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Abstract

In this paper stabilization of nonlinear systems with quadratic multi-input is considered. With the help of control Lyapunov function (CLF), a
constructive parameterization of controls that globally asymptotically stabilize the system is proposed. Two different cases are considered. Firstly,
under certain regularity assumptions, the feasible control set is parameterized, and continuous feedback stabilizing controls are designed. Then
for the general case, piecewise continuous stabilizing controls are proposed. The design procedure can also be used to verify whether a candidate
CLF is indeed a CLF. Several illustrative examples are presented as well.
c© 2008 Published by Elsevier Ltd
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1. Introduction

Stabilization of control systems is one of the most
important topics in control theory. The most useful tool
in stability analysis and stabilizing control design is the
Lyapunov approach, although in practice it is sometimes
difficult to construct a Lyapunov function. When stabilization
is considered, the selection of a candidate Lyapunov function
has to be considered simultaneously with the design of control.
The notion of control Lyapunov function (CLF) introduced
by Artstein gives a way to consider the choice of Lyapunov
function and the design of control simultaneously (Artstein,
1983). Under some mild constraints on the feasible control,
Artstein pointed out that for a class of nonlinear control
systems, the stabilizability is equivalent to the existence of a
CLF in Artstein (1983).

Many results concerning CLFs have been obtained in the lit-
erature. For example, Tsinias gave some sufficient conditions
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for the existence of CLFs for affine nonlinear control systems
with some special forms, and provided the explicit construc-
tions of CLFs (Tsinias, 1990, 1991). Faubourg and Pomet de-
signed the explicit CLFs for affine homogeneous systems with-
out drift satisfying the Jurdejevic–Quinn conditions (Faubourg
& Pomet, 2000). Recently, Mazence and Malisoff constructed
CLFs for non-affine nonlinear control systems satisfying the
Jurdejevic–Quinn conditions (Mazenc & Malisoff, 2006).

Designing stabilizing controls constructively from a known
CLF is in itself also an interesting and important topic. For
affine nonlinear control systems, Sontag gave a universal
construction of the state feedback control law via a known
CLF (Sontag, 1989). More recently, Curtis et al. presented a
constructive parameterization of universal formulas of the state
feedback control law with respect to a given CLF, and proved
that parameterization is complete in Curtis and Beard (2004)
using the introduced notion in the satisficing decision theory
(Goodrich, Stirling, & Frost, 1998; Srirling, 2003; Srirling &
Morrell, 1991).

In general there may not exist a continuous stabilizing
control for non-affine nonlinear control systems. Recently,
Moulay and Perruquetti provided a sufficient condition for
the existence of a continuous stabilizing control for the
non-affine (quadratic input) nonlinear control system: the
existence of a CLF satisfying the small control property, and
a convexity property with respect to the control input (Moulay
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& Perruquetti, 2005). However, their proof is non-constructive,
except for special case of polynomial single input of degree two
and three.

Nowadays, quadratic input nonlinear systems appear
in many practical fields, such as in magnetic problems
(Moulay & Perruquetti, 2005) and oscillation problems of the
electromagnetic oscillator (Sane & Bernstein, 2002). Therefore,
the investigation of such systems is practically relevant.

In this paper, we consider the following quadratic input
system

ẋ = f (x) +

m∑
i=1

gi (x)ui +

m∑
i1=1

m∑
i2=1

hi1i2(x)ui1ui2 , (1)

where x ∈ Rn is the state, u ∈ Rm is the control input, and
f, g, hi j are the smooth vector fields with f (0) = 0.

Moulay and Perruquetti gave a method of constructing
feedback control laws for system (1) with m = 1, and the
case when hi j (x) ≡ 0, i 6= j , which is very similar to
the case of m = 1 (Moulay & Perruquetti, 2005). We note
that it has been pointed out in Moulay and Perruquetti (2005)
that the general multi-input case is much more difficult. Lin
derived an arbitrarily small state feedback control law which
globally asymptotically stabilizes system (1) (Lin, 1995, 1996).
However, one of the assumptions in Lin (1995, 1996) is that
there exists a Cr (r ≥ 1) function V : Rn

→ R, which
is positive definite and proper on Rn such that the unforced
dynamic system

ẋ = f (x) (2)

is Lyapunov stable, i.e., L f V (x) ≤ 0, ∀x ∈ Rn .
In this paper we study the problem of designing

constructively a globally stabilizing control for system (1) via
a known CLF. In particular, we give a parameterization of the
continuous stabilizing feedback controls for system (1) without
assuming that system (2) is Lyapunov stable. Moreover, we
show that the parameterization is complete.

The paper is organized as follows. Section 2 presents
some preliminaries. Section 3 investigates the feasible set of
stabilizing controls. Section 4 provides a detailed control design
procedure with certain assumptions. Section 5 investigates
the assumptions used in Sections 3 and 4 and shows
that all the assumptions lead to the regularity assumption.
Section 6 considers the singular case and the design of
piecewise continuous stabilizing controls. Section 7 gives
some concluding remarks, and some discussion on further
applications and investigations.

2. Preliminaries

In this section we first recall some basic definitions and facts
concerning control Lyapunov functions, then we give some
notations.

Consider a non-affine nonlinear control system

ẋ = f (x, u), (3)

where x ∈ Rn is the state, u ∈ Rm is the control input, and f is
the smooth vector field with f (0, 0) = 0.
Definition 1 (Moulay & Perruquetti, 2005). A smooth, proper,
and positive definite function V is a control Lyapunov function
(CLF) for system (3), if for any x ∈ Rn

\ {0}

inf
u∈Rm

{
∂V

∂x
f (x, u)

}
< 0. (4)

Definition 2 (Moulay & Perruquetti, 2005). A CLF V for
system (3) is said to satisfy the small control property, if for
each ε > 0 there is a δ > 0 such that, if x 6= 0 satisfies ‖x‖ < δ,
then there is some u with ‖u‖ < ε such that

∂V

∂x
f (x, u) < 0. (5)

From the above definition, one can see that the small control
property assures the existence of a stabilizing control u which
is continuous at the origin with u(0) = 0.

The control design based on the CLF is due to Artstein
(1983) and revisited with a simplified proof in Moulay and
Perruquetti (2005).

Proposition 3 (Artstein, 1983; Moulay & Perruquetti, 2005). If
there exists a CLF V for system (3) such that u →

∂V
∂x f (x, u)

is convex for all x ∈ Rn
\ {0}, then system (3) is globally

asymptotically stabilizable by a state feedback control law u =

u(x) with u(0) = 0 that is continuous over Rn
\{0}. In addition,

if the CLF V satisfies the small control property, then u(x) is
continuous over Rn .

However, the construction of a stabilizing control is in
general highly nontrivial, with the exception of the affine
control case. For affine nonlinear control systems Sontag
provided a formula to construct a continuous stabilizer via a
known Lyapunov function (Sontag, 1989).

Throughout this paper, we denote B = {ς ∈ Rm
|‖ς‖ < 1}.

We also denote A+ for pseudo-inverse of the matrix A (Penrose,
1995).

3. Feasible set of controls

Consider system (1). Denote by hi
i1i2

(x) the i th component
of hi1i2(x), and for each i ∈ {1, . . . , n}, let

Ri (x) =



hi
11(x)

hi
12(x) + hi

21(x)

2
· · ·

hi
1m(x) + hi

m1(x)

2
hi

12(x) + hi
21(x)

2
hi

22(x) · · ·
hi

2m(x) + hi
m2(x)

2
· · · · · · · · · · · ·

hi
1m(x) + hi

m1(x)

2

hi
2m(x) + hi

m2(x)

2
· · · hi

mm(x)


.

Then
m∑

i1=1

m∑
i2=1

hi1i2(x)ui1ui2 = [uT R1(x)u, . . . , uT Rn(x)u]
T.

Throughout this paper, we assume V is a CLF for system (1).
Then the time derivative of V along the trajectories of system
(1) is

V̇ |(1) =
∂V

∂x
f (x) +

∂V

∂x
g(x)u + uT

(
n∑

i=1

∂V

∂xi
Ri (x)

)
u.
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Let a(x) =
∂V
∂x f (x), b(x) =

(
∂V
∂x g(x)

)T
, and R(x) =∑n

i=1
∂V
∂xi

Ri (x). Then R(x) is symmetric and

V̇ |(1) = a(x) + bT(x)u + uT R(x)u. (6)

Denote

F(x, u) = a(x) + bT(x)u + uT R(x)u.

Lemma 4. Assume V is a CLF for system (1). Then the
following two conditions are equivalent.

1. F(x, u) is (strictly) convex with respect to u for all x 6= 0.
2. R(x) ≥ 0 (respectively, R(x) > 0) for all x 6= 0.

Based on the discussion, it is reasonable that we emphasize
on the case where F(x, u) is convex or equivalently, R(x) is
positive semi-definite. We thus assume first

Assumption 5. F(x, u) is strictly convex with respect to u for
all x 6= 0.

According to Lemma 4, Assumption 5 is equivalent to R(x) >

0, ∀x 6= 0.
Assumption 5 is stronger than the corresponding assumption

in Proposition 3, where F(x, u) is only convex with respect to
u for all x 6= 0. We will relax Assumption 5 later.

Lemma 6 (Curtis & Beard, 2004). Assume A is a symmetric
positive definite matrix, then the set of solutions to the quadratic
inequality

ξT Aξ + dTξ + c < 0, ξ ∈ Rm

is nonempty if and only if

1
4

dT A−1d − c > 0,

and the set of solutions is given by

ξ = −
1
2

A−1d + A−
1
2 ν

√
1
4

dT A−1d − c, ν ∈ B.

Note that R(x) is symmetric and supposed positive definite
except at the origin. Then we have the following result:

Corollary 7. Assume V is a CLF for system (1), and
Assumption 5 holds. Then a stabilizing control u0 = u0(x) of
system (1) can be expressed as

u0(x) = −
1
2

R−1(x)b(x)

+ R−
1
2 (x)ν(x)

√
1
4

bT(x)R−1(x)b(x) − a(x),

ν(x) ∈ B, ∀x 6= 0, (7)

and the set of continuous (over Rn
\ {0}) stabilizing controls

u0(x) is parameterized by (7) with any continuous (over Rn
\

{0}) function ν(x) ∈ B. Moreover, if the CLF V for system (1)
satisfies the small control property, then u0(x) is continuous
over Rn with u0(0) = 0.
Next, we consider a more general case, where R(x) ≥ 0.
Equivalently, we assume:

Assumption 8. F(x, u) is convex with respect to u for all
x 6= 0.

In the following we construct the set of stabilizing controls
under the assumptions that V is a CLF for system (1) and
Assumption 8 holds.

Assume V is a CLF for system (1), we define

ξ(x) := inf
u∈Rm

[a(x) + bT(x)u + uT R(x)u].

Then ξ(x) ∈ [−∞, 0), ∀x 6= 0, and ξ(0) = 0, since a(0) = 0,
b(0) = 0, and R(0) = 0. For any α < 0, we define a truncated
ξ as ξα(x) = max{ξ(x), α}. It is easy to see that if ξ(x) is
continuous, then ξα(x) is also continuous.

Now for each fixed x , we decompose u as

u(x) = u I (x) + u P (x), (8)

where

u I (x) = R(x)R+(x)u ∈ Im(R(x)),

u P (x) = (I − R(x)R+(x))u ∈ Im⊥(R(x)).

Note that R(x) is symmetric, so

R(x)R+(x) = (R+(x)R(x))T
= R+(x)R(x).

Then

a(x) + bT(x)u + uT R(x)u

= a(x) + bT(x)u I + bT(x)u P + uT
I R(x)u I . (9)

Assume V is a CLF for system (1), we also define

η(x) := inf
u I ∈Im(R(x))

[a(x) + bT(x)u I + uT
I R(x)u I ]. (10)

Note that η(x) > −∞ is a well-posed function.
Denote

D = { f ∈ C0(Rn
\ {0})

∣∣ 0 < f (x) < 1},

i.e., D is the set of continuous functions on Rn
\ {0} with their

values in (0, 1). Choosing an α < 0 and a µ(x) ∈ D, along
with (9), we have

inf
u∈Rm

[a(x) + bT(x)u + uT R(x)u]

= inf
u I ∈Im(R(x))

[a(x) + bT(x)u I + uT
I R(x)u I − η(x)

+ µ(x)ξα(x)]

+ inf
u P∈Im⊥(R(x))

[η(x) − µ(x)ξα(x) + bT(x)u P ]. (11)

For the first term of the right-hand side of (11), we have

inf
u I ∈Im(R(x))

[a(x) + bT(x)u I + uT
I R(x)u I − η(x)

+ µ(x)ξα(x)]

= µ(x)ξα(x) < 0, ∀x 6= 0. (12)
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For the second term, we have

inf
u P∈Im⊥(R(x))

[η(x) − µ(x)ξα(x) + bT(x)u P ]

= ξ(x) − µ(x)ξα(x) ≤ (1 − µ(x))ξα(x) < 0,

∀x 6= 0. (13)

Next, we claim that we can construct continuous controls u I
and u P separately. Then u = u I + u P is a feasible control. Set

a1(x) = a(x) − η(x) + µ(x)ξα(x),

a2(x) = η(x) − µ(x)ξα(x).

From (12) and (13) we have the following result:

Lemma 9. Assume V is a CLF for system (1). Then there exist
u I ∈ Im(R(x)) and u P ∈ Im⊥(R(x)), such that

a1(x) + bT(x)u I + uT
I R(x)u I < 0, ∀x 6= 0, (14)

and

a2(x) + bT(x)u P < 0, ∀x 6= 0. (15)

Remark 10. The above lemma suggests that: as long as

inf
u∈Rm

[a(x) + bT(x)u + uT R(x)u] < 0, ∀x 6= 0, (16)

we have

inf
u I ∈Im(R(x))

[a1(x) + bT(x)u I + uT
I R(x)u I ] < 0,

∀x 6= 0, (17)

and

inf
u P∈Im⊥(R(x))

[a2(x) + bT(x)u P ] < 0,

∀x 6= 0. (18)

In preparation for the construction of u(x), we also need the
following lemma, which can be proved easily.

Lemma 11. If u I (x) is a continuous (except at x = 0) control
satisfying (14) and u P (x) is a continuous (except at x =

0) control satisfying (15), then u(x) = u I (x) + u P (x) is
continuous (except at x = 0), and satisfies

a(x) + bT(x)u(x) + u(x)T R(x)u(x) < 0, ∀x 6= 0. (19)

Finally, we construct three feasible sets as:

Φα
µ =

{
u I (x) ∈ Im(R(x))

∣∣∣a1(x) + bT(x)u I (x)

+ uT
I (x)R(x)u I (x) < 0, ∀x 6= 0; u I (0) = 0

}
,

Ψα
µ =

{
u P (x) ∈ Im⊥(R(x)) |a2(x)

+ bT(x)u P (x) < 0, ∀x 6= 0; u P (0) = 0
}

,

Φ =

{
u(x) ∈ Rm

∣∣∣a(x) + bT(x)u(x)

+ uT(x)R(x)u(x) < 0, ∀x 6= 0; u(0) = 0
}

.

Based on the above arguments, after some tedious but
straightforward calculations that are skipped here, we obtain
the first main result as follows. It provides a complete
parameterized expression of the feasible set of u, from which
stabilizing continuous controls can be constructed.

Theorem 12. Assume V is a CLF for system (1), and
Assumption 8 holds. Then the feasible set of stabilizing controls
u for system (1) consists of

Φ =

⋃
α<0

⋃
µ(x)∈D

{u = u I (x) + u P (x)|u I (x) ∈ Φα
µ,

u P (x) ∈ Ψα
µ}. (20)

Proof. According to Lemmas 9 and 11, Φ is composed of
double commutative unions (the parameters α and µ(x) are
independent). �

4. Control design

In this section, we construct continuous u I (x) from (17) and
continuous u P (x) from (18).

For the sake of presentation, we tentatively assume

Assumption 13. 1. For any α < 0, ξα(x) is continuous over
Rn

\ {0};
2. η(x) is continuous over Rn

\ {0}.

We consider (17) first. It is similar to the case of R(x) >

0, ∀x 6= 0. However, due to the restriction on u I , certain
further investigation has to be carried out. We will reduce the
expression to the standard case, i.e., R(x) > 0, ∀x 6= 0.

Lemma 14. Let A be an n × n symmetric matrix, u ∈ Rn and
v = Au. Then u = A+v if and only if u ∈ Im(A).

We need one more assumption in order to construct
continuous controls.

Assumption 15. R+(x) (or equivalently (R
1
2 )+(x)) is contin-

uous over Rn
\ {0}.

Observe that if we want u I and u P to be continuous, then the
assumptions in Assumption 13 become necessary. However, we
should first check whether the assumptions in Assumption 13
are reasonable. In the following, we give a sufficient condition
of the second assumption in Assumption 13.

Lemma 16. If V is a CLF for system (1), and Assumptions 8
and 15 hold, then η(x) is continuous over Rn

\ {0}.

Proof. Recall that

η(x) = inf
u I ∈Im(R(x))

[a(x) + bT(x)u I + uT
I R(x)u I ]. (21)

Let v = R
1
2 (x)u I . By Lemma 14, u I = (R

1
2 )+(x)v. Hence

a(x) + bT(x)u I + uT
I R(x)u I

= a(x) + bT(x)(R
1
2 )+(x)v + vTv

=

[
v +

1
2
(R

1
2 )+(x)b(x)

]T [
v +

1
2
(R

1
2 )+(x)b(x)

]
+ a(x) −

1
4

bT(x)R+(x)b(x).
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It is clear that

η(x) = a(x) −
1
4

bT(x)R+(x)b(x).

It follows that if R+(x) is continuous over Rn
\ {0}, then so is

η(x). �

Next, we consider ξ(x). Assume V is a CLF for system (1)
and Assumption 8 holds. Note that

ξ(x) = inf
u∈Rm

[a(x) + bT(x)u + uT R(x)u]. (22)

Split b(x) as b(x) = bI (x)+bP (x), where bI ∈ Im(R(x)), and
bP ∈ Im⊥(R(x)). Then we have

a(x) + bT(x)u + uT R(x)u

=

[
v +

1
2
(R

1
2 )+(x)b(x)

]T [
v +

1
2
(R

1
2 )+(x)b(x)

]
+ a(x) −

1
4

bT(x)R+(x)b(x) + bT
P (x)u P .

Case 1: If bP (x) = 0, i.e., b(x) = bI (x) ∈ Im(R(x)), then
bT

P (x)u P = 0. Hence ξ(x) = η(x).
Case 2: If bP (x) 6= 0, then we can choose u P =

−d(x)bP (x) ∈ Im⊥(R(x)) with some positive function d(x). It
follows that bT

P (x)u P = −d(x)‖bP (x)‖2. Since we can choose
d(x) > 0 as large as we wish, it follows that ξ(x) = −∞.

Combining the above two cases yields

ξ(x) =

{
−∞, if b(x) 6∈ Im(R(x))(i.e., bP (x) 6= 0),

η(x), if b(x) ∈ Im(R(x))(i.e., bP (x) = 0).
(23)

We conclude that ξ(x) (or even ξα(x)) can be made
continuous, if and only if bP (x) ≡ 0 and η(x) is continuous.

In fact, the case bP (x) ≡ 0 is of less interest. It is equivalent
to the case when R(x) is positive definite except at the origin.
Then in order to incorporate the case bP (x) is not identically
zero, the only way is to modify ξα(x). Denote

S = {x ∈ Rn
\ {0}|bP (x) = 0}.

Then the distance d(x,S) from x to S is a well-defined
continuous function over Rn

\ {0}.
For any ε > 0 and any x ∈ Rn

\{0}, we can define a function
as

ϕε(x) =

{
1 −

d(x,S)

ε
, d(x,S) ≤ ε,

0, d(x,S) > ε.
(24)

It is obviously continuous over Rn
\ {0}. Using it, we define

ξ ε
α(x) = −ϕε(x)|η(x)| + (1 − ϕε(x))α, ∀x 6= 0. (25)

Lemma 17. Assume V is a CLF for system (1), and item 2 of
Assumption 13 holds. Then ξ ε

α(x) is a continuous function over
Rn

\ {0}. Moreover,

ξ(x) ≤ ξ ε
α(x) < 0, ∀x 6= 0. (26)

Proof. Continuity is obvious. In the following, we prove
Inequality (26) in two cases.
1. If x ∈ S, then ξ ε
α(x) = −|η(x)| = −|ξ(x)| = ξ(x) < 0. So

Inequality (26) holds.
2. If x 6∈ S and x 6= 0, then ξ(x) = −∞, thus the first

inequality in (26) is trivially true. In the following, we show
that the second inequality in (26) holds. First, note that S is
a closed set in Rn

\ {0}. Then d(x,S) > 0, ∀ 0 6= x 6∈ S.
(a) If 0 < d(x,S) ≤ ε, then the second inequality in (26) is

valid because −|η(x)| is non-positive and α is negative.
(b) If d(x,S) > ε, then ξ ε

α(x) = α < 0. �

Remark 18. 1. It is obvious that as ε → 0+, ξ ε
α(x) → ξα(x).

2. Hereafter, to assure the continuity of the stabilizer u, we will
replace ξα(x) by ξ ε

α(x) for any ε > 0. Accordingly, we will
replace a1(x), a2(x), Inequalities (17) and (18) respectively
by

aε
1(x) = a(x) − η(x) + µ(x)ξ ε

α(x),

aε
2(x) = η(x) − µ(x)ξ ε

α(x),

inf
u I ∈Im(R(x))

[aε
1(x) + bT(x)u I + uT

I R(x)u I ] < 0,

∀x 6= 0, (27)

and

inf
u P∈Im⊥(R(x))

[aε
2(x) + bT(x)u P ] < 0, ∀x 6= 0. (28)

3. Under the above replacements, the feasible sets Φα
µ and Ψα

µ

will be replaced respectively by

Φε,α
µ =

{
u I (x) ∈ Im(R(x))

∣∣∣aε
1(x) + bT(x)u I (x)

+ uT
I (x)R(x)u I (x) < 0, ∀x 6= 0; u I (0) = 0

}
,

and

Ψ ε,α
µ =

{
u P (x) ∈ Im⊥(R(x))

∣∣∣aε
2(x) + bT(x)u P < 0,

∀x 6= 0; u P (0) = 0
}

.

Moreover, Equality (20) in Theorem 12 becomes

Φ =

⋃
ε>0

⋃
α<0

⋃
µ(x)∈D

{
u = u I (x) + u P (x) |

u I (x) ∈ Φε,α
µ , u P (x) ∈ Ψ ε,α

µ

}
. (29)

Set v = R
1
2 (x)u I . Note that Im(R

1
2 (x)) = Im(R(x)), then

by Lemma 14, u I = (R
1
2 )+(x)v ∈ Im(R(x)). Moreover, for

each u I ∈ Im(R(x)), we can find v such that u I = (R
1
2 )+(x)v.

So we can convert (27) to the following

inf
v∈Rm

[aε
1(x) + b̃T(x)v + vTv] < 0, ∀x 6= 0, (30)

where b̃(x) = (R
1
2 )+(x)b(x). That is, the solutions of (30) and

the solutions of (27) are one-to-one corresponded by v ↔ u I =

(R
1
2 )+(x)v.
Now getting the parameterized formula of v(x) satisfying

(30) is similar to the case of R(x) > 0, ∀x 6= 0, which was
discussed in the previous section. We have
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Theorem 19. Assume V is a CLF for system (1), and
Assumptions 8 and 15 hold. Then the set of solutions u I =

u I (x) is given by

u I (x) = −
1
2

R+(x)b(x)

+ (R
1
2 )+(x)ν(x)

√
1
4

bT(x)R+(x)b(x) − aε
1(x),

ν(x) ∈ B, ∀x 6= 0, (31)

and the set of continuous (over Rn
\ {0}) solutions u I (x) is

parameterized by (31) with any continuous (over Rn
\ {0})

function ν(x) ∈ B. Moreover, if the CLF V for system (1)
satisfies the small control property, then u I (x) is continuous
over Rn with u I (0) = 0.

Proof. Since V is a CLF for system (1), based on the above
argument, (30) holds. In turn, there exits a v ∈ Rm such that

aε
1(x) + b̃T(x)v + vTv < 0, ∀x 6= 0.

Using Lemma 6, we have

v = −
1
2

b̃(x) + ν(x)

√
1
4

b̃T(x)b̃(x) − aε
1(x)

= −
1
2
(R

1
2 )+(x)b(x) + ν(x)

√
1
4

bT(x)R+(x)b(x) − aε
1(x),

ν(x) ∈ B, ∀x 6= 0.

Then u I = (R
1
2 )+(x)v yields (31). �

Next, we derive u P from (28). We will also relax the
restriction on u P .

It follows that (28) is equivalent to

inf
v∈Rm

[aε
2(x) + b̄T(x)v] < 0, (32)

where b̄(x) = (I − R+(x)R(x))b(x).
The parameterized formula for all the solutions can be

obtained by the method proposed in Curtis and Beard (2004).
Following the notations and terminologies, we briefly sketch
the construction of the set of controls using the techniques
proposed in Curtis and Beard (2004).

Choose selectability: ps(v, x) = −[aε
2(x)+b̄T(x)v], and the

rejectability: pr (v, x) = l(x) + vT Q(x)v, where the function
l(x) ≥ 0 with l(0) = 0 and the matrix function Q(x) > 0, and
selectivity index: the function γ (x) satisfying 0 < γ (x) < ∞.
Then the feasible set is expressed as

Sγ (x)(x) =

{
v ∈ Rm

∣∣∣−[aε
2(x) + b̄T(x)v]

>
1

γ (x)
(l(x) + vT Q(x)v), ∀x 6= 0

}
. (33)

By Lemma 6, it follows that

Sγ (x)(x) =

{
−

1
2
γ (x)Q−1(x)b̄(x) + Q−

1
2 (x)ν(x)

·

√
1
4
γ 2(x)b̄T(x)Q−1(x)b̄(x) − l(x) − γ (x)aε

2(x)

}
.

Define

γ (x) =


−

1
aε

2(x)
, if b̄T(x) = 0,

2aε
2(x) + 2

√
(aε

2(x))2 + l(x)b̄T(x)Q−1(x)b̄(x)

b̄T(x)Q−1(x)b̄(x)
,

otherwise.

(34)

According to Lemma 6 in Curtis and Beard (2004), γ (x) >

γ (x) implies Sγ (x) is nonempty.
Let

σ1(x, γ (x)) =
1
2
γ (x)Q−1(x)b̄(x), (35)

and

σ2(x, γ (x)) = Q−
1
2 (x)

·

√
1
4
γ 2(x)b̄T(x)Q−1(x)b̄(x) − l(x) − γ (x)aε

2(x), (36)

then the feasible set becomes

S(x) =

⋃
γ (x)>γ (x)

Sγ (x)(x)

=

{
− σ1(x, γ (x)) + σ2(x, γ (x))ν(x)|

γ (x) > γ (x), ‖ν(x)‖ < 1, ∀x 6= 0
}

. (37)

Moreover, if the CLF V satisfies the small control property, and
γ (x) = ζ(x)γ (x) with 1 < ζ(x) < N < +∞, and Q(x)

satisfies r I ≤ Q(x) ≤ r I, ∀x ∈ Rn , where r and r are positive
constants, then each k(x) ∈ S(x) is also continuous at origin
with k(0) = 0.

Summarizing the above arguments, we have

Theorem 20. Assume V is a CLF for system (1), and
Assumptions 8 and 15 hold, then a set of satisficing controls
u P = u P (x) is given by:

u P (x) = −(I − R+(x)R(x))σ1(x, γ (x))

+ (I − R+(x)R(x))σ2(x, γ (x))ν(x),

γ (x) ≥ γ (x), ‖ν(x)‖ < 1, ∀x 6= 0, (38)

which is continuous over Rn
\ {0} with any continuous (over

Rn
\{0}) function ν(x) ∈ B. Moreover, if the CLF V satisfies the

small control property, and γ (x) = ζ(x)γ (x) with 1 < ζ(x) <

N < +∞, and Q(x) satisfies r I ≤ Q(x) ≤ r I, ∀x ∈ Rn ,
where r and r are positive constants, then u P (x) is continuous
at the origin, thus over Rn with u P (0) = 0.

Remark 21. If γ (x) is continuous, then the construction of
γ (x) will be much easier. Lemma 6 in Curtis and Beard (2004)
proved that as long as l(x) satisfies the property

(b̄T(x) 6= 0 and aε
2(x) = 0) ⇒ l(x) > 0,

then γ (x) is continuous over Rn
\{0}. So we may simply choose

l(x) = b̄T(x)b̄(x), which ensures the continuity of γ (x).



2002 J. Zhong et al. / Automatica 44 (2008) 1996–2005
5. Remarks on assumptions

In this section we investigate some assumptions used in our
previous discussion and relax some restrictions.

First, we consider the case when R+(x) (or equivalently,

(R
1
2 )+(x)) is continuous. We define

Definition 22. Let R(x) be an n × n symmetric matrix with
continuous entries. A point x is a regular point of R(x) if there
exists a neighborhood U of x , such that rank(R(x)) = constant,
∀x ∈ U . Otherwise, x is called a singular point. R(x) is said to
be regular, if each x 6= 0 is a regular point for R(x).

Lemma 23. R+(x) is continuous at x0, if and only if x0 is a
regular point.

Proof. Denote by Nx0 the set of neighborhoods of x0, then we
can define the neighbor rank of x0 as

rN (x0) = max
x∈N

rank(R(x))

withN ∈ Nx0 . Assume rN (x0) = s, then we can express R(x)

around x0 (over some neighborhood N ) as

P(x)R(x)PT(x) = diag(l1(x), . . . , ls(x), 0, . . . , 0)

with some orthogonal matrix P(x). Since

P(x)R+(x)PT(x) = diag
(

1

l1(x)
, . . . ,

1

ls(x)
, 0, . . . , 0

)
,

it is easy to see that R+(x) is not continuous, if and only if
li (x0) = 0 for some 1 ≤ i ≤ s. �

Next, we consider Assumption 8, i.e., R(x) ≥ 0, ∀x 6= 0.
Lemma 4 already answered this question partly. To make it
clearer, let R(x) = Rp(x)− Rn(x), where Rp(x) is the positive
part and −Rn(x) is the negative part for all x ∈ Rn

\ {0}. More
precisely, let

P(x)R(x)PT(x)

= diag(l1(x), . . . , lt (x), lt+1(x), . . . , lt+s(x), 0, . . . , 0),

where P(x) is an orthogonal matrix, li (x) > 0, i = 1, . . . , t ,
and li (x) < 0, i = t + 1, . . . , t + s, ∀x 6= 0, then

Rp(x) = PT(x)diag(l1(x), . . . , lt (x), 0, . . . , 0)P(x),

and

Rn(x)

= −PT(x)diag(0, . . . , 0, lt+1(x), . . . , lt+s(x), 0, . . . , 0)P(x).

Assume Rn(x) 6= 0. We split u as u = u p + un + uz, where

u p ∈ Im(Rp(x)), un ∈ Im(Rn(x)), uz ∈ Im⊥(R(x)).

Then

a(x) + bT(x)u + uT R(x)u

= a(x) + bT(x)(u p + un + uz) + uT
p Rp(x)u p − uT

n Rn(x)un .
Simply set u p = 0, uz = 0 and define v = R
1
2
n (x)un . Then we

have un = (R
1
2
n )+(x)v, and

a(x) + bT(x)u + uT R(x)u

= a(x) + bT(x)(R
1
2
n )+(x)v − vTv

:= a(x) + b̃T(x)v − vTv < 0, ∀x 6= 0.

Let ν(x), p(x) : Rn
\ {0} → Rm be two continuous vectors

satisfying 1
2 b̃(x) 6= p(x) ∈ Im(Rn(x)), ν(x) ∈ (B̄)c,

i.e., ‖ν(x)‖ > 1. Then the set of solutions of v can be expressed
as

v =


p(x), if

1
4

b̃T(x)b̃(x) + a(x) ≤ 0,

1
2

b̃(x) + ν(x)

√
1
4

b̃T(x)b̃(x) + a(x),

if
1
4

b̃T(x)b̃(x) + a(x) > 0.

(39)

By Lemma 23, the above argument leads to:

Theorem 24. Assume V is a CLF for system (1), and Rn(x) 6=

0 is regular. Then un can be constructed to stabilize system (1).
The general expression of the set of stabilizing controls is

un =



(R
1
2
n )+(x)p(x),

if
1
4

bT(x)R+
n (x)b(x) + a(x) ≤ 0,

1
2

R+
n (x)b(x)

+ (R
1
2
n )+(x)ν(x)

√
1
4

bT R+
n (x)b(x) + a(x),

if
1
4

bT(x)R+
n (x)b(x) + a(x) > 0,

(40)

where ν(x) ∈ (B̄)c, 1
2 (R

1
2
n )+(x)b(x) 6= p(x) ∈ Im(Rn(x)).

Finally, we give an example.

Example 25. Consider the following system{
ẋ1 = x5

1 + 3x3
1 u1 + x2

2 u2 + x1u2
1

ẋ2 = 2x3
2 u1 + x1x2u2 + x2u2

1
(41)

where x = [x1 x2]
T is the state, and u = [u1 u2]

T is the
control input.

Take V (x) =
1
2 (x2

1 + x2
2). Then

V̇ |(41) = x6
1 + (3x4

1 + 2x4
2)u1 + 2x1x2

2u2 + (x2
1 + x2

2)u2
1.

So

a(x) = x6
1 , b(x) =

[
3x4

1 + 2x4
2

2x1x2
2

]
,

R(x) =

[
x2

1 + x2
2 0

0 0

]
.

It is easy to see that R(x) ≥ 0, ∀x ∈ R2. Setting

u =


[
−

3x4
1 + 2x4

2

2(x2
1 + x2

2)
0

]T

, if x 6= 0,

0, if x = 0.
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we can prove that V is a CLF for system (41) and satisfies the
small control property. Clearly,

R+(x) = diag(1/(x2
1 + x2

2), 0), ∀x 6= 0,

and

(R
1
2 )+(x) = diag(1/

√
x2

1 + x2
2 , 0), ∀x 6= 0,

R+(x) and (R
1
2 )+(x) are both continuous for any x ∈ R2

\ {0}.
Moreover,

Im(R(x)) = Span
{
[1 0]

T
}

,

Im⊥(R(x)) = Span
{
[0 1]

T
}

,

bI (x) = [3x4
1 + 2x4

2 0]
T, bP (x) = [0 2x1x2

2 ]
T,

and

S = {x ∈ R2
\ {0}|x1 = 0 or x2 = 0}.

Straightforward calculations lead to

η(x) =

−
5x8

1 + 12x4
1 x4

2 + 4x8
2 − 4x6

1 x2
2

4(x2
1 + x2

2)
, if x 6= 0,

0, if x = 0,

and

ξ(x) =

{
−∞, if x1 6= 0 and x2 6= 0,

η(x), if x1 = 0 or x2 = 0.

Using the notations in Section 4, we have

aε
1(x) =

(3x4
1 + 2x4

2)2

4(x2
1 + x2

2)
+ µ(x)ξ ε

α(x), ∀x 6= 0,

and

aε
2(x) = −

5x8
1 + 12x4

1 x4
2 + 4x8

2 − 4x6
1 x2

2

4(x2
1 + x2

2)

− µ(x)ξ ε
α(x), ∀x 6= 0, (42)

and

b̄(x) = [0 2x1x2
2 ]

T, ∀x 6= 0. (43)

According to Theorem 19, we obtain the expression of u I =

u I (x) ∈ Im(R(x)) as

u I (x)

=

−
3x4

1 + 2x4
2

2(x2
1 + x2

2)
+ ν1(x)

√
(3x4

1 + 2x4
2)2

4(x2
1 + x2

2)
− aε

1(x)

0

 ,

∀x 6= 0,

where the continuous function ν1(x) satisfies |ν1(x)| < 1, ∀x ∈

R2
\ {0}.
On the other hand, according to Theorem 20 and with its

notations, we obtain u P = u P (x) ∈ Im⊥(R(x)) as

u P (x) = −
1
2
γ (x)(I − R+(x)R(x))Q−1(x)b̄(x)
+ (I − R+(x)R(x))Q−
1
2 (x)ν(x)

·

√
1
4
γ 2(x)b̄T(x)Q−1(x)b̄(x) − l(x) − γ (x)aε

2(x),

∀x 6= 0,

where aε
2(x) and b̄(x) are ones in (42) and (43) respectively,

and

I − R+(x)R(x) = diag(0, 1), ∀x 6= 0,

and γ (x) ≥ γ (x), ∀x 6= 0, with

γ (x) =


−

1
aε

2(x)
, if x1 = 0 or x2 = 0,

2aε
2(x) + 2

√
(aε

2(x))2 + l(x)b̄T(x)Q−1(x)b̄(x)

b̄T(x)Q−1(x)b̄(x)
,

if x1 6= 0 and x2 6= 0.

For example, we can choose Q(x) ≡ I and l(x) ≡ 0, then the
above u P = u P (x) is reduced to the following

u P (x)

=

[
0

−γ (x)x1x2
2 + ν2(x)

√
γ 2(x)x2

1 x4
2 − γ (x)aε

2(x)

]
,

∀x 6= 0

with the continuous function ν2(x) satisfies |ν2(x)| < 1, ∀x 6=

0, and γ (x) ≥ γ (x), ∀x 6= 0, with

γ (x) =


−

1
aε

2(x)
, if x1 = 0 or x2 = 0,

2aε
2(x) + 2

∣∣aε
2(x)

∣∣
4x2

1 x4
2

, if x1 6= 0 and x2 6= 0.

Therefore, system (41) is globally asymptotically stabilizable
by the state feedback control law u = u I (x) + u P (x) with
u(0) = 0 which is continuous except possibly at x = 0.

6. Design of piecewise continuous controls

From the above discussion we see that under the assumption
of the regularities of Rn(x) and Rp(x), we are able to construct
continuous controls. Unfortunately, it is, in general, a quite
restrictive assumption. In this section, we give a method to
extend the results of previous sections to piecewise continuous
controls.

In fact, from the Lyapunov approach point of view, we have
two ways to find a Lyapunov function: One way is to find a
control first and then find a Lyapunov function for the closed-
loop system. The other one is to find a CLF and then construct
a control. It is obvious that finding a CLF has much more
freedom than finding a Lyapunov function. So we may consider
a stabilizing problem by choosing a candidate CLF and then
checking whether it satisfies the requirement of the CLF for the
system by constructing a stabilizing control.

Based on this consideration, we propose the following way
to construct piecewise continuous controls. For statement ease,
we first denote R(x) = Rp(x) − Rn(x) with the non-zero



2004 J. Zhong et al. / Automatica 44 (2008) 1996–2005
eigenvalues of Rp(x) and Rn(x) being positive and negative
respectively.

• Step 1: Construct a stabilizing control on

D1 = { x ∈ Rn
\ {0}

∣∣ Rn(x) 6= 0},

by using formula (40).
• Step 2: Construct a stabilizing control on

D2 = { x ∈ Rn
\ {0}

∣∣ Rn(x) = 0}

= { x ∈ Rn
\ {0}

∣∣ R(x) ≥ 0},

by using the method developed in Sections 3 and 4.

In each step, we consider the regular region first, and then
the singular region. Note that because of the natural robustness
provided by the CLF, a stabilizing control working on the
singular region works over a neighborhood of any point in the
region, thus it can cover the “bad area” of the regular region.
In fact, in many cases we can piece the stabilizing controls
together to produce a continuous control. But in this section,
we do not pursue this.

We give a simple example to illustrate this.

Example 26. Consider the following system
ẋ1 = x2 + x2

1
ẋ2 = x2

3 + u1

ẋ3 = x3x2
1 − x3u2

2 + x1u2.

(44)

Choose a candidate CLF as:

V (x) = 5x2
1 + 2x1(x2 + x2

1) + (x2 + x2
1)2

+ x2
3 .

We do not need any pre-knowledge that it is a CLF. By
constructing a stabilizing control piece by piece, we can finally
verify whether it is a CLF.

Calculate that

V̇ |(44) = a(x) + bT(x)u + uT R(x)u,

where

a(x) = (10x1 + 4x2
1 + 2x2

3)(x2 + x2
1)

+ (4x1 + 2)(x2 + x2
1)2

+ 2x1x2
3 + 2x2

3 x2
1 ,

b(x) = [2(x1 + x2 + x2
1) 2x1x3]

T, and

R(x) = diag(0, −2x2
3).

It is clear that

D1 = {x ∈ R3
\ {0}|x3 6= 0}.

Over D1 we can use (40) to construct control un . By choosing
any β(x) > 0, β(x) ≥

|x1|+1
√

2
and setting p(x) = [0 β(x)]T,

ν(x) = [1 + β(x) 1 + β(x)]T, we can construct control un =

[0 u2]
T over D1 as

u2 =


β(x)

√
2|x3|

, if
1
2

x2
1 + a(x) ≤ 0,

x1

2x3
+

1 + β(x)
√

2|x3|

√
1
2

x2
1 + a(x), if

1
2

x2
1 + a(x) > 0.

(45)
Since D2 = {x ∈ R3
\ {0}|x3 = 0}, on D2 we have

a(x) = (10x1 + 4x2
1)(x2 + x2

1)

+ (4x1 + 2)(x2 + x2
1)2, (46)

b(x) = [2(x1 + x2 + x2
1) 0]

T, and Rp(x) = 0.

Now since R(x) = Rp(x) = 0, it is degenerated to the affine
case. We simply need to check whether a(x) < 0, for x 6= 0 as
b(x) = 0. The answer is yes, because b(x) = 0 implies

x2 = −x1 − x2
1 , (47)

and then

a(x) = −8x2
1 ≤ 0. (48)

However, a(x) = 0 implies x1 = 0, and thus by (47) x2 = 0,
which leads to the conclusion that V (x) is a control Lyapunov
function.

Now constructing u1 becomes standard. Using Sontag’s
formulas in Sontag (1989), we have

u1(x) =


a(x) +

√
a2(x) + 4(x1 + x2 + x2

1)2

2(x1 + x2 + x2
1)

,

if x1 + x2 + x2
1 6= 0,

0, otherwise,

(49)

where a(x) is the one in (46). We do not care the value at x = 0.
We conclude that the stabilizing control is: on D1, u1 = 0

and u2 as in (45), and on D2, u1 as in (49) and u2 = 0. �
In fact, the control on singular points (D2) is always robust,

because of the property of the CLF. So we can choose a small
enough ε > 0, such that on the ε-neighborhood of D2 we use
the control defined onD2. (ε could be state-depending.) By this
way we can avoid the “blow up” of the control. That is, in the
Example 26, we use control u2 over { x ∈ R3

\ {0}
∣∣ |x3| > ε},

and use u1 over { x ∈ R3
\ {0}

∣∣ |x3| ≤ ε}.

7. Concluding remarks

In this paper we considered the problem of constructing
stabilizing controls for quadratic input nonlinear systems via
a known control Lyapunov function. Under the regularity
assumption we provided a constructive parameterization of the
class of continuous universal controls that render the system
globally asymptotically stable. For the more general case,
certain set of piecewise continuous stabilizing controls was
constructed. Even without a given CLF, the method could,
through constructing stabilizing controls, verify whether a
candidate CLF is a real CLF.

The following two problems are interesting for further
investigation:

1. If the method can be used for stabilization of switched
nonlinear systems. Consider a switched nonlinear system
with finite switching modes:

ẋ = fσ(x)(x, u), x ∈ Rn, u ∈ Rm, (50)

where σ(x) : Rn
→ Ł = {1, 2, . . . , N }. If the switching law

is controllable, we may define a control Lyapunov function
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V as in Sun and Zhao (2001): a smooth, proper, positive
definite function V satisfying

min
l∈Ł

inf
u∈Rm

∂V

∂x
[ fl(x, u)] < 0, ∀x 6= 0.

If such a V exists, we can first use the adaptive way to
construct switching law σ(x) = l∗, where

inf
u∈Rm

∂V

∂x
[ fl∗(x, u)] = min

l∈Ł
inf

u∈Rm

∂V

∂x
[ fl(x, u)],

∀x 6= 0. (51)

Then for the fixed l∗ the control design technique proposed
in this paper can be used to design the stabilizing control. As
soon as the stabilizing control fails to work, we can use (51)
to switch the mode. Some preliminary simulations show that
this method is promising.

2. For quadratic input systems, which imply certain convexity,
piecewise continuous controls might be pieced together
to form a continuous stabilizing control. There are some
examples in which it is not difficult to find the “gluing
function”. However, finding a general rule is rather difficult.
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