Chapter 17
Morgan’s Problem

Consider a control system, which has multiple inputs and multiple outputs. Mor-
gan’s problem is also called an input-output decoupling problem. It plays an im-
portant role in control design. When input number equals the output number, the
problem has been solved perfectly [3, 7]. But as input number is greater than the
output number, it becomes a long standing problem. The problem has been claimed
to be solved several times, but the conclusions have then been proved wrong. In
this chapter we consider only the static feedback control..Some later developments
can be seen in [5, 2]. As for the dynamic feedback case, a necessary and sufficient
condition has been provided.in [1].

Using semi-tensor product, this chapter provides a numerical solution for the
problem.

17.1 Input-Output Decomposition

Consider a linear control system

m
X=Ax+ Y bjui :=Ax+Bu, xeR", ucR",
i—1

4

(17.1)
y=Cx, yeRP,

where u;, i = 1,--- ,m are controls and y;, j = 1,---, p are outputs, and m > p. In
addition we assume rank(B) = m, rank(C) = p. The input-output decomposition
problem, which is also called the Morgan’s problem, means to find a partition of
inputs, such that each block of inputs control the corresponding output without af-
fecting other outputs. We give a precise definition.

Definition 17.1. Consider the system (17.1). The input-output decomposition prob-
lem (Morgan’s problem) is solvable, if there exists a state feedback
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354 17 Morgan’s Problem
u=kx+Hv, veRP, (17.2)

and a partition of v, say vl, .-+, vP, such that v controls y; and v does not affect Vi
J # i. Equivalently, the transfer matrix from v to y is block diagonal and nonsingu-
lar [7].

For statement ease, we introduce some concepts.
Let y; = c;x, its relative degree, denoted by pj, is defined as

pj=min{i|c,AT'B#0},  j=1,--,p. (17.3)

Using relative degree vector p = (p1,--+,p,), we define a p x m matrix, called the
decoupling matrix, as

C]API_IB
cAP2~1B

D= ) . (17.4)
cpAPP 1B

When m = p, we have the following classical result as:

Theorem 17.1 ([3]). When m = p, the Morgan’s problem is solvable, if and only if
the decoupling matrix D is nonsingular.

Corresponding to linear case, the Morgan’s problem for nonlinear control sys-
tems has also discussed widely. Consider a nonlinear control system

m
x=f()+ L gi(ui = f)+Gx)u, xeR" ueckR”,
i=1 (17.5)
yj:h/(x)7 jzlv"'7p7
where, f(x), gi(x) i =1,---,m are smooth vector fields, aj(x), j=1,---,p are
smooth functions. For system (17.5), the relative degree vector p = (py,--- ,pp)T

is defined as
Lg,Lihj(x) =0, x€U,
i=1,,mk=0,1,---,p; —2.
Loy 'hj(xo) #0, 3i€{1,2,- m},
where U is a neighborhood of xg, which is the concerned point. For simplicity, set
xo = 0. Assume the relative degree vector is well defined, we define the relative
degree as

—1 —1
LglL?1 h] (X) e l’gml‘})1 h] (‘x)

-1 -1
LglL?Z h2(‘x) e LgmL?2 hz(x)

D(x) = (17.6)

Py Py
Lglpr hp(x) - Lgmpr hp(x)
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As a generalization of linear case, we have the following result:

Theorem 17.2 ([4]). When m = p, the Morgan’s problem is locally solvable at xo,
if and only if the decoupling matrix is nonsingular at x.

In this chapter, we consider only the linear case.

17.2 Problem Formulation

From the previous section it is clear that the challenging case for Morgan’s problem
is when m > p. According to Theorem 17.1, we have the following lemma.

Lemma 17.1. Morgan’s problem is solvable, if and only if there exist K € My,
HGMmXp) 1<pi<ni=1,---,p suchthat

c¢i(A+BK)"BH =0, 1;=0,--,p;=2, i=1,---,p. 17.7)
Moreover, the decoupling matrix for the closed-loop system,

c1(A+BK)P1'BH
D= : (17.8)

cp(A+BK)P»~'BH
is nonsingular.

According to the above lemma, there are two designable feedback matrices K
and H. The purpose of this section is to give an equivalent condition, which reduce
the unknown matrices to one.

First, note that when p; = 1 (17.7) disappears. We then denote

A={i|lpi=2}, Cx=col{cilicA}.
By definition of relative degree, when 1 < p; <2,i=1,---,p, (17.7) becomes
H C (CAB)™*.

Denote
AC = {17 : 7p}\A
Then'i € A€ implies that p; = 1.
Hence we have

Corollary 17.1. For 1 < p; <2,i=1,---,p, Morgan’s problem is solvable, if and
only if there exists K € My, xn, such that

. CxcB n
D= LA (A+BK)B:| (CaB) (17.9)
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has full row rank.

In general case, it is not so easy to eliminate H. Further works are necessary.

Define
ClB 1
ci1(A+BK)B
. ci(A+BK)P1~'B
W(K) = C](A‘FBK)p]izB ) T(K) =
. cp(A+BK)PF‘1B
Lcp(A+BK)Pr?B]
Then (17.7) becomes
W(K)H =0, (17.10)
and (17.8) becomes
D=T(K)H. (17.11)

Since 1 <p;<m,i=1,---,p, forfixed p;,i=1,---, p we may consider the solvabil-
ity of Morgan’s problem, Because we need to check finite (precisely, n”) cases. In
the remaining part of this chapter we consider the solvability of Morgan’s problem
under a set of fixed p;, unless elsewhere stated.

Lemma 17.2. Morgan’s problem is solvable, if and only if there exists K € M,y
such that

(1)
Im(TY(K)) nIm(WT(K)) = {0}; (17.12)
(2) T(K) has full row rank.

Proof. We prove the following statements are equivalent:

(i) thereexists H such that T (K)H is nonsingular and W(K)H = 0;
(i) T(K)((W(K))") =R?;
(i) [(T7(K)~'(W(K)D)]*" =R?;
(iv) (T(K)"'(W(K)") =0;
(v) Conditions (1) and (2) in Lemma 17.2.

Where T(K) and (TT(K))~! are considered as functional mappings [6].

()=(ii): If dim (T (k) (W (K)T)*) < p, since Im(H) C (W (K)T)*, then rank (T (K)H) <
p, which leads to a contradiction;

(ii)=-(i): Choosing p vectors h; € (W(K)T)*, such that T(K)Im(hy,--- ,h,) =
R?. Then we can set H = (hy,--- ,hp);

(ii)<(iii): Refer to [6] page 23;
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(iii)<(iv): It is obvious;
(iv)&(v): It is easy to verify that both (iv) and (v) are equivalent to the following
statement: If ¥ € R? and TT(K)Y € Im((W(K))T), then ¥ = 0. O

From the above lemma we can prove the following theorem easily.

Theorem 17.3. For fixed p]s the Morgan’s problem is solvable, if and only if there
exists Ko € My, «y, such that

rank ( {V][;((II?;))} > = p+rank(W(Kp)). (17.13)

Consider the case when p; < 2, Vi, if the following assumption holds:
Al. CyB =0, then we need not consider W (Kj). Hence we have

Corollary 17.2. Assume 1 < p; <2,i=1,---,p, and Al holds. Moreover, if there
exists Ko € My« such that T(Ky) has full row rank, then Morgan’s problem is
solvable.

Definition 17.2. Assume A(K) is a matrix with its entries a;;(K) as the polynomial
of K, where K € My,,,. Define the essential rank of A(K), denoted by rank, (A(K)),
as
rank,(A(K))'= max rank(A(K)):
KeMﬂlX)l

Now under the fixed p; denote

_ _ T(K) |\ _
rank,(7'(K)) =t, rank,(W(K))=s, rank, <{W(K)}) =q.
Because the essential rank is easily computable, the following corollary is conve-
nient in certain cases.
Corollary 17.3. Morgan’s problem is solvable, if ¢ = p +s.

Since both T(K) and W(K) are polynomial matrices of K, the essential rank
can be reached on all K except a zero-measure set of K, it is easy to calculate the
essential rank via computer. Hence, Corollary 17.3 is easily verifiable.

17.3 Numerical Expression of Solvability

We first calculate 7'(K) and W(K). Denote by Z = V,(K) € R™, We first express
T(K) and W(K) as polynomials of Z via semi-tensor product.

Lemma 17.3. Given a matrix A € My, y,.

1. If x € R" is a row vector; then

xA=VT(A)xxT. (17.14)
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2. IfY € My, then
YA = (I, 2 V' (A)) x V,(Y). (17.15)
Proof. A straightforward computation shows that
xA = VI(A)xT

n n
= | X anxi,--, ¥ aimXi |,

i=1 i=1

Using (17.14), we have

Yl VT(A)(YI)T

Next, we expand (A + BK)" as follows:

201
(A+BK)'= Y P(A,BK),
i=0

=

where F; is used to replace the i-th product of ¢ elements, which are either A or BK.
P; can be figure out as follows: Convert i into a binary number of length ¢. Then use
“A” to replace “0” and use “BK” to replace “1”. Then we collect terms with respect
to different orders.of “K”. Finally, we can have the following expression.

t Lo N
c(A+BK)B=Y Y S/KS'K---S \KS/, k=1, ,p, (17.16)
i=0 j=1

where T; = H . Using Lemma 17.3 and equation (17.14), (17.16) can be expressed

as

cu(A+ BK)'B
= L L S (e VI(ST)) ) 2o (VT (I 0 87)) 2
’*t ’; (17.17)
=Xy 8¢ % (In @V, (S7)) % (L2, 2 V,'(57))
i=0 j=
oo (L QVI(SI) ) Z!, k=1, ,p.

Using (17.17), W(K) and T (K) can be expressed in canonical form as:
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W(EK)=Wo+Wi X Z+--+ W1 x Z71 € My,
T(K)=To+TixZ+ - +T x Z' € Mpym.

a
|
™
°
|
=

—APTP 17.18)

where [ = max{p;—1|i=1,---,p}.
Denote by W* = Row,(W(K)), then the size of W* is

L p—
~osl(d—s)!
Now Morgan’s problem can be converted into an algebraic form as

Proposition 17.1. Morgan’s problem is solvable, if and only if there exists an 1 <
s <m— p—+1 such that

R(Z):= Y det(L(Z)L"(2))=0 (17.19)
Lews

and
J(Z) = L%‘Ll det ( Egﬂ (17 (2) LT(Z))> >0 (17.20)
has solution Z.

Proof. 1If the system (17.19)=(17.20) has solution Z = V,(K), then from (17.19) we
have rank(W (K)) < s, and from (17.20) we have

T(K) \ _
rank(W(K)>—p+s 1.
According to Theorem 17.3, the conclusion follows. O

Now the Morgan’s problem becomes a numerical problem: For each set of fixed
1<pi<n,i=1,---,pand 1 <s <m—p+1,solve system (17.19)—(17.20). Since
there are only finite possible cases, the Morgan’s problem is solvable as long as
there is a case (a pair of (p;, s)), under which system (17.19)—(17.20) has solution.

There are many numerical methods, which are suitable to solve this numerical
problem.

For instance, we may convert it the the so called Wu’s problem [81: Is polynomials
R(z) = 0 implies J(z) = 0? If for all cases the answer is “yes”, then the Morgan’s
problem is not solvable. Otherwise, if at least there is one case, where the answer is
“no”, then the Morgan’s problem is solvable.

An alternative approach is to convert it into an optimization problem:

max J(z).
R(z)=0 (Z)

If the maximum value is zero, then the Morgan’s problem is not solvable. Otherwise,
it is solvable.
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Note that if every element of A(Z) can be expressed as a polynomial of the form
ag+a; X Z+---+ap x Z&, the determinant det(A(Z)) can be calculated directly.
Hence, to get (17.19) and (17.20) we need to calculate the following product: Let

A=Ag+A Xz+ - +A; X Z* € Myxn,
B =By+ B I><Z+"'+le><zt GMan'

Then
Z ZA 2 % (z') x B}
i=0j=0
Using (17.14), we have
Y = Ay =V 0y 2
Zi X VrT(In.f) = (Ini X VrT(Inf)) X Zi;
and

Zl+j X B;F = (Ini+j X B;r) X Zl+].

Using them, we have

ZZA < (L < V. (1,0)) % (L X B} ) x Z. (17.21)
i=0j=0

As immediate consequence of the above argument is: when 1 < p; <2, i =
1,---, p, we have the following result.

Corollary 17.4. Assume 1 < p; <2, i=1,---,p, and Al holds. Then Morgan’s
problem is solvable, if and only if

J(Z):=det(T(2)T"(2)) >0 (17.22)
has solution Z.

In this case, the Morgan’s problem converts to a free (i.e., without restriction)
optimization problem:
maxJ(z).

It the maximum value is zero, the Morgan’s problem is not solvable. Otherwise, it
is solvable.

Summarizing the above argument, we present the numerical algorithm for solv-
ing Morgan’s problem.

Algorithm 3. Step 1. For py,---,p, =1,--- ,n,using (17.16) - (17.17) to express
T(K) and W(K) into the standard polynomial form as (17.18).
Step 2. Fors =1,--- ,m—p+ 1 and each L € W¥, using (17.21) to calculate
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L6, |15 76 ).

Step 3. Using (17.19) to calculate R(z), and using (17.20) to calculate J(z) re-
spectively.
Step 4. Solving the numerical problem

R(z) =0,
{J(Z) -0, (17.23)

where R(z) and J(z) are polynomials obtained from Step 3.
Finally, we give a numerical example to depict it.

Example 17.1. Consider a linear system

[0 6 —2-4 0 210

10 0 0 1 000
=10 21 1 —1{x+|20-2|u

11 —1-11 Z10 1 (17.24)

(02 00 1 —11 1

[01-1-10
y= X

010 —10

Note that p; + p, can not be great than the dimension 5, we have to verify the
following possible cases: p; = 1,p0 = 1,2,3,4;p1 = 2,00 = 1,2,3;p1 = 3,p2 =
1,2;p1 =4,p2 = 1. As an example we verify the case when p; = 3, p, = 2. In this
case we have

c1B —1 0 1
W(K) = Cl(A—I—BK)B = pl(Z) pz(Z) p3<Z) ,
B 1 0 -1

where
Z=V(K)=(ki1,...,ki5, ... ,k31,... kss)T,

Using (4.33), we have

p1(2) —1
p2(Z2)| =Vi(c1AB+c¢BKB) = | 0 | +((c1B)®B")Z.
p3(2) 2

Then we can calculate that

PU(Z) = —1+2kiy —2ki3 +kia +kis — 2ksy + 2k33 — kag — kas,
p2(Z) = 1=k —kis + ka1 +kas,
p3(Z) =1 —kyy +2ki3 — kia — 2kys + k31 — 2kaz + kaq + 2k3s.
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Moreover,
_ [e1(A+BK)*B
T(K) = _02(A+BK)B
_ [c1A’B] | [c1ABKB+ciBKAB] | [ciBKBKB
" | 2AB c2BKB 0
o1 2 )
=i 01] +TZ+TZ*,
where
o [2-10-10-1-41410-32-2-2
1210000 20-2-101-111
-21000020-2-101-11"1
0000000O0O0OOOOOO0O0
210101 4 -1-4-10 3 -22 2
2-10000-20 21 0-11+-—1-1"

where T is a 2 X 675 matrix, which is skipped here. (The reader can calculate it via
computer easily.)

According to Proposition 17.1, we need to check it for two cases: s =1 and s = 2.
It is clear that when s = 1, R(Z) > 0. For s = 2, from (17.11) one sees that to make
D nonsingular, rank(H) > 2. Then, from (17.10), rank W (K) < 1. Hence, we can
assume

It is easy to find a set of solution as

02 —-1-20
K=v-'(z)=|0-10 0 0|,
02 —1-2-1
and _
-10 1 101
WK)=[000]|, T(K)= :
101 010

It is obvious that R(Z) = 0. Moreover,
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10-17T1 0=11"

JZ)=det| 010|010
10 1| |=101
10-17[10-11"

+det| o1 0] 01 0

00 0] (000
[10-17[10-11"

+det|lo1 0] o1 0
101 [10—1]

=4>0

According to Proposition 17.1, we conclude that the Morgan’s problem for sys-
tem (17.24) is solvable.
In the following we look for the required feedback matrix H. Since Span{Col(H)} C
ker(W(K)), we can choose
01
H=110
01

Using feedback control u = Kx + Hv, the closed-loop system becomes

0.1 000 11
-10-0 01 00
X=10 -2 1 1 1{x+|0-2]v,
-1 1 -1-10 01 (17.26)
(01 0 00 11
01~1-10
y:
010 —-10
It is ready to verify that
00
WH=100], D:TH:[?%].
00

We then have p; = 3 and p, = 2. Moreover, the decoupling matrix D is nonsingular.

Remark 17.1. 1. From the argument of the above example one sees that all the K,
satisfying (17.25) are the solutions of the Morgan’s problem.

2. Using the K and H obtained in the above example, we can verify that the equality
(17.7) in Lemma 17.1 holds. In addition, (17.4) is nonsingular. We can also check
that the equality (17.12) in Lemma 17.2 holds, and 7' (K) has row full rank.

3. For Theorem 17.3, it is easy to check that
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rank ( H,((’I{(%))D =3, rank(W(Ko))=1, p=2,

hence, (17.13) holds.

Exercise 17

1. (to be completed).
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