Chapter 19
Stability Region of Dynamic System

Consider a dynamic system. The stability region of a stable equilibrium plays very
important role in practice, because the stability region is the allowed working area
of an engineering system. Particularly, consider a power system, there are many
working points (stable equilibriums), and investigating their stability region is fun-
damental for the safety of the system.

19.1 Stability Region

Consider the following nonlinear dynamic system,
x=f(x); xeR" (19.1)

where f(x) is an analytic field.
Definition 19.1. Let x, be an equilibrium of (19.1).
1. The stable and unstable sub-manifold of x,, denoted by W*(x,), is defined as

Wi (x.) = {p eR”

lim x(t, p) — X, } . (19.2)
f—o0
2. The unstable sub-manifold of x,, denoted by W*(x,), is defined as
W“(xg)_{peR” 'llim x(t,p)—>xe}. (19.3)
——o0

Definition 19.2. 1. Let x; be a stable equilibrium of (19.1). The region of attraction
of x; is defined as

Alxs) = {p eR" ’llir?ox(t,p) — Xg } (19.4)

The boundary of A(xy) is denoted by dA(x;).

387



388 19 Stability Region of Dynamic System

2. An equilibrium x, is said to be hyperbolic, if the Jacobi matrix of f at x., Jr(x.)
has bo zero real part eigenvalues.

3. A hyperbolic equilibrium is said to be of type-k, , if J;(x.) has k positive real part
eigenvalues.

The following result is fundamental for our approach.

Theorem 19.1 ([6, 3]). Consider system (19.1). Assume x; is a stable equilibrium,
satisfying the following three assumptions

(i) the equilibriums on dA(x;) are all hyperbolic;
(ii) the stable and unstable sub-manifolds of the equilibriums on dA(x) are transver-
sal;
1. (iii) each trajectory on dA(xs) converges to an equilibrium as t — oo.

Then the boundary of the stability region consists of the unstable sub-manifolds of
the equilibriums on the boundary.

Fig. 19.1 illustrates this.
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Fig. 19.1 Boundary of Stability Region

Note that two sub-manifolds N and S of a manifold M is said to be transversal,
if for any x € NN S, the union of then tangent spaces of these two sub-manifolds is
the tangent space of M. Precisely,

T(N)UT(S) = T.(M).

It is well known that [3] if the state manifold is of dimension #n, then the bound-
ary of the stability region is of dimension n — 1. Hence, the boundary is basically
generated by the stable sub-manifolds of type-1 equilibriums. Based on this consid-
eration, the stable sub-manifolds of type-1 equilibriums are particularly important.
There are many algorithms to calculate approximations of the stable sun-manifolds
of type-1 equilibriums.

The purpose of this chapter is the explore the Taylor expansion of the equation
of the sub-manifolds. Particularly, it can be used to obtain a best quadratic approxi-
mation, comparing previously existing results.
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19.2 Stable Sub-Manifold

In this section we search a function to describe the stable sub-manifolds of type-1
equilibrium.

Without loss of generality, we assume x,, = 0 is a type-1 equilibrium. Wright
down the Taylor series expansion of the f(x) in (19.1) as

F) =Y Rl =Jxt Bt (19.5)
i—1

where Fi =J = J;(0), and F; = %Dif(O) are known 7 x n' matrices.
We use A~ T for the inverse of AT. Matrix A is said to be hyperbolic is it has no
zero real part eigenvalue.

Lemma 19.1. Let A be a hyperbolic matrix. Denote by Vs and V, the stable and
unstable sub-manifolds of A respectively, and by Us and Uy the stable and unstable
sub-manifolds of A~T. Then

vi=u,, V'=u,. (19.6)

N

Proof. Assume A is of the type-k, then we can convert A into a Jordan canonical

form as
1 |40
0 'ag= [0 JJ,

where J; and J,, are stable and unstable blocks respectively. Splitting O = [Ql Qz] s
where Q1 and Q, are consisted by the first n — k and the last k columns of Q. Then

Vs = Spancol{Q:}, Vi, = Spancol{0,}.

It is easy to see that
0"A "o T = ITo
0o J 7"

Similarly, splitting QT = [Ql QZ] , where 0; and O, consist of the first n — k and
last k columns of QT respectively, we have

U; = Spancol{Q1}, U, =Spancol{(0,}.

The conclusion follows from Q~1Q =I. a
The following corollary is an immediate consequence of the above lemma.

Corollary 19.1. Let A be a matrix of type-1 with its unique unstable eigenvalue L.
Assume 1) is the eigenvector of AT with respect to |, then 1 is perpendicular to the
stable subspace of A.

Proof. Since the only unstable eigenvalue of A~ T is ﬁ denote by 1 the eigenvector

of A=T corresponding to this unstable eigenvalue. Then by Lemma 19.1 Span{n} =
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U, = V;*. Hence we need only to prove that 1] is also the eigenvector of AT with
respect to . Since

1
AJn:;niA%:um
the claim follows. O

Without loss of generality, we assume the unstable equilibrium x, = O of the
system (19.1), concerned in the sequel, is of type-1.

The following theorem provides a necessary and sufficient condition for the sta-
ble sub-manifold of a type-1 equilibrium.

Theorem 19.2. Let x,, = 0 be an equilibrium of type-1 of the system (19.1).
Wi(e,) = {x|h(x) = 0}. (19.7)

Then h(x) is uniquely determined by the following equations (19.8)—(19.10).

h(0) =0, (19.8)
h(x) =n"x+0(x|*), (19.9)
Lyh(x) = wh(x), (19.10)

where Lh(x) is the Lie derivative of h(x) with respect to f, N is the eigenvector of
J} (0) with respect to its unique positive eigenvalue [L.

Proof. (Necessity) The necessity of (19.8) and (19.9) are obvious. We need only to
prove the necessity of (19.10). First, note that

=— = 0 . 19.11
o () (19.11)
Hence, there exists a neighborhood U of the origin, such that

rank(h(x)) =1, xeU. (19.12)

Since W*(e,) is f invariant, we have

h(x) =0,
{th(x) =0, xeW(ey). (19.13)

Since dim(W*(e,)) =n— 1, we have

on (4]

this implies that i(x) and L¢h(x) are linearly dependent. A straightforward compu-
tation shows that

Lyh(x) = 0" J7(0)x+O(||x[*) = pn "x+ O(|lx]).
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Hence for x € U, the linearly dependence of i(x) and L¢h(x) yields (19.10). Finally,
because of the analyticity of the system, we conclude that (19.10) is globally correct.
(Sufficiency) First, we prove that if 4(x) satisfies (19.8)—(19.10), then locally we
have
{x e U|h(x) =0}

is the stable sub-manifold over U. According to the rank condition (19.12), we know
that (refer to [1], Theorem 5.8)

V:={xeU|h(x) =0}

is an (n — 1)-dimensional sub-manifold.

Next, since th(x) =0, V islocally f invariant. Finally, (19.9) shows that zero is
locally the asymptotically stable equilibrium of f|y, which is the restriction of f on
V. Hence, locally V is the stable sub-manifold of (19.1). But the stable sub-manifold
is unique [2], it follows that locally V = W*(e,).

Since the system is analytic, {x|A(x) = 0} conincides globally with W¥(e,). O

19.3 Quadratic Approximation

In general, it is not easy to figure out the equation h(x) of the stable sub-manifold.
The quadratic approximation of the boundary of the stability region has been inves-
tigated by several authors [5, 4]. This section provides a quadratic approximation of
h(x). The precise formulais provided, which is the unique approximation with error
O([x|]).

Denote the Taylor series expansion of 4(x) as

1
h(x) = Hix+Hox> + H3x> + .- = Hix + 5lePx+H3x3 . (19.14)

In the above we use two forms to express the quadratic terms: semi-tensor prod-
uct form Hx? and standard quadratic form $x"%x, where ¥ = Hess(/(0)) is the
Hessian matrix of A(x) atx =0, , and H, = VCT(%‘P) is the row stacking form of
1
i'}l. . . . . .

Note that for a real function f(x,y) : R” x R™ — R its Hessian matrix is

I ... S
dx1dy) dx1dym
Hess(f) = : :
it A
ax,,ayl axnaYm

Lemma 19.2. Assume 0 is the type-1 equilibrium of (19.1). Then the quadratic terns
of (19.14) satisfies
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‘I’(%I—J)Jr(%I—JT)‘P:iniHess(f,-(O)), (19.15)
i1

where U and M are as in Corollary 19.1, Hess(f;) is the Hessian matrix of the i-th
component of f.

Proof. First, the linear approximation of i(x) = 0 is
H])C = 0,

which is the tangent space of the stable sub-manifold W*(x,). Since 7 is perpendic-
ular to W#¥(x,) at x,, we have H; = 1.
According to Theorem 19.2, the Lie derivative satisfying

Lrh(x) =0.
Using (15.74), we have
Dh(x) = Hy + Ho®1x+ Hy®ox® + <= Hy +x" ¥ + H3®px’ + -+ .
Note that the vector field f can be expressed as

| xT Hess( f1(0))x
flx)=Jxt3 z +O(|Ix]).
x Hess(f,(0))x

Calculating L¢h outyields

n
Lh = NTJx+xT (% )y n;Hess(f;(0)) —|—‘I’J> x4 O(||x[|*)
’:”1 (19.16)
= unTefal <% 'Zl n;Hess(f;(0)) + ‘PJ) x4 O(||x[]?).
Y
Observing that as the invariant sub-manifold of f, we have
W?(e,) = {x |h(x) =0, Lth(x) =0}. (19.17)
Applying (19.14) and (19.17) to W¥(e,) yields
1 n
xT (2 Z niHess(f;(0)) +¥(J — I;I)) x+0(\|x||3) =0. (19.18)
i=1

Expressing the quadratic form into the symmetric form, we then have (19.15). O
Lemma 19.3. Equation (19.15) has unique symmetric solution.

Proof. Express (19.15) into a linear system as
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(AL, + 1, DAV (¥) =V, (i niHess(ﬁ(O))>, (19.19)
i=1

where

u T
A==1—-J".
2

(19.19) is the linear form of Lyapunov mapping. Hence, let 4; € 6(A4),i=1,---,n
be the eigenvalues of A. Then the eigenvalues of A® [, + 1, R A are

(Ai+2A;]1<i,j<n, A € c(A)}.

(We refer to Chapter 3 for Lyapunov mapping and its properties.)
To show A ® 1, +1, R AT is nonsingular, it suffices to show that all A; 4 Aj # 0.
Leté € 6(J),i=1,---,n be the eigenvalues of J. Then

Aj:%_éi, izl,'-~,l’l.

Observing the eigenvalues of J, it is easy to see that the only negative eigenvalue
of Ais — % and all other eigenvalues of A have positive real parts, which are greater
than £ It follows that

l,'—‘r/lj#o, 1<, j<n.

Hence (19.15) has unique solution. Finally, we prove the solution is symmetric. It is
ready to verify that

(ARLy+ 1, QAW =W, (AR L, + 1, R A). (19.20)
Using (19.20), we have
AL+ I RAV(P) = (AR L, + 1, A)W, Ve (V)

= Wiy (AR L+l AV (V) = W, Ve <,-Z] ni Hess(fi(o))> (19.21)

=1, £ mttes(0)) = ve ( £ st

n
The last equality comes from the fact that Y. & Hess(f;(0)) is a symmetric matrix,
=1

hence its row and column stacking forms are the same. (19.21) shows that V() is
the other solution of (19.19). But the solution of (19.19) is unique, which leads to

V. (¥) =V.(P).
That is, ¥ is symmetric. a

Denote by V.~! the inverse mapping of V,, which retrieves A from its column
stacking form V,(A).
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Summarizing the Lemmas 19.1, 19.2, 19.3, we have the following result about
the quadratic approximation of the stable sub-manifold.

Theorem 19.3. Assume x,, = 0 is the type-1 equilibrium of the system (19.1), and its
stable sub-manifold is determined by h(x) = 0. Then

1
h(x) =Hx+ EXT‘IIX+O(||XH3), (19.22)

where
Hy=n"
_ n
Y= V;1 { [(%In _JT) ®In +In X (%In _JT)] ! Vc ( Z niHGSS(fi(O))) } )
i=1
U and M are defined as in Corollary 19.1 with respect to J = F;, Hess(f;) is the
Hessian matrix of the i-th component, f;, of f.

Remark 19.1. If e, is an equilibrium of type-n — 1, u is the unique negative eigen-
value, and its corresponding eigenvector.is 1), then-all the above arguments re-
main available for describing the unstable sub-manifold. Particularly, (19.22) is the
quadratic approximation of the function for unstable sub-manifold.

Observing (19.18), the following corollary is an immediate consequence, which
is sometimes useful for simplifying computations.

Corollary 19.2. Assume
n u —1
niHess(fi(0)) ( =1, —J
l.; ( 2™ )

is symmetric, then the quadratic approximation of the equation of stable sub-
manifold is

h(x) = 0 x+ %XT Y Hess(£i(0)) (%In - J) oo (19.23)

n
i=1

Example 19.1. Consider the system

{xl A (19.24)

X =-—x+x}, xeR2
Its stable and unstable sub-manifolds are respectively (reported in [4])

W$(0) = {x € R?|x; =0},
WH(0) = {x € R?|x, = 1x3}.

We use them to verify formula (19.23). For (19.24), we have
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10
=15 5

For stable sub-manifold W*(0), it is easy to verify that its stable eigenvalue is 4 = 1,
its corresponding eigenvector is ) = (1 0)T. Moreover,

Hess(f1(0) =0, Hess(f>(0)) = LZ) 8] .

Hence
1 & 1 -
ZZ‘ n; Hess(f;(0 <21—J) =0,

that is,
hy(x) = (10)x+ 0+ O([lx[]*) = x1 + O(||x]]*).

For unstable sub-manifold W*(0), it is easy to check that its unstable eigenvalue is
u = —1, its corresponding eigenvector is 7 = (01)T. Hence

; niH L2 =30
; ess(f;(0 (7—) —{00}.

That is,

L
) = (0 Dx-e x| 8 0 O(IR) =22~ 13-+ 0(1).

In fact, if we use the conclusion in the next section, we can prove that the errors
for the approximations /(x) and £, (x) are both 0. Alternatively, we can also use
Theorem 19.2 to verify this directly. For instance, we verify A, (x): Assume &, (x) =
X, — %x3, then W*(e,) = {x| h,(x) = 0}, if and only if h,(x) = 0 implies Lyh, (x) =0
This is true, because

1
—x? = —hy(x).

2} :—x2—|—3

19.4 Higher Order Approximation

This section considers the Taylor series expansion of the equation of stability sub-
manifold. In the following calculation we need @%. To calculate it, the following
proposition is necessary.

Proposition 19.1.

s—1
Wins ) = (Ini QWip ) ®In-“*"*1) . (19.25)

i

Il
o
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Proof. Using Proposition 2.12, we have
Wer:(W%vt@®LJ(&vl®“%mD-

Using the first decomposition of Proposition 2.12 again, and again, we finally obtain
(19.25). Note that as a convention we have Io = 1, &y = I,. a
Using (19.25), it is easy to calculate ;. We use an example to depict it.

Example 19.2. Assume n = 2, then

Dy = I,
2000
0110
P1 = W) T W)y ) = Wiy + 1,2 = 0110(°
0002

D2 = Wi )+ 10 & Wi gy 2 0 W

(Wi @ 1) (I @Wyy) 4+ 1, @ Wi + 1,3
[30000000]
01200000
01101000
00020010
01002000|°
00010110
00000210
00000003]

Next, we proceed to solve Hy from equations (19.8) - (19.10). First problem is:
since x* is a redundant generator of k, we are not able to get unique solution from
(19.8)—(19.10). To overcome this difficulty we have to convert the equations to
natural basis. Recall Chapter 15, let S € Z", . The natural basis is defined as

Nf={s*|sez’, |S| =k}

We arrange the elements in N¥ in the alphabetic order. That is, for §' = (s!,---sl)
and §? = (s2,--- ,s2) we use order X' < x5 if there exists az, 1 <t <n— 1, such
that

s} :s%, EEEIN Szl :slz, stlH >st2+2.

In this way we arrange the elements of N¥ as a column and denote it as X(k)-

Example 19.3. Let n = 3 and k = 2. Then
2 2 2 2\T
X = (xl7x1x2)x1x37x2-x17x27x2-x37x3x17-x3x27-x3) ’

and
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2 2 2\T
X(2) = (X7, X102, X1X3,%3,X2X3,%3) " -

In Chapter 15 it has been proved that the size of B is

k—1)!
(k=1 oo a1 (19.26)

Bk = =

Recall that in Chapter 15 we have defined two matrices: Ty(n,k) € My, and
Tg(n,k) € My, ,«, which can convert two generators x* and X(x) back and forth. Pre-
cisely,

xk = TN(n,k)X(k), Xk) = TB(n,k)xk.

Moreover,
TB(n,k)TN(n,k) = Id.

We write a special pair as follows:

Example 19.4. Let n =2, k = 3. Then the Tg(n, k) is

(111) (112) (121) (122) (211) (212) (221) (222)
1 0 0 0 0 0 0 o0 (111)
13(2,3) = o 1/31/3 0. .1/3 0 0 0 (112) . (19.27)
o o o0 1/3 0 1/3.1/3. 0 (122)
0o 0 0 0 0 0 0 1 (222)
Meanwhile, Ty (2,3) is
(111)(112) (122) (222)
1 0 0 07 (111
010 0 (112)
010 0 (121)
B 001 0 (122) . (19.28)
Tn(2:3) = 0 1 0 0 (211)
0 01 0 (212)
0 01 0 (221)
0 00 1] (222

Recall (19.14), instead of solving Hy, we will try to solve Gy, which satisfies
Hk)g( == ka(k) .
k

Recall that Hy, is a symmetric coefficient matrix, if any two equal elements in x
have the equal coefficients in Hyx*. We use the following example to explain it.

Example 19.5. Let n = 3 and k = 2. Then x? is as in Example 19.3. For a given
second order homogeneous polynomial p(x) = x% +2x1x — 3x1x3 +x% — x%, we can
express it as

p(x) =Hix*=(1,2,-3,0,1,0,0,0, —1)x°.
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Alternatively, we can also express it as

3 3
p(x) = Hox* = (1, L=3 11,0, =3.0, —1>x2.

It is easy to see that H; is not symmetric, while H> is.
We also know the following.

Proposition 19.2. 1. The symmetric coefficient matrix Hy is unique.
2.

Hk = GkTB(n,k), Gk = HkTN(n,k). (19.29)

Now we are ready to construct the higher terms of the A(x) in the equation of
stable sub-manifold. Denote by

f(x) =Fix+ R4,

and
h(x) = Hix+Hox? + <+ .

Note that we already known that Fi =J(0) = J, H; = 1", and H, can be uniquely
determined by (19.17).

Proposition 19.3. The coefficients Hy, k > 2, of h(x) satisfy the following equations
k
Y H P (i1 @ Foyyr) — uHe | X =0, k>2. (19.30)

n
i=1

Proof. Note that k(x) = 0 is invariant with respect to vector field f(x), that is the
Lie derivative

Lrh(x) =0. (19.31)
Using Proposition 15.4, we have
Dh(x) =Hi + Hy® 1 x+ Hy®ox* + -+ = H) + 2X" W + Hy Do + -+ - .
A straightforward computation shows
Lh(x) = un"x+ [Ha®y (I, 2 Fy) + Hi Fa] x> + -+

k
+ _ZlHiqji—l(Infq@FkH,,-) PaR
i=

Note that A(x) satisfies
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h(x) =0,
{th(x) o (19.32)

Subtracting ¢ from the second equation of (19.32), and then multiply it with the
first equation of (19.32), we can prove, inductively on k, that

Fro(|xf ) =0, k=2,

k
ZHid)i—l(Ini*l ® Fe_iy1) — WHy
=1

The conclusion follows. O
Observing (19.30), according to Proposition 19.2, it can be expressed as

G [uly — Tg(n, k) Pt (L1 ® Fy) I (n, k)] x g
k—1

. (19.33)
GiTB(l’lﬂ)@i_](lniq ®Fk,,‘+1) TN(n,k)x<k), k> 3.
1

=

The following theorem is a summarization of the above arguments, which can be
used for general case.

Theorem 19.4. Assume the matrix
Cy = [,le—TB(n,k)qu,l(Inkq ®F1)TN(n,k), k>3 (19.34)
is non-singular, then

k—1
Ge=|Y GiTs(n,i)®i_i (1,1 ® Fy_i11) | T (n,k)C;. (19.35)

i=1

Remark 19.2. In fact, H, can also be solved in this way. (19.15) and (19.35) can pro-
duce the same result. In fact, when H; is solved from (19.15), since the symmetric
quadratic equation is used, the symmetry of the coefficients has been automatically
assured.

It is obvious that the efficiency of (19.35) depends on whether C; is singular.
Unfortunately, in quadratic case, we are not able to assure it in certain way. It is
discussed in the following example.

Example 19.6. Consider the following system

Lo 0
{x] cxy, ¢>0, (19.36)

X2 :xz—Zx%er?,

where ¢ > 0 is a parameter.
We calculate the equation of the stable sub-manifold. It is easy to calculate that

p=1n=01nT,
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—c0
—4 0}

Hess(f1(0)) =0, Hess(f>2(0)) = {0 ol

and

Hence we can use (19.23) to calculate that

2
h(x) = (0 1)x+x" {_%ﬁ O} x+0([lx]]). (19.37)

0

Using (19.26), (19.27), and the &, calculated in Example 19.2, we can calculate C3
as
3c+10 0 O
0 2¢ 0 O

G=| o oec_1.0l" (19.38)

0 0 0 -2
Assume ¢ # 1, then C; is invertible. Then we have
H =(0,1), H= 2 0,0,0
1=\Y s 2= 2c+ R ’

5 [0/000] < 00000000
27 1=2000/7 T [10000000]"

Plugging them into (19.34) yields
63 3ct1 y Uy Uy .

2
2c+1

Hence we have

x + (|-

1
h(x) =xy— 2
() =x2 Sy

In fact, it is easy to verify that

and

We conclude that

W5(0) = {x eR?
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According to Theorem 19.4 and Example 19.6, we give the following algorithm:

Algorithm 4.  Step 1. If C3,--- ,Cy_ are nonsingular, we continue to search Hy
to approximate h(x) till the accuracy is satisfied.
Step 2. If Cy is singular, we search for the least square solution Gy via

G [1lg — Tp(n, k) Pe—1 (L1 @ F1 )Ty (n, k)]
k-1
= ‘21 GiTp(n,0)Di—1 (L1 © Fy—iy1) | T (n,k)

i=

(19.39)

Then use G3, -+ , Gy to construct a k-th order approximation of A (x).
Step 3. (possible further improvement) If the least square solution is a real num-
ber solution for (19.39), solve the following system:

G [,uld — TB(n,k)(Dk,l (Ink—l ® F )TN(n,k)]

k-1
= LZI GiTg(n,i)Di1 (L, ®Fk—i+1)] Tn(n.k), (19.40)

k
0= {21 GiTp(n,i)Pi—1 (1,1 ®Fki+l)} Tn(n,k+1).
=

In fact, considering the k-th and k + 1-th order terms leaders to (?7?).
Recall Example 19.6. When ¢ = 1, the least square solution is

1
Gi=——,0,7,0
3 (36‘—"-], s by )a

where ¢ is an arbitrary parameter. It is ready to verify that G3 is a real number
solution of (19.39). Hence, we can try to solve (19.40). A careful calculation shows
that (19.40) has a solution G3 = (ﬁ, 0, 0, 0). It is easy to check that this G5 is a
real number solution.

In the following we consider another more general example.

Example 19.7. Consider the following system

X1 =x2,
Xy = —x1 —2xp, (19.41)
X3 =2x3—xp(e1 —1).

It is easy to show that u =2, 11 = (00 1)T,
0 10

J=]-1-20
0 02

)
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110
A:%Irﬂ: “13 0|,
0 0-1
Hess(f1(0)) = Hess(f2(0)) =0,
0 —-10
Hess(f3(0))=|—1 0 0].
0 00

Using formula (19.22), we have

h(x) = nTx+xT($¥)x
0.09375 —0.09375 0

= (00 1)x+xT | —0.09375 —0.03125 0 x
0 00

= x3+0.09375x% — 0.1875x;x2 — 0.03125x3.

To calculate the third order terms, we verify Cs. Using (19.34), we have

2300 000 0 0 0 0]
140-20 0 0 0 0 O
0000 -20 00 00
0206 0 0-100 0
co_ 0010200 -10 0
3710000 0200 -10
0003 00 8 0 0 O
0000 2 0 0 4 0 0
0000 01 0 0 0 O
0000 0 0 0 0 0 —4]

(19.42)

It can be calculated and verified to be invertible via computer. From the quadratic

part of i(x) we have
Hl = TIT = (03 07 1)7

H> = (0.09375, —0.09375, 0, —0.09375, —0.03125, 0, 0, 0, 0),

F> € M3x9 hasall zero components except F>(3,2) and F>(3,4) which are

1
F2(372) :F2(3a4) = _57

F3 € M39 has all zero components except 3 elements: F3(3,2), F3(3,4) F3(3,10),

which are |
F3(372) :F3(3a4) :F3(35 10) = _6'

Plugging them into (19.35) yields

Gs = (0.0408, —0.0816, 0, —0.0256, 0, 0, —0.0032, 0, 0, 0).
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Hence the equation of the stable sub-manifold, approximated to third order terms, is

h(x) = x3+0.09375x} — 0.1875x1x — 0.03125x3 +0.0408x;

—0.0816x7x, — 0.0256x1x3 — 0.0032x3. (19.43)

Continuing this process, we can calculate the even higher order terms of A(x).
In fact, for this special system the stable sub-manifold can be obtained by a suit-
able coordinate transformation. Hence the above result can be confirmed.

19.5 Differential-Algebraic System

This section considers the stability region of a differential-algebraic system. Such
systems exist widely. For instance, the power network is of this type. Consider the
following system

19.44
D(x,y) =0, P(x,y) €R", ( )

{x—f(x,y% xERLy R,
where £(0,0) =0, &(0,0) = 0. Moreover, the dynamics determined by this set of
equations is unique, hence we require that

rank (%—T(0,0)) = m. (19.45)

Based on the aforementioned reason , we assume (0,0) is type-1 unstable equi-
librium. We will use the result obtained in the previous sections to deduce the equa-
tion of the stable sub-manifold. For convenience, we consider only the quadratic
approximation of the (19.44). Higher order terms can be calculated in a similar way.

According to the Implicit Function Theory, (19.45) implies that y can be solved
from the second equation of (19.44) as y = y(x). Substituting it into the first equation
of (19.44) yields an equation of the form of (19.1) as

3= flay(x)). (19.46)

Of course, equation (19.46) is locally true. But the Taylor series expansion re-
quires only local information, hence local expression is enough. Now the only ob-
stacle is solving y = y(x), which is, in general, impossible. Recall (19.15), what do
we need is only

7= ay)
dx 7 (19.47)
H;:=Hess(f;(0,0)), i=1,---,n.

Hence instead of solving y, we can calculate J and H;, and then the formula (19.15)
can be used to find the quadratic approximation.
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Since 0® JdJ
Yy _
ox Toyox O

then

dy  [(Id\ '

F o <8_y) ox (19.48)
Using Chain Rule, we have

_of of oD 1o
J=5-(0,0)~ a—y(O,O) <a—y(0,0)> —(0,0). (19.49)

Recall Corollary 15.1, Let A(x) and B(x) be p x ¢ and g x r functional matrices.
Then

DA(x)B(x) = DA(x)B(x) +A(x)DB(x). (19.50)
Moreover, according the Chain Rule, we have

DA(x,y(x)) = DA(x,y) + DyA(x, y) (1,,@ %) . (19.51)

Here we use Dy to express the differential with respect to x only.
Now we calculate H;. First, the gradient of f; can be expressed as

_ a\"
V@) = Vafir ) 4 (i) 3 )
T " (19.52)

= Vi) = (52) (22)  Vofitxy):

Since y =y(x) is a function of x, we use V. f;(x,y) and V, fi(x,y) for the gradients
with respect to x and y respectively.
Then, by definition we have

Hi=D(Vf)log, i=1.n (19.53)

Applying (19.51) to the first term of (19.52), we have

_0%f; | 9 (Oy
D(V.fi) = Soox T Ixdy (£> : (19.54)
Similarly, we have
9*f; | d*f; (dy
D(Vyfi) = Fyox + 99y <$> . (19.55)
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2 u
Note that hereafter for any function & (x,y), we use %(g)’?) to represent an n X m

2
matrix, which has its (i, j)-th element as %{fy} Hence in general,

325(96#)#325(36#)
dxdy dyox

Applying (19.51) to the second term of (19.52), we have
T T
dy dy
plannz] =0{(3) e}

T . (19.56)
=D(2) Fuiten @)+ (%) DEA.

Next, we calculate (19.56) term by term. Using (19.48), we have

T T T
a\" (20\", (92T,
ox dy ox

Differentiate both sides of the above equation and applying (19.50) yield

o\"[/od\T AL AN 9o\"
D| == — I — | D[ = D(— | =0. 19.57
(5) |(5) e+ (Ghe Gl (%) o o
Each terms are calculated as follows:
T
X:=n(%2)
. (2,0> (19.58)
2o, | o 9 P by | Dy 0
= [(axai + Ty a_;yc) 7 ( ddx T axdy Tﬁ)} ‘(0,0)’
T
Y:=D (%—‘f)
X (2,0> (19.59)
2@, | %@, dy 22D, *®y Iy
- {(T&l+w.9_i)"."(a)'ax + ay’)Y'a_i)H(o,o)'
Substituting (19.58) and (19.59) into (19.57) yields
ay T 8)} T a¢ 7T,
D(E) (00>——l($(0,0) Y+X 8_y<0’0) QL. (19.60)

Finally, substituting (19.54), (19.55), and (19.60) into (19.53), we can get the
expression of H; as follows:
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_ 9% i | % fi 9y aw\T PEANE v
Hi=got+a05 (o) — (&) YHX|[(5) ©h|(Vyfi®h)
Tr 2
dy - fi 9°fi (9
+ <$) [ayax + 2oy (m)] ;

where X, Y and the detailed expression of % are (19.58), (19.59), and (19.48) re-
spectively.

(19.61)

Exercise 19

1. (to be completed).
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