently, a new matrix product, namely, semi-tensor product

of matrices, has been introduced. Consider an m× nmatrix A and
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a p × q matrix B. We defined a semi-tensor product of A and B,
denoted as A n B. We refer to Cheng and Wang (2004) for a brief
introduction. When n = p, A n B = AB. So it is a generalization
of the conventional matrix product, and hence n can be omitted.
Moreover, all the main properties of the conventional matrix
product remain true for this generalization. Throughout this paper
the matrix product is assumed to be the semi-tensor product.
Using semi-tensor product, a logical function can be converted

into an algebraic function (Cheng, 2007). To do this we give logical
values a vector form as: T = 1 ∼ δ12 , F = 0 ∼ δ

2
2 , where δ

i
n is the

ith column of the identity matrix In. Then the logical variable A(t)
takes value from these two vectors, i.e.,

A(t) ∈ D :=
{
δ12, δ

2
2

}
.

According to Cheng (2007), for each logical function ξ =

ξ(A1, . . . , An) there exists a structure matrix of ξ , sayMξ ∈ M2×2n ,
such that as Ai takes vector values, we have

ξ(A1, . . . , An) = MξA1 · · · An. (2)

For instance, for conjunction ∧ and disjunction ∨, we can find
their structure matricesMc andMd as

Mc = δ2[1, 2, 2, 2]; Md = δ2[1, 1, 1, 2].

Where and hereafter we use the following compact notation:
Assume that a matrix L is of the following form

L =
[
δi1q , δ

i2
q , . . . , δ

is
q

]
. (3)

The L is expressed as

L = δq[i1, i2, . . . , is]. (4)

Using the structure matrices, the logical dynamics (1) can be
expressed in the following algebraic form:{
A(t + 1) = MdA(t)B(t),
B(t + 1) = McA(t)B(t).

(5)

Using this form, Cheng and Qi (in press) further convert the
algebraic form into a standard discrete-time dynamics and then
using its transition matrix to provide formulas for fixed points,
cycles, transient time and basin of attractions etc. In the next
section, we will briefly review it. In Cheng (2009) the control
Boolean network was considered. Using the input-state approach,
a general structure of Boolean network, called the ‘‘rolling gears’’,
is proposed to explain why in a cellular network the smallest
cycle(s) plays fundamental role for the properties of overall cellular
network as described in Kauffman (1995).
This paper considers two fundamental problems: controllabil-

ity and observability of a Boolean control network. The paper is
organized as follows. Section 2 briefly reviews how to convert a
logical dynamics to a discrete-time dynamics proposed by Cheng
and Qi (in press). Section 3 provides a systematic procedure to re-
construct the network with its logical dynamics of a Boolean net-
work from its network transition matrix. The controllability via
two types of controls is considered in Section 4. Necessary and suf-
ficient conditions are proved for each case by constructing reach-
able sets for each case. In Section 5 the observability of a Boolean
control network with outputs of logical functions is discussed and
necessary and sufficient conditions are also proved. Section 6 is a
brief concluding remark.
2. Converting a logical dynamics to a discrete-time dynamics

A Boolean network with n nodes Ai, i = 1, 2, . . . , n can be
expressed as
A1(t + 1) = ξ1(A1(t), A2(t), . . . , An(t)),
...
An(t + 1) = ξn(A1(t), A2(t), . . . , An(t)),

(6)

where ξi, i = 1, 2, . . . , n, are logical functions.
Using (2), for each logical function ξi we can find its structure

matrixWi such that the equations in (6) can be converted into an
algebraic form as

Ai(t + 1) = WiA1(t) · · · An(t), i = 1, . . . , n. (7)

Define x(t) = A1(t)A2(t) · · · An(t). Multiplying all the equations
in (7) together yields

x(t + 1) = W1x(t)W2x(t) · · ·Wnx(t). (8)

Using the properties of semi-tensor product and the power
reducing matrixMr = δ4[1, 4] (Cheng, 2007), (6) can be converted
to a standard discrete-time dynamic system as

x(t + 1) = Lx(t), (9)

where L is called the network transitionmatrix of (6). It was proved
in Cheng and Qi (in press) that (9) is equivalent to (6).
For example, consider the system (1) in Example 1. Setting

x(t) = A(t)B(t), it is easy to show that x(t + 1) = Lx(t) with
L = δ4[1, 2, 2, 4].
Next, we consider a control Boolean network as (Cheng, 2009)
A1(t + 1) = f1(A1(t), . . . , An(t), u1(t), . . . , um(t))
...
An(t + 1) = fn(A1(t), . . . , An(t), u1(t), . . . , um(t)),

(10)

yj(t) = hj(A1(t), . . . , An(t)), j = 1, 2, . . . , p, (11)

where fi, i = 1, 2, . . . n, hj, j = 1, 2, . . . p are logical functions;
ui, i = 1, 2, . . .m, are inputs (or controls), yj, j = 1, 2, . . . p, are
outputs.
Two kinds of controls are considered:

(1) The controls are logical variables satisfying certain logical rule,
called the input network, as
u1(t + 1) = g1(u1(t), . . . , um(t)),
...
um(t + 1) = gm(u1(t), . . . , um(t)).

(12)

(2) The control is a free Boolean sequence. Precisely, set u(t) =
u1(t)u2(t) · · · um(t). Then the control is a designed sequence
u(0), u(1), . . . ∈ Dm.

Using the structure matrix approach to the Boolean control
network, it is easy to obtain the algebraic formof the network (10)–
(12) as{
u(t + 1) = Gu(t), u ∈ Dm

x(t + 1) = Lu(t)x(t) := Lu(t)x(t), x ∈ Dn

y(t) = Hx(t), y ∈ Dp,
(13)

where Lu(t) = Lu(t) is the control-depending network transition
matrix, G is the network transition matrix of the input network, H
is the transition matrix from x to y (calculated exactly in the same
way as for L and G).
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3. Reconstructing networks

From a set of input–output data we may identify the structure
matrix L. Particularly, in the case of large or huge networks, we
may find an L to approximate the original system or a particular
input–output response of the original network. We leave the
identification problem for further investigation. Since L is the
coefficient matrix of a standard discrete-time linear system it
seems that many known methods can be used for this purpose.
In this section we consider how to reconstruct the Boolean

network from its network matrix L. This is important because we
will work on state space and try to design a network matrix. Then
we have to convert it back to the network and give its logical
relations for design purposes.
Assume that L is known, we will try to retrieve (6) and the

network.
First, we have to reconstruct the structure matrices Wi of

the logical operators fi. We define a set of 2 × 2n matrices, Sni ,
called retrievers, in the following way. Divide columns, labeled by
1, 2, . . . , 2n, into 2i equal parts, where 1 ≤ i ≤ n. Then put δ12 into
the first segment of columns, and put δ22 into the second segment
of columns, then the δ12 again, and continue this process to define
Sni . In this way we have defined

Sn1 = δ2[1, . . . , 1︸ ︷︷ ︸
2n−1

, 2, . . . , 2︸ ︷︷ ︸
2n−1

];

Sn2 = δ2[1, . . . , 1︸ ︷︷ ︸
2n−2

, 2, . . . , 2︸ ︷︷ ︸
2n−2

, 1, . . . , 1︸ ︷︷ ︸
2n−2

, 2, . . . , 2︸ ︷︷ ︸
2n−2

];

...

Snn = δ2[1, 2, 1, 2, . . . , 1, 2].

(14)

We need the swapmatrixW[m,n] (withW[n] := W[n,n]), which is the
uniquemn×mnmatrix, such that for any X ∈ Rm, Y ∈ Rn (Cheng
&Wang, 2004)
W[m,n]XY = YX .
To constructWi we have

Proposition 2. The structure matrices Wi of fi can be retrieved as
follows:

Wi = Sni L, i = 1, 2, . . . , n. (15)

Proof. We prove (15) for i = 1. The proof for other i is similar
(using the swapmatrix to change the order of factors first). Denote

P = A2(t + 1)A3(t + 1) · · · An(t + 1) ∈ Dn−1.

Then

x(t + 1) = A1(t + 1)P.

If A1(t + 1) = δ12 , x(t + 1) = [P
T 0, . . . , 0︸ ︷︷ ︸

2n−1

]
T, if A1(t + 1) = δ22 ,

x(t + 1) = [0, . . . , 0︸ ︷︷ ︸
2n−1

PT]T. Note that P = δi
2n−1
, for some i, it

follows immediately that A1(t + 1) = Sn1x(t + 1). Equivalently,
W1x(t) = Sn1Lx(t). Since x(t) ∈ D

n is arbitrary,W1 = Sn1L. �

Note that the neighborhood of node i (equivalently, edges,
starting from other nodes, toward i), called the in-degree of node
i, is usually much smaller than n. We have to find which node is
connected to i. We have the following:

Proposition 3. Consider system (6) with its algebraic form (7). j is
not in the neighborhood of i, (i.e., the edge j → i does not exist), iff
Wi satisfies

WiW[2,2j−1](Mn − I2) = 0, (16)

where Mn is the structure matrix of negation¬ (Cheng, 2007).
Moreover, as long as (16) holds, the equation of Ai can be replaced
by

A(t + 1) = W ′i A1(t) · · · Aj−1(t)Aj+1(t) · · · An(t), (17)

where

W ′i = WiW[2,2j−1]δ
1
2 .

Proof. Note that we can rewrite the ith equation of (7) as

Ai(t + 1) = WiW[2,2j−1]Aj(t)
n∏

i=1,i6=j

Ai(t).

Now we replace Aj(t) by ¬Aj(t), if it does not affect the overall
structure matrix, it means Ai(t + 1) is independent of Aj(t). The
invariance of replacement is depicted by (16). As for (17), since
Aj(t)does not affectAi(t+1), we can simply setAj(t) = δ12 (equally,
you can set Aj(t) = δ22 if you wish,) to simplify the expression. �

Repeating the verification of (16), all the redundant dummy
variables can be removed from the equation. We give an example
to show this.

Example 4. Assume that we have a Boolean network with 5 nodes
A, B, C , D, E. Let x = ABCDE. We have x(t + 1) = Lx(t)with

L = δ32[3, 6, 7, 6, 19, 22, 31, 30, 19, 22, 23, 22, 3, 6, 15, 14,
3, 5, 7, 5, 19, 21, 31, 29, 19, 21, 23, 21, 3, 5, 15, 13].

We try to recover the logic dynamic system from L. We know that
Wi = S5i L, i = 1, 2, 3, 4, 5, which yield

W1 = δ2[1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1,
1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1];

W2 = δ2[1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2,
1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2];

W3 = δ2[1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2,
1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2];

W4 = δ2[2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1,
2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1];

W5 = δ2[1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1].

Next, consideringW1 it is easy to verify that

W1Mn = W1, W1W[2]Mn 6= W1,
W1W[2,22]Mn 6= W1, W1W[2,23]Mn = W1,
W1W[2,24]Mn = W1.

We conclude that A(t + 1) depends on B(t) and C(t) only. Then
we can remove the dummy variables A(t), D(t), E(t) from the first
equation A(t + 1) = W1A(t)B(t)C(t)D(t)E(t) by replacing A(t),
D(t), E(t) by A(t) = D(t) = E(t) = δ12 , which yields

A(t + 1) = W1δ12B(t)C(t)δ
1
2δ
1
2

= W1W[4,8](δ12)
3B(t)C(t)

= δ2[1, 2, 2, 1]B(t)C(t). (18)

Its logical form is: A(t + 1) = B(t) ↔ C(t). Similarly, we can get
the logical equations for other nodes. Finally, we have
A(t + 1) = B(t)↔ C(t)
B(t + 1) = C(t) ∨ D(t)
C(t + 1) = D(t) ∧ E(t)
D(t + 1) = ¬E(t)
E(t + 1) = A(t)→ E(t).

(19)

Then we can reconstruct the network as shown in Fig. 2.
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Fig. 2. Reconstructed graph from system matrix.

In general, converting an algebraic form back to logical form is
not an easy job. The following proposition provides a mechanical
procedure for this.

Proposition 5. Assume that a logical variable E has an algebraic
expression as

E = L(A1, A2, . . . , An) = WLA1A2 · · · An, (20)

where WL is the structure matrix of L. Then

E = [A1 ∧ L1(A2, . . . , An)] ∨ [¬A1 ∧ L2(A2, . . . , An)], (21)

where WL =
(
WL1 | WL2

)
, i.e., the structure matrix of L1 (L2) is the

first (last) half of WL.
Proof. Using (20), when A1 = δ12
E = WLδ12A2 · · · An = WL1A2 · · · An,

and when A1 = δ22

E = WLδ22A2 · · · An = WL2A2 · · · An.

Then (21) follows. �

Example 6. Assume that

E = δ2[1, 2, 2, 1, 2, 1, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2]ABCD. (22)

Then

E = [A ∧ L1(B, C,D)] ∨ [¬A ∧ L2(B, C,D)],

and

WL1 = δ2[1, 2, 2, 1, 2, 1, 2, 1],
WL2 = δ2[1, 1, 2, 2, 2, 1, 1, 2].

Next,

L1(B, C,D) = [B ∧ L11(C,D)] ∨ [¬B ∧ L12(C,D)],

where

WL11 = δ2[1, 2, 2, 1] ⇒ L11(C,D) = C ↔ D;
WL12 = δ2[2, 1, 2, 1] ⇒ L12(C,D) = ¬D.

L2 can be calculated similarly. Finally, we have

E = [A ∧ B ∧ (C ↔ D)] ∨ [A ∧ (¬B) ∧ (¬D)] ∨
[(¬A) ∧ B ∧ C] ∨ [(¬A) ∧ (¬B) ∧ (¬(C ↔ D))].

4. Controllability

The known results on controllability of Boolean control
networks is very limited (Akutsu et al., 2007). In this section we
consider the problem via two different kinds of controls.

4.1. Control via input Boolean network

Definition 7. Consider system (10) with control (12). Given initial
state x(0) = x0 and destination state xd, xd is said to be controllable
from x0 (at s steps) with fixed (designable) input structure G, if we
can find u0 (and G), such that x(u, 0) = x0 and x(u, s) = xd (for a
fixed s ≥ 1).
Note that according to the above definition we may consider
four cases: (i) fixed s and fixed G; (ii) fixed s and designable G;
(iii) free s > 0 and fixed G; (iv) free s > 0 and designable G.

Definition 8. For a fixedG the input-state transfermatrixΘG(t, 0)
is defined as follows: for any u0 ∈ Dm and any x(0) = x0 ∈ Dn, we
have x(t) = ΘG(t, 0)u0x0, t > 0.

It is obvious that ΘG(t, 0) depends on G. In the following we will
find the input-state transfer matrix. Since

x1 = Lu0x0,

we haveΘG(1, 0) = L. Next, we calculate x2 = x(2), which is

x2 = Lu1x1 = LGu0Lu0x0 = LG(I2m ⊗ L)Φmu0x0,

whereΦm is defined as

Φm =
m
n
i=1
I2i−1 ⊗

[(
I2 ⊗W[2,2m−i]

)
Mr
]
;

Mr = δ4[1, 4] is defined in Cheng (2007), and ⊗ is the Kronecker
product. Then we have ΘG(2, 0) = LG(I2m ⊗ L)Φm. Using
mathematical induction, it is easy to prove that

ΘG(t, 0) = LGt−1(I2m ⊗ LGt−2)(I22m ⊗ LG
t−3) · · ·

(I2(t−1)m ⊗ L)(I2(t−2)m ⊗ Φm)

(I2(t−3)m ⊗ Φm) · · · (I2m ⊗ Φm)Φm. (23)

We start from case (i). From the above argument the following
result is obvious:

Theorem 9. Consider system (10) with control (12), equivalently,
(13), where G is fixed. xd is s step reachable from x0, iff

xd ∈ Col
{
ΘG(s, 0)W[2n,2m]x0

}
, (24)

where and hereafter Col is the column set.

We give an example to describe this result.

Example 10. Consider the following system{A(t + 1) = B(t)↔ C(t)
B(t + 1) = C(t) ∨ u1(t)
C(t + 1) = A(t) ∧ u2(t),

(25)

with controls satisfying{
u1(t + 1) = g1(u1(t), u2(t)) = ¬u2(t),
u2(t + 1) = g2(u1(t), u2(t)) = u1(t).

(26)

Assume that A(0) = 1, B(0) = 0, and C(0) = 1 and s = 5. Denote
u(t) = u1(t)u2(t), then

u(t + 1) = u1(t + 1)u2(t + 1) = Mnu2(t)u1(t) = MnW[2]u(t).

So G = MnW[2] = δ4[3, 1, 4, 2].

x(t + 1) = MeB(t)C(t)MdC(t)u1(t)McA(t)u2(t) = Lx(t),

where
L = δ8[1, 5, 5, 1, 2, 6, 6, 2, 2, 6, 6, 2, 2, 6, 6, 2,

1, 7, 5, 3, 2, 8, 6, 4, 2, 8, 6, 4, 2, 8, 6, 4].
Φ2 = (I2 ⊗W[2])Mr(I2 ⊗Mr) = δ16[1, 6, 11, 16].

Finally, using formula (23) yieldsΘ(5, 0) ∈ M8×32 as

Θ(5, 0) = LG4(I26 ⊗ LG
3)(I24 ⊗ LG

2)(I26 ⊗ LG)
(I28 ⊗ L)(I26 ⊗ Φ2)(I24 ⊗ Φ2)
(I22 ⊗ Φ2)(I2 ⊗ Φ2)Φ2

= δ8[6, 5, 5, 6, 6, 5, 5, 6, 2, 2, 2, 2, 2, 2, 2, 2,
8, 8, 8, 8, 2, 2, 2, 2, 4, 8, 4, 8, 4, 8, 4, 8].
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Now assume that (A(0), B(0), C(0)) = (1, 0, 1), then x0 =
A(0)B(0)C(0) = [0, 0, 1, 0, 0, 0, 0, 0]T. Using Theorem 9, we have
that the reachable set is

Θ(5, 0)W[8,4]x0 = δ8[5, 2, 8, 4].

We conclude that the reachable set at step 5 is{
δ58, δ

2
8, δ

8
8, δ

4
8

}
.

Converting them to binary form, we have

(A(5), B(5), C(5)) ∈ {(0, 1, 1), (1, 1, 0), (0, 0, 0), (1, 0, 0)}.

Finally, we have to find the initial control u0, which drives the
trajectory to the assigned xd. Since

xd = Θ(5, 0)W[8,4]x0u0 = δ8[5, 2, 8, 4]u0,

it is obvious that to reach, say, 5 ∼ (0, 1, 1), the u0 = [1, 0, 0, 0]T,
i.e., u1(0) = 1 and u2(0) = 1. Similarly, to reach the four points
{(0, 1, 1), (1, 1, 0), (0, 0, 0), (1, 0, 0)} the corresponding controls
should be (u1(0), u2(0)) = {(1, 1), (1, 0), (0, 1), (0, 0)}.

Next, we consider case (ii).
Since there are m0 = (2m)2

m
possible distinct G′s, we

may express each G in the condensed form and order them in
‘‘increasing order’’. Say, when m = 2 we have G1 = δ4[1111],
G2 = δ4[1112], . . ., G256 = δ4[4444]. In general, we may consider
a subset Λ ⊂ {1, 2, . . . ,m0}, and allow G be chosen from the
admissible set {Gλ|λ ∈ Λ}. The following result is an immediate
consequence of Theorem 9.

Corollary 11. Consider system (10) with control (12), where G ∈
{Gλ|λ ∈ Λ}. Then xd is reachable from x0, iff

xd ∈ Col
{
ΘGλ(s, 0)W[2n,2m]x0|λ ∈ Λ

}
. (27)

Example 12. Consider the system (25) again. We still assume that
A(0) = 1, B(0) = 0, and C(0) = 1 (equivalently, x(0) = δ38)
and s = 5. Assume that the admissible set of G is nonsingular G′s.
Denote G1 = δ4[1234], G2 = δ4[1243], G3 = δ4[1324], . . ., G24 =
δ4[4, 3, 2, 1], the corresponding Vi = Col

{
Θ i(5, 0)W[2n,2m]x0

}
are

δ8[5684], δ8[5686], δ8[5684], δ8[5742], δ8[5824], δ8[5288],
δ8[5684], δ8[5686], δ8[6824], δ8[6274], δ8[1248], δ8[6882],
δ8[8564], δ8[5284], δ8[5684], δ8[7681], δ8[5288], δ8[2678],
δ8[6272], δ8[8582], δ8[8614], δ8[5688], δ8[2278], δ8[5688].

So the reachable set at 5 steps is

{δ18, δ
2
8, δ

4
8, δ

5
8, δ

6
8, δ

7
8, δ

8
8}.

It is interesting that starting from (A(0), B(0), C(0)) = (1, 0, 1),
the only unreachable point in 5 steps is δ38 , which is the starting
point. Now assume that we want to reach (A(5), B(5), C(5)) =
(1, 1, 1), which is δ18 . Since the first component of V11 is 1, (we
have some other choices such as V16, V21,) we can choose G11 and
u1(0)u2(0) = δ14 to drive (1, 0, 1) to (1, 1, 1) in 5 steps. It is easy
to figure out that G11 = δ4[2413].
From u1(0)u2(0) = δ14 , we have u1(0) = 1 and u2(0) = 1.
To reconstruct the control dynamics, we need retrievers

S21 = δ2[1, 1, 2, 2]; S22 = δ2[1, 2, 1, 2].

Then we have the structure matrices as

W1 = S21G = δ2[1, 2, 1, 2]; W2 = S22G = δ2[2, 2, 1, 1].

It follows that

u1(t + 1) = W1u1(t)u2(t) = u2(t);
u2(t + 1) = W2u1(t)u2(t) = ¬u1(t).

Finally, we consider cases (iii) and (iv), i.e., for free s.
First we give a lemma, which itself is interesting.
Lemma 13. For a Boolean network, if its network transition matrix is
nonsingular, then every point is on a cycle.

Before proving this lemma, we need some preparation. The
transient period Tt is the smallest time, such that starting from any
x0 and after Tt time the trajectory will enter an attractor.

Lemma 14 (Cheng & Qi, in press). The transient period Tt is the
smallest k ≥ 0 such that there exists a T > 0 such that

Lk = Lk+T .

Proof of Lemma 13. According to Lemma 14, it suffices to show
that the transient period Tt is zero. Let the network matrix be L.
Consider the sequence L, L2, . . .. Since there are only finite distinct
2n × 2n logical matrices, there must be two integers p < q such
that Lp = Lq. It follows that Lp−q = I , which means the transient
period is zero. �

In the following we assume that
A1 G is nonsingular.
According to Lemma 13, we, starting from u0, can find a

minimum T0 > 0 such that GT0u0 = u0. Hence u0,Gu0, . . . ,GT0u0
is a cycle of length T0. Following the procedure in Cheng (2009), we
can construct a mapping

Ψ := (LGT0−1u0)(LGT0−2u0) · · · (LGu0)(Lu0). (28)

Then for x0 we consider the sequence x0, Ψ x0, . . ., and find the
transient period r1 and a minimum T1 > 0 such that

Ψ r1x0 = Ψ r1+T1x0. (29)

Then the reachable set starting from x0 with u0, can be constructed
easily. We give the following algorithm:

• Step1. Find T0 such thatu0,Gu0, . . . ,GT0u0 is a cycle in the input
space.
• Step 2. Find the transient period r1 and minimum T1 > 0,
satisfying (29).
• Step 3. Construct a sequence

xi0 = Ψ
ix0, i = 0, 1, 2, . . . , r1 + T1 − 1. (30)

• Step 4. For each xi0 construct inductively a sequence

xij = LG
j−1u0xij−1, j = 1, . . . , T0 − 1. (31)

Note that the above construction is the special case of the
general one discussed in Cheng (2009) for constructing input-state
product cycles. So it is easily seen that {xij} is the set of reachable
points starting from x0 using u0 and fixed G. We write it as the
following theorem.

Theorem 15. Consider system (10)with control (12). Assume A1 and
use the above algorithm, then

(1) for given u0 and Gi, the set of reachable states is

Riu0 =
{
xij|i = 0, 1, . . . , r1 + T1 − 1; j = 0, 1, . . . , T0 − 1

}
;

where {xij} are constructed by (30)–(31) and the steady state
reachable set is

RS iu0 =
{
xij ∈ R

i
u0 |i ≥ r1

}
;

(2) for fixed G = Gi, the reachable set from x0 is

Ri =
⋃
u0

Riu0;

(3) for admissible {Gλ|λ ∈ Λ}, the reachable set is

R =
⋃
λ∈Λ

⋃
u0

Rλu0 .
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Table 1
Reachable set for G1 = δ4[1, 2, 3, 4].

u(0) T0 r1 T1 RG1

1 1 2 2 (2, 3, 5)
2 1 2 1 (3, 6)
3 1 1 7 (3, 4, 8)
4 1 4 1 (3, 4, 6, 8)

Table 2
Reachable set for G2 = δ4[2, 4, 3, 1].

u(0) T0 r1 T1 RG2

1 3 2 1 (1, 2, 3, 4, 5, 8)
2 3 2 1 (2, 3, 5, 6, 8)
3 1 1 7 (2, 3, 4, 5, 6, 7, 8)
4 3 2 1 (3, 6, 8)

Example 16. Consider the system (25) again with x(0) = δ38 . It is
easy to get the reachable set for each G and each u(0). We give two
special G′s.
• G1 = δ4[1, 2, 3, 4].

So the overall reachable set for G1 is {2, 3, 4, 5, 6, 8}
(Table 1).
• G2 = δ4[2, 4, 3, 1].

So the overall reachable set for G2 is D3 (Table 2), which
means the system is G2-controllable from (1, 0, 1), (equiva-
lently, x(0) = δ38).

4.2. Controllability via free Boolean sequence

In the followingwe consider the casewhen the controls are free
Boolean sequences. The following definition is from Akutsu et al.
(2007) with our notation.

Definition 17 (Akutsu et al., 2007). Given x0, xe ∈ Dn. The Boolean
control network (10) is said to be controllable from x0 to xe (by free
Boolean sequence) at the s steps, if we can find control u(t) ∈ Dm,
t = 0, 1, . . . , s − 1, such that the state nni=1 Ai(0) = x0 and
nni=1 Ai(s) = xe, i = 1, . . . , n.

Define L̃ = LW[2n,2m], then the second equation in (13) can be
expressed as

x(t + 1) = L̃x(t)u(t). (32)
Using it repetitively yields

x(s) = L̃sx(0)u(0)u(1) · · · u(s− 1). (33)
So the answer to this kind of control problem is obvious.

Theorem 18. xe is reachable from x0, at the sth time step by controls
of Boolean sequences of length s, iff

xs ∈ Col{L̃sx0}. (34)

Example 19 (Akutsu et al., 2007). Consider the Boolean control
system depicted in Fig. 3.
Its logical equation is{A(t + 1) = B(t) ∧ u1(t)
B(t + 1) = ¬u2(t)
C(t + 1) = A(t) ∨ B(t).

(35)

Denote x(t) = A(t)B(t)C(t), u(t) = u1(t)u2(t). Then we can
express the system by

x(t + 1) = L̃x(t)u(t) (36)

where L̃ is

L̃ = δ8[3, 1, 7, 5, 3, 1, 7, 5, 7, 5, 7, 5, 7, 5, 7, 5,
3, 1, 7, 5, 3, 1, 7, 5, 8, 6, 8, 6, 8, 6, 8, 6].
Fig. 3. A Boolean control network.

As in Akutsu et al. (2007) we assume that (A(0), B(0), C(0)) =
(0, 0, 0). We want to know if a design state can be reached at the
sth step. Say, s = 3. Using Theorem 18, we calculate L̃3x0 ∈ M8×64
as

L̃3x0 = δ8[8, 6, 8, 6, 3, 1, 7, 5, 8, 6, 8, 6, 3, 1, 7, 5
7, 5, 7, 5, 3, 1, 7, 5, 8, 6, 8, 6, 3, 1, 7, 5
8, 6, 8, 6, 3, 1, 7, 5, 8, 6, 8, 6, 3, 1, 7, 5
7, 5, 7, 5, 3, 1, 7, 5, 8, 6, 8, 6, 3, 1, 7, 5].

It is clear that at the 3rd step all states, but δ216 δ
4
16, can be

reached. Now we choose one state, say, 5, which means δ58 ∼
(0, 1, 1). Note that in 8th, 16th, 18th, 20th · · · columns we have 5,
which means controls δ864, or δ

16
64 , or δ

18
64 , or δ

20
64 , or · · · can drive the

initial state (0, 0, 0) to the destination state (0, 1, 1). we choose,
for example,

u1(0)u2(0)u1(1)u2(1)u1(2)u2(2) = δ864.

Converting 64−8 = 56 to binary formyields 111000,whichmeans
the corresponding controls are: u1(0) = 1, u2(0) = 1, u1(1) = 1,
u2(1) = 0, u1(2) = 0, u2(2) = 0. It is easy to check directly
that this set of controls works. We may check some others. Say,
choosing δ2464 , similar calculation yields the controls as: u1(0) = 1,
u2(0) = 0, u1(1) = 1, u2(1) = 0, u1(2) = 0, u2(2) = 0, which also
works.
In general, it is easy to calculate that when s = 1 the reachable

set from (0, 0, 0) is {(0, 1, 0), (0, 0, 0)}. When s > 1 the reachable
set is {(1, 1, 1), (1, 0, 1), (0, 1, 1), (0, 1, 0), (0, 0, 1), (0, 0, 0)}.

A generalization for the controllability via controls of Boolean
sequences is when the length of sequences, s, is free. An immediate
consequence of Theorem 18 is

Corollary 20. xd is reachable from x0, iff

xd ∈ Col

{
∞⋃
i=1

L̃ix0

}
. (37)

Denote by R(x0, s) the reachable set from x0 at time s, and
R(x0) =

⋃
s≥0 R(x0, s). The following proposition makes (37)

verifiable.

Proposition 21. (1) The reachable set, R(x0), is a subset of Col{L̃};
(2) Assume that k∗ is the smallest k > 0, such that

Col{L̃k+1x0} ⊂ Col
{
L̃sx0

∣∣∣ s = 1, 2, . . . , k} ,
then the reachable set

R(x0) = Col

{
k∗⋃
i=1

L̃ix0

}
. (38)

Proof. (1) A straightforward computation shows that L̃kx0 ∈
M2n×2km . Since L̃ ∈ M2n×2n+m by the property of semi-tensor
product we have (cf Cheng and Wang (2004))

L̃k+1x0 = L̃ n L̃kx0 = L̃ · [L̃kx0 ⊗ I2m ],
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where · is the conventional matrix product. The conclusion
follows immediately.

(2) We use the notation

Col{L̃k} ⊗ Im :=
{
X ⊗ Im| X ∈ Col{L̃k}

}
.

Assume that

Col{L̃k+1x0} ⊂ Col{ L̃sx0
∣∣∣ s = 1, 2, . . . , k}.

Then

Col{L̃k+2x0} =
{
L̃η
∣∣∣η ∈ Col{L̃k+1x0} ⊗ Im }

⊂

{
L̃η
∣∣∣η ∈ Col{L̃sx0} ⊗ Im, s = 1, 2, . . . , k}

= Col
{
L̃sx0| s = 2, 3, . . . , k+ 1

}
⊂ Col

{
L̃sx0 ⊗ Im| s = 1, 2, 3, . . . , k

}
.

This inequality shows that after k there are no more new
columns. From part 1 we know that such k∗ does exist. �

Example 22. Consider Example 19 again.Wedenote the 8 possible
initial points by (in decreasing order) x10 = (1, 1, 1), x20 =
(1, 1, 0), . . . , x80 = (0, 0, 0). Then it is easy to see that for all of
them the first degenerate steps are the same, which is s0 = 3. For
x10, x

2
0, x

5
0, x

6
0, the first step reachable set is:

R(x10, 1) = R(x
2
0, 1) = R(x

5
0, 1) = R(x

6
0, 1)

= {(1, 1, 1), (1, 0, 1), (0, 1, 1), (0, 0, 1)}.

For x30, x
4
0, the first step reachable set is:

R(x30, 1) = R(x
4
0, 1) = {(0, 1, 1), (0, 0, 1)}.

For x70, x
8
08, the first step reachable set is:

R(x70, 1) = R(x
8
0, 1) = {(010), (000)}.

They have the same second step reachable set

R(xi0, 2) = {(1, 1, 1), (1, 0, 1), (0, 1, 1), (0, 1, 0),
(0, 0, 1), (0, 0, 0)}, i = 1, 2, . . . , 8.

Note that since R(xi0, 2) = Col{L̃}, according to part 1 of
Proposition 21, no more states can be reached.

Definition 23. System (10) is said to be globally reachable from
x0 (by controls of free length Boolean sequence) if R(x0) = Dn.
System (10) is called globally controllable (by controls of free
length Boolean sequence) if R(x0) = Dn, ∀x0 ∈ Dn.

Example 24. Consider the following system{A(t + 1) = B(t) ∧ u1(t)
B(t + 1) = C(t)↔ (¬u2(t))
C(t + 1) = A(t) ∨ u2(t).

(39)

It is easy to check that from point x0 = (1, 0, 0) the first three
steps’ reachable sets are:

R(x0, 1) = {(0, 1, 1), (0, 0, 1)};
R(x0, 2) = {(1, 1, 0), (1, 0, 1), (0, 1, 0), (0, 0, 1)};
R(x0, 3) = {(1, 1, 1), (1, 0, 1), (1, 0, 0), (0, 1, 1),

(0, 1, 0), (0, 0, 1), (0, 0, 0)}.

So system (39) is globally reachable from (1, 0, 0).
It is obvious that control by free length Boolean sequences is
the strongest way of control. It was pointed out by some literature
that in some Boolean network problems the controls can only be
generated by a Boolean system of controls. The control of free
length Boolean sequences could destroy the cycle structure of the
systems, which could be very important, such as deciding the type
of cells.

5. Observability

It is obvious that for a Boolean network the observability is
control depending. We first give a definition.

Definition 25. System (10) with outputs (11) is said to be
observable if for any initial state x0 there exists at least a Boolean
sequence of control, such that the initial state can be determined
by the output sequence.

We give an algorithm for observability.

• Step 1. Construct a sequence Γi, i = 1, 2, . . ., which are sets of
2n × 2n matrices as follows:

Γ1 =
{
Lδi2m |i = 1, 2, . . . , 2

m}
;

Γk+1 =
{
Lδi2mγ |γ ∈ Γk; i = 1, 2, . . . , 2

m} , k ≥ 1;

If Col{Γk∗+1} ⊂ Col{Γi|i ≤ k∗}, k∗ + 1 is called the degenerated
step. Let k∗ > 0 be the first degenerated step, the sequence will
stop at k∗. (Since there are atmost 2n different columns, k∗ ≤ 2n.
• Step 2. Construct a sequence of sets of 2p × 2n matrices as
H0 = H , Hi = HΓi = {Hγ |γ ∈ Γi}.
• Step 3. Using condensed form, each matrix in Hi becomes a 2n
dimensional row.
Choosing h0 ∼ H and linearly independent rows hij ∈ Hi,

i = 1, 2, . . . , k∗ to form a matrix as

C =
[
(h0)T (h11)

T
· (h1i1)

T
· (hk

∗

1 )
T
· (hk

∗

ik∗
)T
]T
. (40)

Theorem 26. Assume that system (10) is globally controllable, then
with outputs (11) it is observable, iff C has all distinct columns.

Proof. Starting from one point x0 we can observe Hx0. Using
different controls δi2n , we can observe HLδ

i
2n . Using different δ

i
2n is

allowed because the system is globally controllable. Hence we can
start from the same point as many times as we wish. Continuing
this process, one sees that

HLδi12nLδ
i2
2n · · · Lδ

is
2nx0, s ≥ 0

are observable. Since s ≥ k0 adds no linearly independent rows
to the previous set, and linearly dependent row is useless in
distinguishing initial values, the initial values can be distinguished,
iff C contains all distinct columns. �

Next, we consider the controllability and observability with
control of sequence of 1−0−∅, where∅means the input channel
is disconnected. This is reasonable. For instance, in cellular network
the active cycles determine the type of cells. Now the genetic
regulation network can change the active cycles in the cellular
network to change the type of cells. But it acts only over a very
short time period like a pulse. So the control becomes a sequence
of 1− 0− ∅.
When an input ui is disconnected, we should ask what is the

nominal network dynamics? Principally, it is reasonable to ask the
network graph being a subgraph of the original one by removing
ui related edges. In this way the nominal network graph is unique.
But the nominal network dynamics could be different. To specify
it, we assume that it has a network matrix L∅. For convenience, we
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assume that there is a frozen control u∅
i = constant such that the ith

input disconnected systemhas the form as ui = u∅
i . When ui = u

∅
i ,

∀i, the control-free system is the nominal network of the original
Boolean control network. That is,

L∅ = Lu∅
1 u

∅
2 · · · u

∅
m.

Inmany caseswe are only interested in the steady state case. For
the nominal Boolean network, let C i, i = 1, 2, . . . , k be its cycles
(attractors), and denote by S =

⋃k
i=1 C

i its set of steady states, Bi

denotes the region of attraction of C i.

Definition 27. A Boolean network is globally steady state control-
lable by control of sequences of 1 − 0 − ∅, if for any two points
x, y ∈ S there is a control of sequences of 1− 0− ∅, which drives
the trajectory from x to y. A Boolean network is steady state observ-
able, if for any x0, y0 ∈ S, there is a control sequence of 1− 0−∅,
such that x0, y0 are distinguished from outputs.

The following result is a direct consequence of the definition
and Theorem 26.

Proposition 28. (1) Consider a Boolean control network, its nominal
systemhas cycles C i, i = 1, 2, . . . , k. The system is globally steady
state controllable, iff for any 1 ≤ i, j ≤ k there exist at least one
x ∈ C i, one y ∈ Bj and a 1 − 0 − ∅ sequence of control, which
drives x to y.

(2) If a Boolean control network is steady state controllable, then it
is steady state observable, iff C, defined in (40), has all distinct
columns.

Proof. Note that a point on a cycle of the nominal system can be
reached infinity times as∅ is used. Then the conclusions are trivial.

�

We give an example.

Example 29. Consider system (25) in Example 10. It is natural to
assume its nominal system to be (by using frozen controls u∅

1 = 0
and u∅

2 = 1){A(t + 1) = B(t)↔ C(t)
B(t + 1) = C(t)
C(t + 1) = A(t).

(41)

Using the technique developed in Cheng and Qi (in press), it
is easy to calculate that there are two cycles: equilibrium C1 :
(1, 1, 1) and length 7 cycle

C2 : (1, 1, 0)→ (0, 0, 1)→ (0, 1, 0)→ (0, 0, 0)
→ (1, 0, 0)→ (1, 0, 1)→ (0, 1, 1)→ (1, 1, 0).

Since there are no transient states, globally steady state control-
lable is the same as globally controllable. To prove global steady
state controllability, we have to find a control to drive a point in
one cycle to the other and vise versa.
Let (A(0), B(0), C(0)) = (1, 1, 1) ∈ C1 and use u1(0) =

0, u2(0) = 0. Then (A(1), B(1), C(1)) = (1, 1, 0) ∈ C2. Let
(A(0), B(0), C(0)) = (1, 0, 0) ∈ C2 and use u1(0) = 1, u2(0) = 1.
Then (A(1), B(1), C(1)) = (1, 1, 1) ∈ C1. By Proposition 28,
system (25) is globally steady state controllable.
Now we assume that the outputs are

y1(t) = A(t)
y2(t) = B(t) ∨ C(t).

(42)

Then we have

y(t) := y1(t)y2(t) = A(t)MdB(t)C(t) = Hx(t),
where H ∈ M4×8 is

H = δ4[1, 1, 1, 2, 3, 3, 3, 4].

For system (25), it is easy to calculate that

L = δ8[1, 5, 5, 1, 2, 6, 6, 2, 2, 6, 6, 2, 2, 6, 6, 2,
1, 7, 5, 3, 2, 8, 6, 4, 2, 8, 6, 4, 2, 8, 6, 4].

Then we can calculate that

HLδ14 = δ4[1, 3, 3, 1, 1, 3, 3, 1];

HLδ24 = δ4[1, 3, 3, 1, 1, 3, 3, 1];

HLδ34 = δ4[1, 3, 3, 1, 1, 4, 3, 2];

HLδ44 = δ4[1, 4, 3, 2, 1, 4, 3, 2].

Weneed only to construct part ofC. Choosing linearly independent
rows, we have

C =



H
HLδ14
HLδ24
HLδ34
HLδ44
...

 =

1 1 1 2 3 3 3 4
1 3 3 1 1 3 3 1
1 3 3 1 1 4 3 2
1 4 3 2 1 4 3 2
...

 .

From part of C it is enough to see that there are no equal columns
in C. So the system is observable.

6. Conclusion

The paper considered the controllability and observability of
Boolean control networks. As a necessary tool, we first discussed
how to reconstruct a Boolean network from its known network
matrix. Then the controllability via two kinds of controls has been
investigated. First, assume that the controls are generated by a
control Boolean network. Second, assume that the controls are free
Boolean sequences (with control-disconnected moments). In both
cases, necessary and sufficient conditions have been obtained to
show the reachable sets precisely. The observability problem has
also been solved for the controls of free Boolean sequences.1
Overall, the paper provided a framework for using system and

control techniques to analyze and manipulate Boolean networks.
Since the dimension of state space is 2n, where n is the number

of nodes, as n is large, the complexity of computation is a series
problem in this approach. It is not discussed in this paper. As
mentioned at the beginning of Section 3, a large network or its
some particular input–output responses may be approximated by
a smaller network.
There are many control related problems for Boolean control

systems, such as realization, stabilization and optimal control etc.,
which remain for further study.
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