Chapter 14
Game Theory

This chapter considers the infinitely repeated game. We refer to [3;2].

14.1 An Introduction to Game Theory

Game theory is a tool for studying a wide variety of human, and nature behaviors.
It has a very long historical background. Gambling, playing cards or chess etc. may
be considered as the origin of game theory. The famous Chinese story of the Tian
Ji’s strategy on horse racing is a typical example of Game theory.

Although some developments occurred before it, the foundation of modern game
theory was built by the 1944 book Theory of Games and Economic Behavior by
John von Neumann and Oskar Morgenstern. Neumann et al were mainly interested
in cooperative games. But most important games are uncooperative (competitive)
ones. This theory was developed extensively in the 1950s by many scholars. The
most significant contribution was the Nash equilibrium, named after John Forbes
Nash. It becomes a fundamental tool for uncooperative games.

Game theory was later explicitly applied to biology in the 1970s, although simi-
lar developments go back at least as far as the 1930s. Game theory has been widely
recognized as an important tool in many fields. Eight game theorists, including
Nash, have won the Nobel Memorial Prize in Economic Sciences, and John May-
nard Smith was awarded the Crafoord Prize for his application of game theory to
biology. Today, “game theory is a sort of umbrella or ‘unified field’ theory for the ra-
tional side of social science, where ‘social’ is interpreted broadly, to include human
as well as non-human players (computers, animals, plants)” (Aumann 1987).

A game contains at least three basic factors:

(i) Player: Usually, a game contains more than one players. When there is only one
player, the game becomes an optimization problem. Throughout this chapter we
assume there are only finite players, denoted by Py, ..., P,, where 1 < n < oo.

(ii) Actions: Each player in the game has some playing options, which are called the
actions of this player. Denote the set of actions of P, by A;. when A; is a finite set,
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we denote it by
1 ki .
A,-_{ai,---.,ai}, i=1,---,n.

In some books the action is called the strategy. We reserve “strategy” for the way
to select actions.

(iii) Payoff functions: The payoff function of player i, denoted by f;, is the gain of
player P,. It depends on the actions of all players. That is,

ci=ci(x1,-,xn), Xx;€A;, j=1,..,n i=1,..,n.

Roughly speaking, Nash equilibrium is the solution for a game. We recall the
definition of Nash equilibrium, which was given in Chapter 1:

Definition 14.1. A combined actions (x7,---,x}), x; € A;, i = 1,--+,n, is called a
Nash equilibrium, if
ci(xT, - xy) > (X)X, xy), Yxj€A; =1, 0. (14.1)
Some examples, including the famous prisoner’s dilemma, have been presented
in Chapter 1. In the following we give some more examples. We use the following
example to introduce the best reaction function.

Example 14.1 (Cournot model of duopoly). Let x and y be the quantities of a product
by firms 1 and 2 respectively. Let

u CZ—Q., Q<Cl
p(Q)—{Q 0>a

be the market-clearing price, where Q = x +y. Assume the cost for producing unit
product is a constant b. Following Cournot, suppose that the firms choose their quan-
tities simultaneously.

Then the payoff functions are

ci(x,y) = la— (x+y)x—bx

c2(x,y) = [a—(x+y)]y—by. (142
Now P; want to choose x to maximize c;. To find such x, calculating
% =a—2x—y—b:=0
yields
1
x:i(a—b—y). (14.3)

(14.3) is called the best-response function of Py, which shows for each action of P,
what the best reaction of P; should be. Similarly, we have the best-response function
of P, as
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y:%(a—b—x). (14.4)

Then (assume x,y < a — b) the Nash equilibrium is the solution of best reaction
functions
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That is,

Remark 14.1. In fact, the method for finding Nash equilibrium proposed in Chapter
1 (Example 1.8) is also finding the (discrete) best reaction functions for each players.
Then the common set(s) is(are) the solution(s) of the reaction functions.

We give another example.

Example 14.2. A Chinese ancient general Tian Ji was gambling with King Qi Wei
Wang via three times horse racing. Both Tian and Qi have 3 horses, denoted by
T ={11,t2,3} and QO = {q1,q2, 43} respectively. We know that their corresponding
velocities satisfy

Vi > Vg3 > Vi, > Vgy > Vi > Vg,

That is, gy is the fastest one. The action sets of Pr and Py are the same as
Ar = Ag={(123).(132), (213),(231),(312), (321)},

where (123) means that Pr chooses the order of the racing horses as 71, £, #3, (or Py
chooses this order), etc. Then we have the payoff bi-matrix in Table 14.1.

Table 14.1 Tian Ji Horse Racing
Pr\Pp|(123)[(132)[(213)((231)|(312)|(321)
(123) | -33|-1,1 |-1,1 | 1-1|-1,1|-1,1
132) {-1,1 {33 | 1-1 |-1,1 [-1,1 |-1,1
213) | -1,1 | -1,1 | -33|-1,1 [-1,1 | 1,-1
@31 [ -1,1 {-1,1 {-1,1 [-33 [ 1.-1]-1,1
B12) [ -1 [ -1,1 | -1,1 | -1,1 |-33 | -1,1
123)|-1,1 | 1-1|-1,1|-1,1 |-1,1|-33

It is easy to see that there is no Nash equilibrium.

In Example 14.2, each player must guess the other’s strategy. This happens in
many other games. In any game in which each player would like to outguess the
other(s), there is no Nash equilibrium because the solution to such a game necessar-
ily involves uncertainty about what the players will do. Then we need to consider
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strategies with uncertainty. Such strategies are called the mixed strategy. To dis-
tinguish this kind of strategies with the previous strategies, we call the strategies
without uncertainties pure strategy. We give a rigorous definition for mixed strategy.

Definition 14.2. Assume in a game a player has his action set as § = {s; | A € A}.
A mixed strategy is a probability distribution

P, AEA.

Then py >0and Y, p,; = 1. The player taking this strategy means he choose action
AeA
s, with probability p; .

We give an example to describe it.

Example 14.3. (Matching Pennies) In this game, each player’s action set is S =
{Head,Tail}. The payoff bi-matrix is Then we have the payoff bi-matrix in Table
14.2.

Table 14.2 Matching Pennies
Pi\P, |Head(H)|Tail(T)
HeadH)| -1,1 1,-1
Tail(T) | 1,-1 | -1,1

To accompany the payoffs in the bi-matrix, imagine that each player has a penny
and must choose whether to display in with heads or tails facing up. If the tow
pennies match then player 2 (P,) wins player 1’s (P;) penney, otherwise, P; wins Pjs
penny.

It is obvious that there is no Nash equilibrium for pure strategies. Then we con-
sider the mixed strategies. Assume P plays H with probability p and 7" with proba-
bility 1 — p. Correspondingly, P> plays H with probability ¢ and T with probability
1 —g. Then the expected payoffs for P; and P,, denoted by E| and E; are respectively

Ey=pg—p(l—q)—(1-p)g+(1-p)(1—q). '

A simple argument shows that the best strategy of Pj, responding to different g, is

0, qg>0.5
p=110,1], ¢=0.5 (14.6)
1, q<0.5.

We call (14.6) the best-response correspondence. The reason we do not call it the
best-response function is that (14.6) is not a function. So the best-response cor-
respondence is a generalization of best-response function. Similarly, we have the
best-response correspondence of P, is
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1, p>0.5
q=11[0,1], p=0.5 (14.7)
0, p <0.5.

Now the only common solution is
p=0.5
q=0.5,

The following result is fundamental [3].

which is the Nash equilibrium.

Theorem 14.1. In a finite game G (has finite players, and each player P; has finite
set of actions), there exists at least one Nash equilibrium, possibly involving mixed
strategies.

Theorem 14.1 ensures that a finite game must have at least one Nash equilib-
rium, but many games have several Nash-equilibria.In this case, it is hard to see
what the right prediction is. For these, many refinement of Nash equilibria were
proposed, such as Pareto-dominant equilibrium, coalition-proof equilibrium and so
on [2]. However, in this chapter, we only consider pure strategies of finite games,
so the Nash equilibrium may not exist. Then we may look for a “weaker” solution.
Next, we give the definition of sub-Nash equilibrium.

Definition 14.3. 1. Given a combined actions (xj,xp,---,x,). Then we can find a
non-negative real number €* > 0, such that

Cj"é/xla" : 7).Cj7' t ,)Cn) +¢€° > Cj(xla' o axjflax/jvxjﬁ%v' o axn)a (148)
Vx; €Ajj=1,"-,n

The smallest £* > 0, satisfying (14.8), is called a tolerance of (x1,x2,-- ,X,).
2. (x1,x2,-+,X,) is called a sub-Nash equilibrium if it has the smallest tolerance.

It is easy to see that a Nash equilibrium is a sub-Nash equilibrium with tolerance
0. Thus, sub-Nash equilibrium is a generalization of Nash equilibrium.
We give some examples to illustrate it.

Example 14.4. Consider a game with two players A and B. The payoff bi-matrix is

Table 14.3 Payoff bi-matrix
A\B| 1|2
1 {2,0/0,2

2 [1,2]2,1
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Table 14.4 Tolerances

A\B[1]2
1 22
2 |11

It is obvious that there is no Nash equilibrium. It is easy to calculate that the
tolerances as Table 14.4.

Hence (2, 1) and (2,2) are sub-Nash equilibriums with tolerance 1. However, It
is very likely that A may not be satisfied with (2, 1) and B may not be satisfied with
(2,2).

Example 14.5. Recall the Tian Ji horse racing in Example 14.2. It is easy to obtain
the tolerances are

Table 14.5 Tolerances of Tian Ji Horse Racing

Pr\Pp|(123)][(132)|213)][231)[(312)](321)
a3 412121 41212
3| 2 | 4] 427122
Q| 21 2142 24
0| 21 22| 4] 42
G| 4222472
a2z | 4712 2] 2] 4

We can see that the minimum tolerance is 2, and there are many sub-Nash equi-
libria.

14.2 Infinitely Repeated Games

In the games discussed in last section, the players choose their actions simultane-
ously and the games are played only once. We call this kind of games the static
games. Other games are called the dynamic games which contains the following
information:

the set of players.

the order of moves.

the players’ payoffs as the function of the actions that were made.
what the actions the players choose when they move.

what each player knows when he move.

the probability distributions over any exogenous events.

Here, the point 6 may be hard to understand. For example, consider a game be-
tween two players. Assume that they have two payoff bi-matrices, and both of them
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know the probability of each bi-matrix to be used, but only player 1 knows which
bi-matrix is used. Then game can be considered as a game that there is a player
called “Nature” who will move firstly to choose a payoff bi-matrix randomly, and
then player 1 and player 2 will move simultaneously according to what they know
(player 1 knows the chosen bi-matrix but player 2 does not).

When it is player i’s turn to move, denote H; the set of possible historical infor-
mation the player knows and A; the set of possible actions the player can choose.
A strategy s; of player i is a mapping s; : H; — A;, that is, the way to choose his
action according to his knowledge of historical information. Replacing *“actions” by
“strategies” in Definition 14.1 and 14.3, we get the concepts of Nash equilibrium
and sub-Nash equilibrium for dynamic games.

Example 14.6. Recall the Cournot model in Example 14.1. We now suppose player
1 as the “leader”, chooses his action first, and then player 2 chooses his own action
after observing player 1’s action. Thus, player 2’s strategies are functions s, : X — Y
where X and Y are feasible actions set of player 1 and player 2, while player 1’s
strategies are simply choosing x from [0, a].

After observing player 1’s action x, the best strategies of player 2 is to choose y
to maximize f(x,y). Thus the best strategy for player 2 is the function

1
s2(x) ==(a—b=x).
2
Player 1 also knows player 2’s best strategy, thus he only need to maximize

f1(x,52(x)). Hence we have the Nash equilibrium

g
52(x) = §la—b—x).

And the outcome of this equilibrium is

_ a=c
X="3
__a—c
y_Tv

which is different from the Nash equilibrium of static Cournot model.

Although it is a very natural way to get the prediction as in the above exam-
ple, it is not the unique Nash equilibrium (We leave it as an exercise to find an-
other Nash equilibrium). To deal with this problem, a refinement of Nash equilib-
rium for dynamic games named subgame-perfect equilibrium was proposed. And
the equilibrium found in the above example is the unique subgame-perfect equi-
librium. Roughly speaking, a subgame-perfect equilibrium is Nash equilibrium for
every subgame. Readers can refer to [2, 3] for details.

In the following, we only concern with infinitely repeated games, since it can
be described as mix-valued logical (control) networks which can be converted into
algebraic form using semi-tensor product as in Chapter 13.
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Definition 14.4. Consider the infinitely repeated game G, of G.

1. A strategies profile is
s=(s1,"+ ,n), (14.9)

where s; is a sequence of logical functions of time, called the strategy of player
J, precisely,
sj= {xi(O),s’j’i: Le,nt=12,}

where stj is a function of historical actions, precisely

xj(t) :stj(xl(o)>"' s Xn(0),+-+
x1(t—1),- ,x,(r —1)).

Denote by S.. the set of strategy profiles.
2. The players’ payoffs as the function of all the actions that were made. In this
chapter, we suppose the payoff functions are the averaged payoffs of all stages

— 1
m —
—oo T

1~

Ji(s) = ¢jlxi (1) (1)), (14.10)

~N—

t=1

Thus we can use the results of Section 13.5.2.

In this definition, we assume each player knows all the historical information
when he moves. If they have finite ' memories, that is, each player only remember
the information of previous finite steps when he moves, we have the following u-
memory strategies:

Definition 14.5. Consider the dynamic game G.. of G. A p-memory strategy is a
strategy, where the action x;(# + 1) depends on the past u historical actions, and s;
are time invariant, equals to f;: Precisely, the strategy s; is generated by

xj(t+1)=fi(x1 (@), x0(0), -, x1(t—p+1), - xt—p+1)), (14.11)
with initial values

xj(t) =

Lor<pu—1, j=1,,n. (14.12)

Equivalently, we can also denote the set of initial values as
0 0 —1 ~1
on{xlj...7xn7...7xlf 7...7x£:' }

We can see that if the actions sets A;,i = 1,---,n are finite sets, (14.11) are es-
sentially the dynamics of mix-valued logical control networks. Identifying

J J - -
a[Nakl.7 i=1,---,n ]*la"'vkiv
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we have x; € Ay,. Setting k =[]\, k; and x = x}_,x; € Ay, (14.11) can be converted
into their algebraic form

xjt+1) =L x(t—i), j=1,---.n, (14.13)

where L; € .i”k xku 18 the structure matrix of f;. Multiplying the equations in
(14.13), we have the algebraic form of y-memory strategies profile

x(t+1) =L x(e —i) (14.14)
with initial states Xj. Since (14.11), (14.13), and (14.14) are all equivalent, and it is
easy to convert them from one form to another. We simply use (Li,-+- ;L,;Xo) or
(L,Xo) instead of the corresponding strategies profile s = (sy,- -, 8y).

14.3 Local Optimization of Strategies and Local Nash/Sub-Nash
Equilibrium

In Section 13.5.2, we have already investigated the optimization of Boolean control
networks. When the scale of network is larger, it is difficult to find out the optimal
control. In this section, a distance of strategies will be proposed firstly [1]. Using
this distance, local optimization of strategies and local Nash/sub-Nash equilibrium
are investigated.

Recall Definition 13.9. The vector distance Dy (A, B) of two Boolean matrices A
and B are defined. If A = (a;;) € PBxn, We denote

IAH—ZZa,, (14.15)
i=1j=

It is easy to check that || -||-is a norm.
Next, we define a distance for two Boolean matrices of the same dimension.

Definition 14.6. Let A = (a;;), B = (bij) € PBuxn. Then the distance between A and
B, denoted by d(A, B), is defined as

1
d(A,B) =5 |D/(A.B)]|. (14.16)

The following result is an immediate consequence of the definition, we left it for
exercise.

Theorem 14.2. (%B,,xn,d) is a metric space. That is,
(i)
d(A,B)=0A=B, YA,BE Buun;
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(ii)

d(A,B) =d(B,A), YA,B€E PBxn;
(iii)

d(A,C) <d(A,B)+d(B,C), VA,B,CE Buxn.

?

Using this distance to the set of p-memory strategy profiles, it follows that
(L, d) is a metric subspace of (Byxu ,d). Next, the physical meaning of this d
on the set of y-memory strategy profiles is investigated. The following proposition
is obvious.

Proposition 14.1. Let A,B € £} xiu. Then
[{i|Col;(A) # Col;(B) }| = d(A, B). (14.17)

When g = 1, we have more clear description for the geometric meaning of this
distance. The proof of the following proposition is left for exercise.

Proposition 14.2. Assume 1 = 1. Then the distance d(Ly,L;).is the number of dif-
Serent edges between the state transfer graphs of the systems x(t + 1) = L1x(t) and
x(t+1) = Lox(v).

As for p > 1 case, sincex(r + 1) depends on p historical strategy profiles, we
define a path

x(t=p+1) > x(t—-p+2)— - —x(t) > x@+1)

as a compounded edge. The strategy dynamic graph of a y-memory strategy profile
consists of all such compounded edges. Then the following corollary is clear.

Corollary 14.1. Assume > 1. Then the distance d(Ly,L,) between two [L-memory
strategy profiles is the number of different compounded edges between the strategy
dynamic graphs of L1 and L,.

The results of Theorem 13.9 can be extended to y-memory mix-valued logical
control networks (see [4]). The infinite horizon optimization of p-memory mix-
valued logical control network

x (1) = fi(x(t), - xa(t), o oxa(t—pw41), - xu(t = +1),

ul(t)"" 7”'"(0?"' ,Lt](l‘—,u—l-l),”- aum(t_“+1))

(14.18)
xn(t+l) :fn<x1(t)7"' 7Xn(t),~~~ =x1(t_”+1)7"' 7xn(t_“+1)7

ul([)a”‘ 7um(t)7"' ,ul(t—,ll+1),"' ,Mm(l—[,l—f—l))

where x; € %, u; € s, can be considered as an infinitely repeated game in which
some players (x;,i = 1,2,---,n) have fixed their strategies as f; with initial actions
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x{,j =0,---,u—1, and other players (u;, j = 1,--- ,m) can choose their strategies
freely and the have a common payoff function

~

— 1

J=1im — ) c(x(t),u;(r)), ,i=1,---,n, ,j=1,---,m. (14.19)
Hszl

~N—_

Setting x(r) = x [ x;(2), u(t) = <7 u;(t),k =TI\ ki,s = [1;= ms;, the alge-
braic form of (14.18) is

x(t+1)=Lu(t—p+1)-u(t)x(t—p+1)---x(z). (14.20)
The optimal control has the form of
u+1)=Gu(t—pu+1)---ult)x@t—pu+1)---x(t). (14.21)

Multiplying both sides of (14.20) and (14.21) together and setting w(z) = u()x(¢),
yields

w(t+1) = ¥(G)w(r). (14.22)

We leave the expression of ¥(G) as an exercise.

For every G, we can calculate ¥(G), and then find the cycles of (14.18) for
every initial u(0),---,u(u — 1). Thus, by comparing the criterions we can find the
optimal control. But in general, searching all G € % to find an optimal solution
is unrealistic because of the computation complexity. Using the distance of logical
matrices, at each step, we can look for only a local optimal solution. That is, look
for optimal solution (G,Up) (Up := Mft:_olu(t)) over a neighborhood

Be(G°,U§) = { (G,Up) € Zywsi X A|d(G,G°) < £,d(Up,UY) < €}

Set the default € = 1.
We give an example to illustrate this.

Example 14.7. Consider a Boolean network
x(t+1) = Lu(t)x(z),

where
L=&[1221].

Assume
ctxo)u) =) |} 3 00

and X0 = 622. Choose G° = &l1221], u8 = 522, we can get that in step 1

9! ={(5[1222],8)),(&[1222],67)}.
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is the set of optimal strategies in By (Go;u)). We choose G! = &,[1222], u? = &},
then

G ={(5[1222],8)).(5[1222],8),
(52222],8)),(&[2222],87)}.

is the set of optimal strategies in By (G';u}) Thus, (&[1222],8; ) and (&[1222],87)
are local optimal controls. We can check that they are also optimal controls.

Next, we consider the local Nash/sub-Nash equilibrium.

Definition 14.7. For infinitely repeated game G.., a l-memory.strategy profile s =
(L;Xp) is called a local Nash/sub-Nash equilibrium on B¢ (L, Xp), if it is a Nash/sub-
Nash equilibrium with respect to its €-neighborhood.

Since there may exits too many Nash/sub-Nash equilibria, in this section we are
interested in the initial value independent strategies.We define the common Nash
equilibrium.

Definition 14.8. L* = (L,*,L,*,--- ,L,*)ds called a common Nash equilibrium, if
it, combining with any set of initial values, is a Nash equilibrium. Precisely, V j =
1,--,n,

Jj(Ll*a et 7Lj*7 e 7Ln*;XO> Z JJ(L1*7 e 7L/j7 4 aLn*;XO)
VL, € L, VX0 €M, %, (14.23)
i€ Lkjxkis VAQ € LI i
It is easy to check that a common Nash equilibrium is a subgame-perfect equi-
librium. If the common Nash equilibrium does not exist, we may look for a initial-
independent sub-Nash solution. To-make it precise, we give the following definition.

Definition 14.9. 1. For L= (L;,Ly,---,L,), we can find a non-negative real number
€>0,suchthat,Vj=1,--<,n,

Ji(Li,--+,Lj,- ,Ly;Xo)+€>Ji(Ly, - ,L’A,...jL :Xo),
J(/l J n 0)” o ]( 1 j n 0) (14.24)
VLJ- IS ﬂjxku, VXo € ITiL, .@ki.
The smallest €° > 0, satisfying (14.24), is called a tolerance of L.
2. L is called a initial-independent sub-Nash equilibrium if it has the smallest toler-
ance.

Similar to the local optimization, in each step, we can find the strategy profile
with the minimum tolerance in the neighborhood. We describe the algorithm as
following

Algorithm 2. e Step 0. Choose an initial strategy profile L°, set ;7 = {L°}.
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e Step p. On the neighbor
Be(LP™") = {L|d(L,L""") < ¢}
search sub-Nash equilibrium(s), denoted as
LP={LP1 [P ... 7kap}_

— IfLP~! € #P, choose LP~! as a local sub-Nash equilibrium (the solution) and
stop.
— Else, if PN =0,
If p =1, no local sub-Nash equilibrium is found (the algorithm fails) and
stop.
Else,go back to Step p-1 to choose another LP~! if possible.
— Else, choose L? € £, Ns¢¢, and add L” to J7.

Example 14.8. Consider the infinitely repeated game of prisoners’ dilemma, the
payoff bi-matrix is

Table 14.6 Payoff bi-matrix

Py \Pz 112
1 13,3]0,5
2 |5,0]1,1

Choose L9 = 04111 3], using Algorithm 2, we have

T=5[1413), L7 =&[4442]

2=84[1313], L3 =8[1442]

3=04[1343], L0 =82442]
LY =8[3343], L1 = &[2444]
L3 =8[3342], L' = &1 444].
Lo =8[34472],

The algorithm terminates at k = 11, L'! is a locally Nash equilibrium, which is also
a 1-memory Nash equilibrium.

The algorithm can not always find a Nash equilibrium, for example, let 10 =
04[2 12 3], then we can find a locally Nash equilibrium L = 84[1 4 2 1] which is not
Nash equilibrium.

Remark 14.2. Since the tolerance of a strategies profile depends on the neighbor-
hood, thus the value of tolerance may not be degressive. Thus, it is possible that the
chosen optimal strategy profiles sp,s1,---, form a cycle, then the algorithm fails.
Otherwise, a local sub-Nash equilibrium can be obtained. Theoretically, we have no
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reason to claim that the algorithm will never fail. But in numerical computations,
we did not have experience of failing.

Exercise 11

1. Find another Nash equilibrium for Example 14.6.
2. Prove Theorem 14.2.

3. Prove Proposition 14.2.

4. Give the expression of ¥(G) in (14.22)
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