Chapter 18
Linearization of Nonlinear Control Systems

Since the dynamics of a linear system is much simpler than that of a nonlinear sys-
tem, if a nonlinear (control) system can be converted into a linear system, the anal-
ysis and design tools for linear (control) systems can then be used. Hence different
kinds of linearizations become an interesting topic in Physics and System and Con-
trol. In this chapter we consider some special linearizations, in which semi-tensor
product players an important role.

18.1 Carleman Linearization

Consider a dynamic system
x=f(x), xeR" (18.1)

where f(x) is an analytic vector field with f(0) = 0.

J. Carleman proposed a method to merge the system into an infinite dimensional
linear system. In this section its basic form and the realization are discussed. Its
original form is rather complicated. Semi-tensor product makes it much more sim-
ple.

Choosing x, X2, -+ as a set of basis, the system (18.1) can be expressed as

¥=Fix+FPxX+RBX+-- (18.2)
where Fj is an n X n matrix, and F> is an n x n? matrix, and so on.

‘We may consider x, x2,x3 ... asasetof independent variables and then calculate
their derivatives to get a linear form, called the Carleman linearization, as follows:
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X Al Ap Az Ay oo | [ X
x? 0 Ap Az Apg | |42
»l = 3

0 0 Az3A34 - x| - (18.3)

Theorem 18.1. In Carleman linearization form (18.3) the coefficients A;; are deter-
mined by the following equations.

A=F, i>1,
k—1 (18.4)
Agkys = _Zolni Q Fyp1 @ Lpp-1-i.
=
Proof. According to chair rule, we have
d, .. = o k-1 :
E(x )= Zx’)&x = Z Zx’l’wlyd“’ﬂ.
i=0 5=0i=0
Using (2.56), we have
i k—its _ (1 s kts (7 . . ks
X' Fyy1x = (Ly @ Fsr1) X = (I @ Fyg @Lio1)x" .
(18.4) follows. O
We can express (18.3) as the following linear form
X = AX, (18.5)

where A is an infinite dimensional block upper triangular matrix.

The infinite dimensional block upper triangular matrices have some special prop-
erties, which make (18.5) meaningful. We give a brief discussion here.

Denote the k-th left-upper block of A by Ay, i.e.,

Ay Ap - Ay
0 Ay -+ Ay
A= . . .
0 0 --- Ay

A square block upper triangular matrix is said to have a set of structure param-
eters (ki,ka,---), if the diagonal blocks have dimensions dim(A;;) = k; x k;. For
instance, consider (18.3), its structure parameters are (n,nZ,n3, -++). For statement
ease, we identify A; with its infinite-dimensional extension A¢, which is an infinite-
dimensional matrix with Ay as its left upper minor and all other elements are zero.

Using this convention, the coefficient matrix A can be expressed as

A = lim Ay.

k—so0
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This limit is well defined in the following sense: Denote the (i, j)-th element of
A by af?j. Then the sequence {af-‘j, k=1,2,---} has the following form

2 k
(aij7a ..... N/ AP )

ijs :(07'”707Cij7cijacij7"')>

That is, after first finite terms, it becomes a constant sequence. Hence this sequence
converges. Based on the same reason, the following operations are also well defined.

Definition 18.1. 1. Let A and B be two infinite dimensional upper triangular matri-
ces with same structure matrices. The product of A and B is defined as

AB := lim AkBk.
k—ro0

2. Assume A;;, i = 1,2,--- are invertible. Then its inverse is defined as

A= limA,;'.
k—ro0
3.
A = lim .
k—>o0

Now it is natural to use the solution of the linearized system (18.5)
X =ée''X,

as a solution of (18.1). In fact, we canuse only finite terms to approximate the real
solution.
Denote by Elkj (t) the (i, j)-th block of e*+. Tt follows from the structure of A that

Hence we can define ;
X"(t) = Y Ef(0)X5.
k=1
Observing (18.3), one sees easily that if

— i n
X)) = 351010 X"(1)
exists, then it is the solution of (18.1) with initial value X (0) = Xp.

We are particularly interested in the upper triangular matrix generated by Carle-
man linearization. In Carleman linearized form (18.3). We assume F; = Ay is stable
(anti-stable), that is, all the eigenvalues of A1 have negative real part Re 6(A411) <0
(correspondingly, Re o (A1) > 0), then A is invertible. In fact, we have

Theorem 18.2. Assume Fy = A1 has eigenvalues 6(A11) ={A1, -, A}, then Aji, i >
2 has eigenvalues

G(Aii):{/lkl+"'+A—k,-‘kla"‘aki:1»"',”l}-
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Proof. First, we assume the eigenvalues of Ay are distinct, and their corresponding
eigenvectors are
{517"' 757]}'

A straightforward computation shows

Aii (G <o ) = (Mg + oo A ) (G <o X &)

To avoid notational confusion, we consider it only for the case of i =2. Using (18.4),
we have
Ap =1,RA11 +A11 ®I,.

Hence,
Apn(&Eix &) = (LA +ALRL)(EXE))
= (L ®AN)(&i % &) + (A1 ®1,) (& % &)
= A& x &+ A& < &;.
It follows that A; + A;, i, j = 1,--- ,n are eigenvalues of Ayy. To prove that they are
the complete set of eigenvalues it is enough to prove that

{éixéj“ﬂj:la'“an}

are linearly independent. Note that since all A;, i = 1,-- -, n, are distinct, it follows
thatall & i =1,--- ,n, are linearly independent. Assume

agE
M:

Ciﬁjé,‘gj =0.

Il

i=1 j=1

Rewrite it as

=

ii[i cij€;] =0.
|

1

Using Proposition 2.14, we have
n
Zcijgjzoa l:177n
j=1

Hence, itis clear that¢; j =0,i=1,---,n, j=1,--- ,n.
We conclude that the eigenvalues of Ay, are

6(An)={Ai+Ajli,j=1,---,n}. (18.6)

Finally, by continuity we know that even multi-eigenvalues exist, the structure of
eigenvalues of Ay, precisely, (18.6) remains true. a
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18.2 First Integral

This section considers the first integral of a vector field.

Definition 18.2. Let f(x), x € R", be a smooth vector field. A smooth time-varying
function ¢(z,x) is said to be the first integral of f(x) if it satisfies

d _do  d¢ B
E(])(t,x) = E+g ()C) =0.

Consider a polynomial system
%= Fix+Fox?+ -+ Fk. (18.7)
We search for the following type of first integral
H(t,x) = e ' P(x).

Carleman linearization technique can be used to investigate it.

Assume P(x) = Py+Pyx+- - -+ Pux*, with its symmetric coefficients as Py, - - - , P.
(Where the “symmetry” means the coefficients for same items with different factor
orders are the same. For instance, x%xg, X1x2x1, and xzx% have the same coefficients.
) It is easy to see that if £ # 0 then Py = 0. Hence, we can simply assume Py = 0.

Setting dH (,x)/dt = 0, we have

X
Ay e e A E
[P+ R
Ass """ As,s+k71 s+k—1
! (18.8)
X2
=& [P - P :
x°

Since x* is redundant, the coefficients are not unique. Using this form to search
first integral is conservative, and the result obtained is, in general, not necessity.
Because under other equivalent coefficients may produce other first integrals.

To get necessary and sufficient condition we convert it into natural basis. Set

P, =PTp(n,i), Ayj=Tp(n,i)A;ijTn(n, j).

Plugging it into (18.8) yields
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~ ~ X
Ay -or oo Alk x@)
[Py - )] . N
Ass """ ANS,H»k—l x(+ N
s+r—
X
- <1 | *2)
:é [Pl : Ps} .
X(s)

1

H(t,x), if and only if there exists & such that the following system has non-zero
solution (hy,--- ,hs).

Theorem 18.3. Denote h; = PT and Bij = A; System (18.7) has first integral

By 0 0--- 0] [Iy hy
By By, 0--- 0 ho hy
. A=
_le Bs2 te Bs7s hs hs
[Byi1,1 By -+ By | (18.9)
: hy
Bii Bro o+ Brgs ha —0
0 Bry12: Briigs :
. hS
L 0 B 0 Bs+k—1,s_
Next, we consider the solution of (18.9).
The following lemma is itself interesting. Let I = (i1,--- ,ix). We use notation

id(I; 1K) forid(iy,--- , igsn, -+ ,n).
Lemma 18.1. Assume the row vector h € R" is labeled by multi-index 1d(I;nb),
and it is symmetric with respect to id(I;n*), F € M, .. Define

A=F QL+ 1, F QL2+ -+ L1 QF.

Then hA is also symmetric with respect to 1d(I;n*).

Proof. Since interchange any two indices can be realized by swapping two adjacent
indices, we need only to prove that kA is invariant under the swap of two adjacent
indices. Define

D=1, 1 QW QL j.

It is clear that exchanging the j-th and (j+ 1)-th indices yields a new vector hd.
Since A is symmetric with respect to id (I ;nk), then h® = h, and h®PA = hA. To prove
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hA is symmetric, i.e., hAD = hA, it suffices to prove
AD = PA.
Note that the terms of A has the following form
IR RUIRJIFR]TR---R1. (18.10)

If F does not lie on the j-th or j+ 1-th position, then it is obvious that & and (18.10)
are commutative. hence we need only to consider the two related terms of A. This
means

Wy (FRI+IRF) = (FRI+T1RF)Wy,.

Note that W[’l Wy, the above equality is true. a

n]:

Proposition 18.1. Assume the F| in (18.7) has eigenvalues 6 ={Ay,--+,A,}, then
the eigenvalues of By in (18.9) are

G(Bkk):{A’il+"'+)‘ik|i1;"'7ik:la"'an}-

Proof. Since By, = Azk, and the eigenvalues of Ay are oy, it is.enough to prove that
the Ay and Ay have the same eigenvalues. Assume U is an eigenvalue of A, then
there exists a P # 0 such that

pAkk = [.113
By definition we have Ay = Tp(n,k)Ax Ty(n,k). Note that Tg(n,k)Ty(n,k) = I,
hence

X X
- *@) . *()
PTB(n,k)AkkTN(n,k) | ZI.lPTB(n,k)TN(I’l,k) . . (]811)

X(k) X(k)

Let P = PTg(n,k). Then P # 0 is a symmetric set. For P, (18.11) becomes

X )Cl
x2 X2

PAw | . | =uP| .. (18.12)
Xk x*

According to Lemma 18.1, PAy; is a symmetric set. Note that the symmetric coeffi-
cients are unique, we have
PAy = WLP.

Hence, u is also an eigenvalue of Ag.
Conversely, assume (i is an eigenvalue of Ay, then p = 4;, +---+ 4;,. Denote
by Y; the eigenvector corresponding to 4; ; of Fy, then we construct



372 18 Linearization of Nonlinear Control Systems

Y=Y Yor) @ Yo,

oES,

where Sy is the k-th order symmetric group. Then we have

YA = uY.
Since Y is symmetric, there exists Y #0such thatY = Y Ts(n,k). Hence, we have

YTp(n,k)Ay = u¥ Tz(n, k).

Right-multiplying both sides of the above equality by Ty (n, k) yields

YAy = uy.
That is, i is also an eigenvalue of Ay. a
Proposition 18.2.(1) If (18.9) has solution h # 0, then

é = cllil +”'+CSA’I'57

where Aj -+, Ai, € 6(F1); 1, -+ ,¢5 take value 1 or 0.

(2) If h has a component h; # 0, then & € o/. If h-has t non-zero components, then
o* has at least one t fold element, where 6' = {cihi; +---+ ¢ Ai, [c1,--- ¢ €
{0,1}}.

(3) If (18.7) has a linear first integral H(t,x) = e~5'h"x, then for arbitrary integer
J >0, Hj(t,x) = e 7% (h")/x is a first integral is (18.7).

Proof. (1) and (2) are the immediate consequences of Proposition 18.1. We prove
(3) If (18.7) has a linear first integral H(f,x) = e S'hTX, then

Fih= &h,
Fh=0, i=2,-- k.

Assume p = (0,,,0,2,---,0,-1,h'), where Oy is the zero vector in R¥. Since

Ajjrs1 =L OF+ L2 @F @I+ + KR 1,

we have ‘ '
Ajjh’ = jEn’,
Ajhl =0, 1= j+1, j+k—1,
which means p satisfies (18.8) with & being replaced by j&. O

Remark 18.1. Proposition 18.2 provides a convenient way to find first integer. In
fact, after fix & the problem becomes solving linear algebraic system. For Lorenz
system, the (1) and (2) of Proposition 18.2 have been proved in [2]. Here the state-
ment is a generalization.
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Example 18.1. Lotka-Volterra equation established the interactive relation in Chem-
istry or for co-existence of spices. Lotka-Volterra equation is

n

%=X <Gi+zbijxj>7 i=1,--,n. (18.13)
j=1

Consider n = 2. Set

a1 0 _[bbi 0 0
A“_{o az}’ A”_[o Ob21b22]'

Then

Ap =AnQbL+LRA =

A23 A12 ®12 +12 ®A12

2b11 b1y bip 0 0 0 0 0]
0 b1 byy bip+ba 0 0 0 O
0O 0 O 0 by +ba1 b1y by 0
0O 0 O 0 0 by1 by 2D |

Carleman linearized form becomes

X A11 A12 0o 0 --- X
2 0 Ay A3 O --- x2
3 3

| =10 0 Az3Azg---| X

Assume we look for the first integral with the form as H (r,x) = e~ %' (Pix+ Px?).
Then
100

010
0o10(’
001

10 00
T3(2,2) = (005050, Ty(2,2)=
00 01

[1000]
0100
0100
0010

TN(273): 0100}|°

0010

0010

000 1]

N b11 b1 O
By = AT}, Bm:AT2=TB(2,1)A12TN(2,2)=[” 12 }

0 b1 b
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2a¢ 0 0
B, =T3(2,2)A0nTn(2,2)= | 0 a;+ar O |,
0 0 2a2
2by  2bps 0 0
By, = T3(2,2)A3Ty(2,3) = | O by +by bio+by 0
0 0 2by;  2b

We conclude that the second order first integral exists, if and only if the following

equation has solution.
By 0| || g hy
| 7 |ml|

By Ba

Byhy =0,

where & € {ay,a2,2a1,2az,a1 +ay}.

18.3 Invariance of Polynomial System

Definition 18.3. Consider a smooth dynamic system
x=f(x), x€R" (18.14)
A smooth time-varying function A(z,x) is said to be an invariance of (18.14) if

h =0. (18.15)
dt | (15.14)
In this section we consider a polynomial system
X¥=F+Fx+--+FxX* xeR% (18.16)
We look for an invariance with the following form:

H(x,t) = 58 (Py+ Pix+ -+ ). (18.17)

This form of invariance has been investigated in [2]. Recently, Darboux method
has also been used for this investigation [3].

Our purpose is the convert it into an algebraic system. Using formula 15.74, the
time derivative of H(x,?) can be calculated as
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4 — 2+ DH-x
= ée‘);’xf‘xg (Py+Pix+--+ Px!)
+ eét(ax‘f‘_lxg, ﬁx‘l)‘xg*])(Po—l—Plx—i—~~~—|—szl)(Fo + Fix+ -+ Fxb)
+ eétx?‘xg (Pl 4+ Py ®ix+ -+ PO X (Fy+ Fix +- -+ Fxb).
Setting
dH
=L o,
dt
and observing that
x1x2=(0100)x%, (axa, Bx;) = (0 a O)x,

we have

E(O100)x*(Py+Pix+--+Pxh)

+ (0 (xO)x(P0+P1x+~~—|—P[xl)(Fo+F1x+~-+Fkxk)

+ (01 00)x2(P1 +P2(P1x+"'+})l(p[,1xlil)(Fo —|—F1x—|—-~~—|—Fkxk)
=0.

Using (2.56), it can be expressed as

EO100)[(Is @P)x* + (4@ P x> + -+ (g @ B)x!+2]
+(0B a 0)[(L®Py)x+ (I ® P )x*
+- (b P (Fy + Fix+ -+ Fxb)
+(0100)[(Is ® Py )x* + (Is @ Py )x*
+o ot (LR P D)X (Fy 4+ Fix+ -+ Fxb)

=0.

Using (2.56) again, we can multiply the above form out as

141
Y E(0100)[Is@Pi]x"!
s=1

k+1 i+j=s ,
+ ZO(Oﬁ a0) py 0[(12 R P (b1 ® Fy—) X
s= i=0,j=

k+1 i+Jj=s !
+ Y (0100 Y [(14@131‘@,;1)(12#1 ®st,')]x”
s=1 i—1-0

=0.

Converting each terms into the forms with naturel basis, we have the following
result.
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Theorem 18.4. System (18.16) has the invariance of the form (18.17), if and only if
the following algebraic system has solution (£, a,B,Py, -+ ,P).

(0B a0)[(l®P)(L®F)] =0

{g(o 100) (L@ P,_y)+ (0 & 0) ";{SO[(IZ 2P (L1 @ Fyy)]
i=0,j=
+(0100) _'t{so[(u@ecp,-,l)(zwﬂ % Fy)] } Ty(2,5+1) =0,
i=1,j=
s=1,- 1+1 (18.18)
i+j=s
{(Oﬁ a0) Oi 0[(12 % P) (i1 @ Fy—;)]
i=0,j=
+(0100) _'tfso[(u@ecp,-,l)(zz,-“ % Fy)] } Tv(2,5+ 1) =0,
i=1,j=

s=14+2,---,1+k.

Remark 18.2. The advantage of this approach lies on

(i) the solution is easily solvable via computer;
(ii) it can easily be generated into higher dimensional cases.

18.4 Feedback Linearization of Nonlinear Control System

Consider an affine nonlinear system

m
x=fx)+ Y gilx)ui, f(0)=0, xeR"ucR", (18.19)
i=1
where f(x), gi(x), i =1,---,m are analytic vector fields. The feedback linearization

is defined as following.

Definition 18.4. (18.19) is locally state feedback linearizable, if there exists a state
feedback control

u=ax)+px)v, (18.20)

and a local diffeomorphism z = & (x) on a neighborhood U of the origin, such that the
closed-loop system under the new coordinate frame becomes a controllable linear
system

m
¢=Az+)Y bvi, zeU,yveR" (18.21)
=1

4
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If in control (18.20) B(x) is an m x m nonsingular matrix, the linearization is called
a regular feedback linearization; otherwise, say, 8 (x) is an m X k matrix (k < m), it
is called a non regular feedback linearization. Particularly, when k = 1 it is called
the single input feedback linearization.

Heymann’s Lemma [7] says that for a completely controllable linear system there
exists a linear feedback
u=Hv, veR

such that the closed-loop system becomes a single-input complete controllable sys-
tem. The following lemma is an immediate consequence of the Heymann Lemma.

Lemma 18.2. System (18.19) is state feedback linearizable, if and only if it is single-
input feedback linearizable. That is it is linearizable via (18.20), where B(x).is an
m x 1 vector.

The following lemma is useful and easily verifiable.

Lemma 18.3 ([9]). Set A = J;(0), which is the Jacobi matrix of f at the origin, and
B=g(0). If the system (18.19) is linearizable; then (A, B) is completely controllable.

In the following investigation we need one more concept, called the normal form,
which has been used to investigate many nonlinear (control) systems [8, 4, 5]. We
first introduce it briefly [6]: Let HX be the set of k-th order homogeneous polynomial
vector fields. Then

1. HF¥ is an R-linear vector space;
2. Let Ax € H,} be a given linear vector field, where A is an n X n constant matrix.
Then the derivative ads, : H* — HX is a linear mapping.

The following normal form expression [1] and its application in linearization [5]
are the starting point of our study.

Definition 18.5. Assume A € M, «,, and 6(A) = A = (A,---,A,) is the set of int
eigenvalues. A is an resonant matrix, , if there exist m = (my --- ,m,) € Z} and |m| >

n
2,i.e.,,m; > 0and ¥ m; > 2, such that for an 1 < s <n, A; = (m,A). Otherwise, A
i=1
is called an non-resonant matrix.

Theorem 18.5 (Poincaré Theorem [1]). Consider an analytic system
X=Ax+fr(x)+ fr(x)+---, x€R", (18.22)

where fi(x), i > 2 are i-th order homogeneous polynomial vector fields. If A is non-
resonant, then there exists a coordinate transformation

x=y+h(y), (18.23)

where h(y) = ha(y) + h3(y) + - -+ with hi(y) the i-th homogeneous vectors, such that
system (18.22) can be expressed as y = Ay.
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The following lemma gives a sufficient condition for the non-resonant matrix.

Proposition 18.3 ([5]). Let A = (A1,--- ,A,) be the set of eigenvalues of a Hurwitz
matrix A. A is non-resonant, if

max{|Re(A4;)|| A € 0(A)} <2min{|Re(A;)||A; € 6(A)}. (18.24)

18.5 Single Input Feedback Linearization

First, we give a normal form for non-regular feedback linearization.
A constant vector b = (by,--- ,b,)T € R" is called a component non-zero. vector,
if by #0, Vi.

Proposition 18.4. A linear control system
m
x:Ax+Zb,»u,- =Ax+Bu, xeR" ucR" (18.25)
i=1

is completely controllable, if and only if there exist two matrices F, G such that the
closed-loop system
x=(A+BF)x+BGv

can be converted, via a linear coordinate transformation, into the following form

d 0 --- O'I {b{l
0d--- 0 by
I=Az+bv:i=|, . L z4+|. |V (18.26)
00--d, by
where d;, i = 1,---  n are distinct, and b is a non-zero component vector.

The proof is simple. The key is for such a system the controllability matrix C has
its determinant as

det(C) = ﬁbi [1(a;—a)#o. (18.27)

i1 i<j

It is essentially a Vandermonde matrix. Because of Proposition 18.4 we call (18.26)
the non-regular single input feedback A-diagonal (NRSIFAD) normal form. More-
over, we give the following assumption:

A1. A is diagonal with distinct diagonal elements, d;, i = 1,--- ,n, and A is non-
resonant.

Lemma 18.4. Assume A satisfies Al, g is a k-th order homogeneous polynomial
vector fields, k > 2. Then there exists a k-th order homogeneous vector field 1 such
that
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adgym=g. (18.28)

Proof. For a given 1, assume f = ads,m. Then a straightforward computation
shows that the i-th component f; of f depends only on the i-th component 1; of
7. Now assume x}' ---x is a term of 7);, computation shows that

d1X1 X X
adg,n = dixi || X xn || = [t oxe |, (18.29)
dyxn X X
where
ui:dlrl+"‘+dnrn_di (]830)

Since A in non-resonant and t; # 0, then for every term of g;, say, xT -ee X7, we can
construct a corresponding term of 1;, say, ix? ---x," such thatada, n = g. O

Note that since all the vector fields and functions involved are analytic, then all
the functions and their derivatives concerned have convergent Taylor expansions.

Note also that if A satisfies A1, then for vector field g = gix* 4+ ggy 1 X1+ €
O(||x|[¥), we can apply Lemma 18.4 to its each components, then we can construct
a vector field 1 € O(||x||¥), such thatads, n = g.

Go back to the linearization problem. We consider the following system:

m
X=Ax+E()+ ) gilx)u, (18.31)
i=1
where A satisfies A1, and & (x) = O(||x||?). An immediate conclusion from the above

argument is

Proposition 18.5. Consider system (18.31). It is non-regular feedback linearizable,

if

1. g(x) € Span{gla cee 7gm};
2. there exists a non-zero component vector b, such that

b € Span{gi,--- ,gm}-

When one condition of Proposition 18.5 is not satisfied, we may use the normal
form to investigate the linearization problem directly.
According to Lemma 18.4, we can always find a vector field 1(x), such that

ada, 7 (x) = & (x). (18.32)
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Define a local diffeomorphism z; = x — 1(x). Then on coordinate chart z; the
system (18.31) can be expressed as

m

21 = Az —Jo()E(x) + Y & (x)ui, (18.33)
i=1

where Jo(x) is the Jacobi matrix of n(x). Moreover, g} (x) = (I — Jo(x))gi(x).

For notational convenience, we denote by x := z9, & (x) := &y(x), 1(x) = no(x),
gi(x) := g (x). Hence, we can continue the previous procedure to definé new coor-
dinate chart.

adac(me) = &, 21 =2z — Mm(x), k>0,

and a new vector field
g ) =I-h))ef (), 1<i<m, k>0,

where Ji(x) is the Jacobi matrix of 1M (x). Using-it, one sees easily that under the
coordinate chart z; the system can be expressed as
m
Go=Azu+&)+ Y g (uiy k> 1. (18.34)
i=1
Summarizing the above argument, we have

Corollary 18.1. System (18.31) is non-regular state feedback linearizable, if there
exists k > 0, such that (18.34) verify the conditions (1) and (2) of Proposition 18.5.

From the recursive calculation one sees that
deg(&) =cip1+1, i=0,1,---,

where {c;} is the Fibonacci series, i.e., (ci,¢2,---) = (1,1,2,3,5,8,---). Hence
when k — oo we have &(x) — 0, because we assume it converges. Hence, we have

Corollary 18.2. System (18.31) is non-regular state feedback linearizable, if there
exist a non-zero component of constant vector b, such that

am

1

Il
o

bGSpan{ (IJI(X))gJ(X),_]Il.,m}

18.6 Numerical Realization of Non-regular Feedback
Linearization

This section first provides a formula to realize the Poincaré coordinate transforma-
tion (18.23), then the necessary and sufficient conditions will be given for (approx-
imate) linearization.
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To begin with, applying Taylor expansion to f(x), system (18.22) can be ex-
pressed as

F=Ax+ x>+ B 4, (18.35)

k

where F; are n X n* constant matrices.

Next, we assume
ad, My = Fid.

Using Lemma 18.4, we can obtain that
m=(["OFR)x, xeR" (18.36)

Here © is the Hadamard product. (We refer to Chapter 1 for it.) According to
(18.30), I, can be constructed as

1 . .
(Qn)ij:n+a l:]’~~-’n;j:17---7nk_ (18.37)
(£ ain)-»
s=1
where Oclj o ,Oc,{ are the powers of xi, - - - , x, respectively in the j-th component of
k
x~.

Then we have the following main result.

Theorem 18.6. Assume A satisfies Al; then the system (18.35) can be transformed
via the coordinate transformation

z=x=Y Ex (18.38)
i=2
to the linear form
i =Az, (18.39)

where E; can be determined by the following recursive formula.

E=0L0okF,
s—1
E, =1;0 (Fs - Azin(pi—l(Ini—l ®Fs+1—i)> , §2>3.

=

(18.40)

(In the formula ®; is defined in (15.75).)

Proof. Applying (18.38) to the system yields
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(Ax+ )3 F,-x") —y (Ax+ )y E-x")
=2 i=2 i

Z =
i= i=2
= Azt Y FX+AY Ex'— ¥ 5% Ay
i=2 i=2 i=2 7~
< aEixi - i
(LT )| LEx
i=2 =2 (18.41)
= Az— Y adAx(Eixi) + x>+ Y (Fx*—
i=2 s=3
& OEx sl
Z ox Foproix
i=2
= Az— Y ada (Ex') + ¥ L,
i=2 5=2
where
L2 = F2x2
s—1 i
_ JEx' 1—i
L=k Y, o X P (18.42)
s—1
= <Fs — Y Eidi (L, ®Fs+li)) X', s> 3.
i=2
Because of assumption A4 we can define
Ex* =ady! (L), s=2,3,--.
Hence, (18.35) becomes (18.39). O

The advantage of this Taylor series expansion is that we can get the linear form
directly, without calculating the infinite times of coordinate transformations z;, i =
1,2,3,---.

Next, we consider the linearization of system (18.19). Denote A = ‘;—f lo, B=g(0),
and assume (A, B) is completely controllable. Then we can find feedback coefficient
matrix K and a linear coordinate transformation 7', such that A = T~'(A + BK)T
satisfies A /. For statement ease, the above transformation is called a non-resonant
(NR) transformation. .

Using the above notations and computations, the following result is obvious.

Theorem 18.7. System (18.19) is single input feedback linearizable, if and only if
there exists an NR transformation and a component non-zero constant vector b such
that

be Span{ (1— ZEicp,_lel) gj
i=2

=

j:1,~~~.,m}. (18.43)
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In the following we consider approximate linearization, which is practically use-
ful.

Definition 18.6. System (18.19) is said to be k-th order non-regular (NR-k) feed-
back approximately linearizable, if there exist a state feedback, a local coordinate
chart z, such that within this chart the closed-loop system becomes

¢=Az+0(|lel“ ") + B+ 0(llzl ) (18.44)
where (A, b) is completely controllable.

For approximate linearization, the non-resonant requirement can be relaxed a
little bit.

Definition 18.7. Let A = (41, , 4,) be the set of eigenvalues of A. A is k-th order
resonant, if there exists m = (m --- ,my,) € 2" with 2 < |m| <k, such that for certain
1 <s<n, wehave A, = (m, ).

From equation (18.37) it is ready to verify the following result, which is a corol-
lary Poincaré’s theorem.

Corollary 18.3. Consider an analytic system (18.22). If A is k-th order non-resonant,
then there exists a coordinate transformation (18.23), which transforms the system
(18.22) into an approximately linear system

2= Az+O(||z]/¥th). (18.45)
If we consider the k-th order approximate linearization of system (18.35), we
need only to adjust (18.38) to

k
z=x—Y Ex. (18.46)
i=2

Then the formulas in (18.40) remain available for s < k. Moreover, (18.39) becomes
2= Az+0(||x||F). (18.47)

We call a transformation k-th order non-resonant transformation, if it is the same
as NR transformation except the condition of non-resonant is replaced by the one of
k-th order non-resonant.

Theorem 18.8. System (18.4) is k-th order single input feedback approximately lin-
earizable, if and only if there exists a NR-k transformation and a component non-
zero constant vector b, such that

k
beSpan{ <I— Ei@,'_lxll>gj
i=2

w} +0(||x[[%). (18.48)
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We use the following example to depict the linearization process.

Example 18.2. Consider the 4-th order feedback approximate linearization of the
following system

X1 —4sinx; — %x? +5x§ +6x%
x| = —5)&2—3)(%
X3 —06x3
0 1
+16(1+x3) | wr+ [O] up.
7 0

(18.49)

Using Taylor series expansion, we can express system (18.49) as

40 0 5x3 6x3
=10 =50 [x+|-33|+]|0
0 0 —6 0 0
0 1
+O(||x|P) + |64 6x3 | ur 4+ |0| up.
7 0

(18.50)

It is easy to calculate that

L, = (5x3, =3x3, 0)T,

Erx* = adA_xl (L) = (—%x%, %x%, 0T,

Ly = (6x3 — 5x213, 0, 0)T,

Eyd = ady) (Ly) = (=63 + 3x2:3, 0,0) "
The expected coordinate transformation is

5 6.3, 5
_ E'x% — 1—%)63 =+ §x2x%
7=x— 523 , (18.51)
0

Under this new coordinate frame (18.49) can be expressed as

”1} , (18.52)

—40 0 h(x) 1
0 [u
of 12

i=10 =50 |z+0(R|P)+| 6
0 0 —6 7

where h(x) = (6 +6x3)(3x2 + 1333 — Zx3) — Bxox3. Since
h(x) 1

1
6l=1] 6 | xI+ |0 x(=h(x)+1),
7 7 0
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Theorem 18.8 assures that the system is 4-th order single input feedback approxi-
mately linearizable.
Choosing state feedback control as

up| [ 1
LJ = _—h(x)—i—l} v. (18.53)

Plugging it into (18.52), we have

—40 0] 1
i=10 =50 |z+0(]x)+ |6] v, (18.54)
0 0 —6 7

which is the 4-th order single input approximately linearized system of the system
(18.49).

Exercise 18

1. (to be completed).
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