Chapter 13
Boolean Control System

Logical control systems considered in this chapter are Boolean control networks.
Using the algebraic form of logical control systems obtained by semi-tensor prod-
uct, some fundamental dynamic properties such as controllability and observability
are investigated as well as some control problems such as disturbance decoupling,
optimal control, etc.

13.1 Dynamics of Boolean Control Networks

It was pointed out by [8] that “Gene regulatory networks are defined by trans and
cis logic. - - - Both of these types of regulatory networks have input and output.” The
investigation of control problem is essential in the study of cellular network.

A Boolean control network is defined as

xl(t"" 1) :fl(xl(t)’XZ(t)v”' 7x"(t)7”1(t)7"' ’um(t>)
x2(t+ 1) :fZ(xl(t)7x2(t)"" axn(t)vul(t)?"' ;um(t))
. (13.1)
xn(t+ 1) an(xl(t),X2(t),"' axn(t)vul(t)?"' ,Ltm(t)),
and
yj(t):hj(xl(t)'/XZ(l)?"’7xn(t))7 J=12,-,p, (13.2)

where f; : 2"t — 9, i=1,2,---n,and h; : I" — 2, j=1,2,-- p are logical
functions; x; € 2, i = 1,2,---n are states; y; € &, j=1,2,--- p are outputs; and
u € 9, =1,2,---m are inputs (or controls).

Denote by x = X7 x;, u = x" ju;, and y = x?_,y;. Using vector form, (13.1) and
(13.2) can be expressed by the following
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248 13 Boolean Control System

{x(l +1) = Lu(t)x(t)

¥(6) = Hx(t), (133

Chapter 12 have studied the topological structure of Boolean network and Boolean
control network with given input network. In this chapter, we will firstly consider
the topological structure of Boolean control network. We rigorously define the fixed
points and cycles of Boolean control network.

Definition 13.1. Consider system (13.1). Denote the input-state (product) space by
S ={U,X)|U = (uy, - ,um) € D?, X = (x1,-++,x,) € D"}.

Note that || = 2",

I.Let S; = (U',X") € . and §; = (U/,X/) € .. Denote by U’ = (u},-- ,u,),
X' = (x},---,x}), etc. (S;,S;), is said to be a directed edge, if X',U", X/ satisfy
(13.3). Precisely,

J_ i i i —
xk_fk(x17"'7xn,au17"'7um)a k_lv"'an'

The set of edges is denoted by & C .% X .Z.

2. The pair (., &) forms a directed graph, which is called the input-state transfer
graph (ISTG).

3. (81,82, ,8y) is called a path, if (S;,8:41) € &, i=1,2,--- £ —1.

4. A path (81,82, --) is called a cycle, if S;p = S; for all i, the smallest ¢ is called
the length of the cycle. Particular, the cycle of length 1 is called a fixed point.

5. A cycle (S1,S2,--+,8¢) in which §; = (U’, X') is called a simple cycle, if X # X/
for1 <i<j<U

Definition 13.2. Denote the vertexes of the ISTG of system (13.1) by {52",,H,, li =
1,---,2™t"} The the input-state incidence matrix of the Boolean control network
(13.1) is defined by

= 1, there e)'(ists an edge from 52j,,,+n to 55,,,+n, (13.4)
0, otherwise.
We give a simple example to describe the input-state transfer graph.
Example 13.1. Consider a Boolean control network X as
t+1)= 1) Vxa(t)) Nu(t
5 [HEED) = @0 V@) Au) 135
x(t+1)=x1(z) <> u(t)

Setting x(7) = x1(¢) X x2(2), it is easy to calculate that the algebraic form of X is

X:x(t+1) = Lu(t)x(z),
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where
L=68,[11244433]. (13.6)

According to the dynamic equation (13.5) (equivalently, (13.6)), we can draw
the flow of (u(z), (x1(¢),x2(¢))) on the product space % x 2, called the input-state
dynamic graph, as in Fig. 13.1.

Fig. 13.1 Input-state dynamic graph

Then, we can find the input-state incidence matrix of (13.5); is

[11000000]
00100000
00000011
00011100
11000000
00100000
00000011
00011100

Comparing (13.6) with (13.7), one might be surprised to find that

L
=[]
In fact, this is also true for general case. Consider equation (13.3). Note that, the
J-th column of L corresponds to the “output” x(t + 1) for “input” u(t)x(t) = &),
of the dynamic system. If this column Col;(L) = 8%, then it means that the output

x(t + 1) is exactly the i-th element of Ay:. Now since u(f 4 1) can be arbitrary, it
follows that the input-state incidence matrix of system (13.3) is

L

L
/ = . 2m S e%znﬁ»annH»n, (138)



250 13 Boolean Control System

where the first block corresponds to u(z + 1) = 8}, the second block corresponds
to u(t+ 1) = 83,, and so on.

We call an m x m matrix A is row-periodic, if it can be expressed as A = 1;Ay,
where Ay € M« and m = tn, the such smallest 7 is called the period of A, Ay is
call the basic block of A. By straightforward computation, it can be verified that if
A is row-periodic with period 7, then so is A®, where s is a positive integer.

The following proposition can help with the computation of powers of the inci-
dence matrix ¢

Proposition 13.1.

T =ML, (13.9)
where
2"1
M =Y BIk;(L).
i=1
Proof.

OS+1 _ (Szlm)T/H»l
= ((621111)T/) js
= Llgn 7§
2”1

= ;Blki(L) I

O

We consider the physical meaning of _#°. When s = 1 we know that _#;; means

whether there exists a set of controls such that 6%,,,+n is reachable from 62’,,,+,, in one
step by judging if #;; = 1 or not. For s > 1, we have

Theorem 13.1. Consider system (13.3). Assume that the (i, j)-th element of the s-th
power of its input-state incidence matrix, /lj = c. Then there are c paths from point

55,”,, reach P; at s-th step with proper controls.

Then, similar to Theorem 12.2 and 12.3, we can get the following result about
the topological structure of Boolean control networks.

Theorem 13.2. Consider the state equation of system (13.1) with its input-state in-
cidence matrix ¢ . The number of the fixed points in the input-state dynamic graph
is The number of length s cycles can be calculated inductively as

tl‘(Ms) — Y kN
N, = U (13.10)
S

We use an example to depict it.
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Example 13.2. Recall Example 13.1. Since

1100
0010
0011
1101

M = BIk; (L) +Blky(L) =

We can calculate that
trtM =3, trM>=6,

trM* =15, trM> =33,
trM® =66, trM’ =129,
trM® = 255.

Using Theorem 13.2, we conclude that N| =3, N3 = 1, Ny = 3, N5 = 6, Ng =10,
N7 =18, Ng = 30. It is not an easy job to count them from the graph directly.

13.2 Controllability

Controllability is a fundamental topic in modern control theory. Limited by the
mathematical tools, there are few known results on control design of Boolean con-
trol networks [1, 6, 7]. However, the semi-tensor product makes it much easier to
investigate the controllability of Boolean control networks. First, we give the defi-
nition of controllability.

Definition 13.3. Consider system (13.1). Denote its state space as 2~ = 2", and let
Xoe 2.

1. X € Z is said to be reachable from Xj at time s > 0, if we can find a sequence of
controls U(0) = {u;(0),--- ,uyu(0)}, U(1) = {u(1),--- ,um(1)}, - -+, such that
the trajectory of (13.3) with the initial value X, and the controls {U(¢)}, r =
0,1,--- will reach X at time t = 5. The reachable set at time s is denoted by
R;(Xp). The overall reachable set is denoted by

R(Xo) = U7 Rs(Xo)-

2. System (13.1) is said to be controllable at Xy if R(Xp) = 2 . The system is said
to be controllable if it is controllable at every X € 2.

Before the investigation of controllability, we should introduce the Boolean prod-
uct and power of Boolean matrix.

Definition 13.4. 1. Let A, = (af?j) € Bxn, k=1,--+,r, 0 is an r-ary logical oper-
ator, then
o(Ar,+,Ap) = (G(a}j’ e va{j))'

2. Let A € Buxn, b € Z, the scalar product is define as
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bA =Ab:=DbANA.

Particularly, if A=a € Z,ab=ba=aAb
3. Let A = (a;j), B = (bij) € Bmxn- Then we define Boolean addition as

A+4B .= (a,‘j +¢@h,‘j) = (aij\/bij)-
4. Let A € Byxn and B € %)% . Then the Boolean product is defined as
AxgB:=C¢& Bnxp

where
n

Cij = ), aikbi;-
k=1

If A <; B (A > B), the Boolean semi-tensor product is defined as
AxgB:=(ARL)xgB. (AxgB:=Axg(BRIL).)
Particularly, if A <, A (A > A),

AR = A AKX g X ZA.

k

We use a simple example to illustrate the Boolean operations.

Example 13.3. Assume

100 010
A=|010[; B=[101
101 101
Then
011 110
“A=|101|, A+zB=|111],
010 101
010 100
AxgB=[101|, AW =1010],5>1
111 101

From Theorem 13.1, we know that if jlj = ¢, there are ¢ pathes from 62’,,,+,1 to
8%en at s-th steps. That means, if J5 >0, at s-th step, 84,4n is reachable from
52],,,_n. When the controllability is considered, we do not need to consider how many
paths from one state to the other, but only want to know whether a state can be
reached from another one. Hence, we simply use the Boolean power of ¢, and we
have the following conclusion.
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Theorem 13.3. Consider system (13.3) with its input-state incidence matrix 7 . De-

fine the controllability matrix as

om-+n

My =Y MY € By, (13.11)
s=1

and denote My = (c;j). Then

(i) 65,1 is reachable from 521,1, iffcij=1;
(ii) The system is controllable at 5{n, iff Colj(My) = 1pn;
(iii) The system is controllable, iff My = lynxon, where onyon is a 2" X 2" matrix
with all entries are 1.

Proof. (i): By Cayley-Hamilton Theorem in linear algebra, it is easy to see that if
%i =0, s <2™" then so are #*, Vs. Thus, we consider only {_#*|s <2""}.

Next, we know that 55,, is reachable from 521;1, iff there exist B and s such that o 55,,
is reachable from [352/,, at s-th step for all 1 < < 2™, which means

om+n om Qm+n

1= ZIAﬁZA Blkﬁ(/o(s))ij: Y Mgij = cij.
s= =1 s=1

(ii) and (iii) can be obtained directly from (i). a
Example 13.4. Consider the following Boolean control network
$ilt+ 1) = (2 (1) © x20)) Vi (1)
x(t+1) =~y (1) Aua(t), (13.12)
() =x1(2) Vxa(t)
Setting x(t) = x?_x;(t), u = x% u;(t), we have
1)=L
x(t+1) = Lu(r)x(z) (13.13)
y(t) = Hx(z),

where
L=0402211222224312442],

H=8[1112]

For system (13.12), the basic block of its input-state incidence matrix _#y = L.

1. Is 8} reachable from x(0) = §7?
After a straightforward computation, we have

MDY, =0, (MP),=1.

That means that x(2) = & is reachable from x(0) = &7 at 2nd step.
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2. Is the system controllable or controllable at any point?
We check the controllability matrix:

) 1111

2
R IR
4 S;M 0010]"
1111

According to Corollary 13.3, we conclude that

(i) The system is not controllable. It is controllable at xy = 52 ~ (0,1).
(i) x4 = 8; ~ (0, 1) is not reachable from xo = §; ~ (1,1), or xo = 67 ~ (1,0),
orxg = §; ~ (0,0).

13.3 Observability

In this section we consider the observability of system (13.1) and (13.2). We first
give a definition.

Definition 13.5. Consider system (13.1) and (13.2). Denote by Y (z) = (y(¢), -,
yp(t)) € 2P.
1. Xl0 and X20 are said to be distinguishable, if there exists a control sequence

{U(0),U(1),---,U(s)}, where s> 0, such that

Y(s+1) =y U(s), - U0).X)) # Y (s + 1) =y (U(s), -+ ,U(0),X3).
(13.14)

2. The system is said to be observable, if any two initial points X{, X9 € 2" are
distinguishable.

In the following we introduce a necessary and sufficient condition for observabil-
ity of controllable Boolean control networks.
Split L into 2™ equal blocks as

L=[BIk; (L), Blks(L), - , Blkyn (L)]
::[Bl 7BQ, LR ,Ban}7

where B; € Sonyon,i=1,---,2™,
Define a sequence of sets of matrices I; € Zpyon, i =0,1,2,---, as
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Io = {H}
L= {HB|i=12,- 2"
B:{HBZBJ i j= 1,2,"' ’Zm}

(13.15)

1—.;:{HBilBiQ"'Bl'y‘ilvizf" ?iS - 1,2,"' 72m}

Note that Iy C %pxon, Vs, and Zpxon is a finite set. Then it is easy to see that
there exists a smallest s* such that

CU I, VYj>s"

For notational ease, we rewrite {Ij,---,I;+} as matrices, i.e.
[ HB|B;---Bi ]
————
k
HB\Bi--B;
N—_——

Ii = k

HBszzm .. -Bzm
—_——
L k .

And then we construct a matrix, called the observability matrix, as

Refer to [5] or [3], we have the following result about observability.

Theorem 13.4. Assume system (13.1) and (13.2) is controllable. Then it is observ-
able, iff

rank () = 2". (13.16)
We give an example to illustrate it.

Example 13.5. Consider the following Boolean control network

5 =u(t) A—x1(2) V (—u(r) Axp () A—xa(t))
y(t) = x1 V. (13.18)

=

xi(t+1) = (t) Vxo(r)
{ (t+1) (13.17)
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Its algebraic form is

{x(t—i— 1) = Lu()x(r) (13.19)

y(t)=H(t)

where
L=&[2411 2322,

H=8]2112].

Checking the controllability matrix, we have

— 1
—_ = = =
—_—
N ey
O N wry

s=1i=1

23 2
=YY (Blki( 7)) = [

| > 0.
Thus the system is controllable.
A straightforward computation shows the observability matrix is

[0110]

1001

H 1000

HB, 0111

ge| HBy | _ 1111
HB\B) 0000

- 0011

1100

From part of &, all the columns has already been different, it is enough to see
rank(&) = 4. Thus, the system is also observable.

There is another necessary and sufficient condition of observability in [2] which
is basically the same as Theorem 13.4. But Theorem 13.4 is more convenient to
use. However, these conditions need the system to be controllable. Next, we give a
sufficient condition of observability which have no assumption about controllability.

For these, we will use the input-state incidence matrix defined in Section 1.
It has been known that BIk;( /O(S)) corresponds to the input u(0) = 8i,, and

Col;[BIk;( fo(s))] corresponds to xo = 52j,,. We want to exchange the order of the
indexes i and j, precisely, we define

I = Wy, (13.20)

and then split it into 2" blocks as
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JO = [B( ) Bla(A) - Blkn( A7)

where Blk,-(/o(s)) € Bonyom,i=1,---,2" Now we can see that each block Blki(j()(s))
corresponds to xo = 84,, and in each block Col ;(Blk;( jés))) corresponds to u(0) =
52],,,. Using this matrix, we can get the following result.

Theorem 13.5. Consider system (13.1)-(13.2) with its algebraic form (13.3). If

Qm-+n

\/ KHmex)%%)v(Hmex;%%)]¢m 1<i<j<2" (1321)

s=1
then the system is observable.

Example 13.6. Recall Example 13.4. System (13.12) is-not controllable, so we can’t
use Theorem 13.4 to verify wether it is observable.
Denote

OU:V£1KHKBij%%)V<HKBmK }%)]

A straightforward computation yields

0011 0001 0000
O2=10011]"9%= 100124~ 1010/

0010 0011 0001
O5=11010"9%=1011]"9%= |0011

Then by Theorem (13.5), we can conclude that the system is observable.

13.4 Disturbance Decoupling

Disturbance decoupling problem (DDP) is a classical problem for control theory.

In practice, a control system is inevitably affected by disturbance. To analyze and

control the system, we first want to design a control such that the disturbance on the

system will not affect the output of the system, which is the purpose of DDP.
Consider the following system,

X1 ([+ 1) :fl ()C](l),"' 7xn(t)vul(t)7"' ’um(t)7é1 (Z)v"' »5q(t))

(13.22)
) :fn(xl(t)7"' 7xn(t)vul(t)7"' ’um(t)7é1 (t)v"' 7§q(t))v
yj(t):hj X(l)), j:lv"'vpv

E(t) = x4, &(r), and y(t) = x”_,yi(r). Then the algebraic form of (13.22) is ex-
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pressed as

x(t4+1) = Lu(r)& (1)x(r),
y(t) = Hx(t), (13.23)

where L € gzn wQnEmEq , He gzp XN

Definition 13.6. Consider system (13.22). The DDP is solvable, if we can find a
feedback control u(¢) = ¢(x(¢)), and a coordinate transformation z = 7'(x), such
that under z coordinate frame the closed-loop system becomes

) =F(z(1),9(x(1)),& (1))
) =F%(2(1)), (13.24)

where z(1) = ((z' ()T, (2t

~
~—
~
N
~

From the definition we can see that the key issues of solving DDP is to find a
regular sub-basis z>(t) by which the output can be expressed, and a proper feed-
back control such that the complement coordinate sub-basis z' and the disturbances
& can be deleted from the dynamics of z2. We begin with finding the coordinate
transformation. For this, we should introduce a new kind of subspace.

Definition 13.7. Let 2" = .%¢{x1,--- ,xu} be the state space, and Y = {y1,---,y,} C
Z . A regular subspace 2° C 2 s called a Y-friendly subspace, if y; € Z,
i=1,---,p. A Y-friendly subspace of minimum dimension is called a minimum
Y-friendly subspace.

Next, we will discuss how to find out a minimum Y -friendly. Express the alge-
braic form of output as

y=Hx=38p[i1ir - ix]x. (13.25)

Denote by
nj:|{k|lk:]71§k§2n}|a j:1a27"'a2p

where | - | is the cardinal number of the set. Then we have the following theorem.

Theorem 13.6. Consider system (13.22). Assume y = Mf":l y; has its algebraic form
(13.25):

1. There is a Y -friendly subspace of dimension r, iffnj, j=1,--- 27 have a common
factor 2",
2. Assume 2" is the largest common 2-type factor of nj, j =1,---,2P. Then the

minimum Y -friendly subspace is of dimension r.

The following algorithm for finding y can be considered as a proof of this theo-
rem, we leave the rigorous proof for exercise.
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Algorithm 1. 1. For system (13.22), find a common 2-type factor 2" " of nj, j =
1,--+,2, and n; = 2"""m;. Denote J; = {klix = j} and I; = {1 —|—Zi;imk,-~-,
Yo mi}for j=1,---,2P. Splita 2" x 2" matrix Ty = (tys) to 27 x 2P minors as

T ={ts|rel,sel;}, ij=1,---2"

2. Set
[,j Ly, lTnfra =]
e (13.26)
0, otherwise,
which is an m; x m ;2" matrix.
3. Set
7= Xi_1zi = Tox.
And then retrieve z;, i = 1,--- ,r from Ty. (We refer to Chapter 6 for retrieving
technique.) {z;|i = 1,---,r} is a sub-basis of an r-dimensional Y-friendly sub-
space.

This algorithm provide a way to construct an r-dimensional Y -friendly subspace,
but it is obvious that different assignments of 1 in TO”’ can_ construct different sub-
bases. One may expect that those sub-bases form a unique subspace. Unfortunately,
the following example shows the minimum Y -friendly subspace is not unique.

Example 13.7. Let ' = % o{x1,x2,%3,%4}.

1= hi(x1,x2,x3,%4) = (x1 > x3) A (x2Vxg),

13.27
y2 = ho(x1,X2,X3,X4) = X1 AX3 ( )

Setting x = l><:-‘:1xi, y = y1y2, we have its algebraic form as y = Hx, where
H=1054[3144134444424424).

Thus, ny =ny =n3 =2, nqg = 10. Since the largest common 2-type factoris 2 = 243,
we can have the minimum Y -friendly subspace of dimension r = 3. To construct 7
we have

J1:{2a5}; J22{12715}7 J3:{176};

Jy =1{3,4,7,8,9,10,11,13,14,16};

11 :{]}; 12:{2}; [3:{3}; 14:{4,5,6,7,8}.

By (13.26), Ty is obtained as
To=038[3144135566727828].
Correspondingly, we can construct

G=58,[12344444),
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such that GTp = H.

Thus we have obtained a sub-basis {z1,z2,23} such that z = zyz2z3 = Tox and
y=0Gz.

T04’4 can also be assigned as

10000010
T _ 01000001
0 100101000}/

00010100

then we can get
Ty=208[3156137878424526],

which also satisfies GT; = H. Denoted by {z},z5,25} the sub-basis satisfying z/ =
ZIIZ/ZZg = T()/x’ and 2 = fg{zl7127z3}7£”/ = y[{zll’zlwzé}'

Suppose 2 = 2, then there exists a nonsingular matrix P € -%;g, such that
Tp = PTy. Hence

(10000 0 0 O
01000 O O O
00100 O 00
000005050 O

P=TT(BT) " = 16000 00 0.50.5

0000 0 0 0505
0001.0 0 O
100000505 0

0
O -
is not a logical matrix. Thus 2 # 2.

Assume a Y-friendly subspace is obtained as z*. Then we can find z!, such that
z={z',7?} form a new coordinate frame, and the system can be expressed in the
new coordinate frame as

e +1) = Fl(2(1),u(t),§(1))
2(t4+1) = F2(z(t),ut),&(1)), (13.28)
y(t) = G2 (1))

We call it the Y-friendly form.

Then it is obvious that if we can find a feedback control u(z) = u(z(t)), such that
F? only depends on z2, we have solved the DDP.

Assume 72 = (z,--+,z;) is of dimension k, and the feedback control u(t) =
Kz!'(t). Then F?(z(t),u(t),&(t)) can be expressed as
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F2(2(1),u(t), & () = Mau(t)& (1)z(r)
= MZKW[zq,znfk] (Iva ® Mrznik)thzwnfk]Zz(f)g (f>Zl (t)

= Q0 (&) (1)
(13.29)

where M, is the structure matrix of FZ.
Split Q to 2¥ blocks
Q = [QlaQ27"' 7Q2k]

It is obvious that F2(z(t),u(t),&(t)) = F*(z*(¢)), if and only if for each j, all the
columns of Q; are the same.

To verify whether the DDP is solvable, we should try every subspaces to see if all
the columns of Q; are the same. But there are lots of Y-friendly subspaces of system
(13.22). However, the following proposition may help to reduce the complexity.

Proposition 13.2. Let V be a Y = {yi,--- ,yp}-friendly subspace. Then there exists
a minimum Y -friendly subspace, W C V.

Proof. Denote by
y= Kle)’i = Hx,

and n; = [{j| Col;(H) = 8}, }|, i=1,--+,27. We know that 2° is the largest common
2-type factor of {n;}, iff the minimum Y -friendly subspace has dimension of n —s.
Let {vy,---,v} be abasis of V. If t = n — s, we are done. So we assume ¢ > n —s.

Since V is a Y-friendly subspace, denoting v = %/, v;, we can express
y=Gv, where G € fszzt.

Denote r; = |{j|Col;(G) = 8}, }|,i=1,---,27. Assume that 2/ is the largest 2-type
common factor of r;; and denote r; = m;2/. Since V is a regular subspace, we denote
v = Ux, where U € Dixon and (12.26) holds for U. Note that

y = Gv = GUx,

we have to calculate GU. Using the construction of G and the property of U, it is
easy to verify that each column of 8}, yields 2"~ columns of 8}, in GU. Hence we
have

ri- 2”71 =m;- 2n7t+j.

That means, the largest common 2-type factor of {n;} is 2"~/*/. It follows that
n—t—+ j =s. Equivalently,
j=t—(n—ys).

Since the dimension of V is ¢ and r; have largest 2-type common fact 2/, we can
find out a minimum Y -friendly subspace of V of the dimensions — j=¢— [t — (n—
s)] = n —s. It follows from the dimension that this Y -friendly minimum subspace of
V is also a minimum Y-friendly subspace of 2" = Fp{xi,--- ,xn}. ad
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We can see that if for a minimum Y-friendly subspace W whose sub-basis is
72(t), there is no such u that & (¢) can be deleted from F» (z'(),2%(¢),u(t), £ (t)), then
neither for other Y-friendly subspaces containing W. Hence, using this proposition,
we can start from minimum Y -friendly subspaces to solve DDP.

We give an example to describe how to find a solution of DDP.

Example 13.8. Consider the following system

(
(
X3(t—|— 1) = [(X2(t) <—>X3(t)) \/é([)}\_/[(xl <—>X5) \/u2(t)] (13.30)
( [1 () —
(
t

X4(t41) = [ (1) = (22 (0) VE(@))] A (x2(1) = x3(2))
xs(t+1) = (x4(1)Vur (2)) > [(u2 (1) A —x2(2)) V xa ()],
y(£) = x4(t) A (x1(r) < x5(2)),

where uy (1), u,(t) are controls, £ (r) is a disturbance, y(r) is the output.
Setting x(t) = x3_,x;(t), u = uy (t)us(t), we express (??) into it algebraic form
as

x(r41) = Lu(t)&(1)x(r) (13.31)

where

L =03[303014 14323216 16 3232 15 153030 13 13
303014 14323216 16 3232 15153030 13 13
323216162020 4 42020 3 330301313
323216162020 4 42020 3 330301313
3026 14 1032 28 16 123228 16 12 30 26 14 10
26301014 2832 12 16 28 32 12 16 26 30 10 14
322816122024 4 82024 4 830261410
283212162420 8 42420 8 426301014
13132929 15153131 15153232 13 13 30 30
13132929 15153131 15153232 13 13 30 30
13132929 3 31919 3 3202013 133030
13132929 3 31919 3 3202013 133030
13 92925151131271511312713 92925
9132529 11152731 11152731 9132529
13 92925 3 71923 3 7192313 92925
9132529 7 32319 7 32319 9132529,

and
h=08[12221222122212222122212221222122].

First, we find the minimum output-friendly subspace. From & we can see n; = 8
and n, = 24. Then we have the largest 2-type common factor 25 = 23, and m; = 1,
my = 3. Hence, we know that the minimum output-friendly subspace is of dimension
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n—s=>5—3=2.Using Algorithm 1, we may choose
To=04[12341234123412342143214321432143].

and
G=&[1222].

From T we can find the output-friendly sub-basis, denote it by {z4,25}, with z4z5s =
Tox. Add {z1,22,23} to make z = 2= xlezi = T'x is a coordinate transformation.
Using Proposition 6.4, we simply set z; = M;x, i = 1,2,3, where M; are chosen as
follows:

Mi=6&[11111111111111112222222222222222];
My=6,[22222222111111112222222211111111];
My=06,[11112222222211111111222222221111].

It is easy to check that

T=03[910111213141516567812342625
2827302932312221242318172019]

is a coordinate transformation. Conversely, we have x = 77z, with

TT=[131415169101112123456783029
323126252827 18 17.20 1922 21 24 23].

Now under the coordinate frame z,

(t) = TLu(t)&()TTz(¢)

2(t+1) = Tx(t+1) = TLu(1)S (1)x(1) =
2(t) = Lu(t)§(1)z(1).

)
=TL(Ils@TH)u(t)&(t)z(t
We have its Y-friendly form as

2 (t+1) = Liu(t)&(1)z(r)
2(t4+1) = Lou()E(1)z(r)

¥(1) = G2(1),

—

Li=&[55115511551155115511551155115511
55117733551177335511773355117733
56125612561256125612561256125612
56127834561278345612783456127834
11551155115511551155115511551155
11553377115533771155337711553377
12561256125612561256125612561256
125634781256347812563478125634738|;
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Lo=68[11113333112233441111333311223344
11113333334433441111333333443344
11223344112233441122334411223344
11223344334433441122334433443344
11113333112233441111333311223344
11113333112233441111333311223344
11223344112233441122334411223344
11223344112233441122334411223344];

For all K € %4 g, we can not find a K such that each 4 x 16 block Q; of Q =
ZzKW[m] (L ®M§)W[4116] has the same columns.
However, when we set

K=04[44444444],
which means u; () = uz(¢r) = 0, we have

O=¥[13131313131313131313131313131313
24242424242424242424242424242424).

Then we can see that z4(f + 1) = z3(¢), zs(f +1) = z4(¢). Thus we want to enlarge
the output-friendly subspace to include z3 to see whether z3is affected by &, z; and
22. Retrieving the system under the controls u; (1) =uy (¢) = 0, we have

(13.32)

One sees that the closed-loop system is in such a form that the DDP is solved.

13.5 Some Other Control Problems

This section briefly introduces stabilization, optimal control and identification of
Boolean control networks. Most of proofs are ignored, one can refer to [3], [4], [9]
and [5] for details.

13.5.1 Stability and Stabilization

We give rigorous definition of stability and stabilization. Consider Boolean network
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xi(t+1) = filer(0),x2(2), -+, xn(1))
XQ(I—I— 1) :fz(.X1(l).,xz(l),"‘ ,x,,(t))

' (13.33)
Bt +1) = Fuo ()220, 50).
or Boolean control network
xi(t+1) = fr(xe(0),x2(2), - xa (1), u1 (1), (1))
sz(f +1) = ol (0),x2(), - sxn(0) 11 (1), (1)) a3
x.n(t—i— 1) = fulx1(2),x2(2), -+ s xu(1),u1 (1), -+ ,um(t)).
Their algebraic forms are, respectively
x(t+1) = Lx(t) (13.35)
and
x(r+ 1) = Lu(t)x(t). (13.36)

Definition 13.8. 1. System (13.33) is said to be globally stable if it is globally con-
vergent. In other words, it has a fixed point as a global attractor (equivalently, the
only attractor).

2. The global stabilization problem of system (13.34) is to find, if possible, u(t)
such that the system becomes globally convergent.

The following results for global stability and stabilization are straightforward.

Theorem 13.7. [. System (13.33) with its algebraic form (13.35) is global stable,
iff there exist a state xy = 55,, and a positive integer k such that

Col;(L) = 8in, Colj(L¥) = 8, j=1,2,---,2".

2. System (13.34) with its algebraic form (13.36) can be globally stabilized to xy =
0n by a closed loop control u(t) = Gx(t), iff there exists a positive integer k such
that

Col(LGM?') = 8, Col,(LGMZ)}) = 8, j = 1,2, 2"
3. System (13.34) with its algebraic form (13.36) can be globally stabilized to xy =
84, by u(t), iff there exists a positive integer k such that

Coli(M) =84, MY =1,j=12.-2"

where M is defined in (13.9).
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Although these results are necessary and sufficient, it is hard to calculate when
n is large. Next, we will propose a sufficient condition of global stability which
uses the incidence matrix of the network graph (it is different from the input-state
incidence matrix). For this, we firstly introduce vector distance of Boolean matrices.

Definition 13.9. 1. Recall the network graph of system (13.33), the nodes .4#" =

{x1,x2,-- ,x, }, the edges & = {(x;,x;)|x; is affected by x;}. Denoted X = (x1,x2,

-, xy)T € 9", and the function of the dynamic by X (¢ + 1) = F (X (t))- The in-

cidence matrix of the network graph of is a n x n Boolean matrix Z(F) = (I;;),
where

=l W) e (13.37)
Y 0, otherwise. ’

2. LetX = (xij),Y = (yij) € Buxn- Wesaid X <Y ifx,-j Syija Vi, j.
3. Let X = (x;;),Y = (yij) € Bmxn- The vector distance of X and ¥, denoted by
D,(X,Y), is defined as

Dy(X,Y) = XVY. (13.38)

We leave the following properties of vector distance for exercise.

Proposition 13.3. 1. D,(X,Y) defined in (13.38) is a distance.
2. Let A, B € Bipxn, and C € By p, E € Byxm. Then

D,(AC,BC) < D,(A,B)C, D,(EA,EB) < ED,(A,B). (13.39)

In the following, we use the scalar form of state, we can see that X € %,«1, thus
we can employ Dy,(X,Y) to describe the distance of two states.

Theorem 13.8. [f & € 2" is a fixed point of Boolean network (13.33), and there
exists an integer k > 0 such that

(7 (F)® =0, (13.40)
then & is global attractor:
Proof. Firstly, we prove that
D,(F(X),F(Y)) < 7 (F) x 2 Dy(X,Y). (13.41)

Sitice D,(F(X),F(¥)) = (Du(fi(X), fi(1)).++ . Dul(falX), fu(¥)), using triangle
inequality
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Dy(fi(X), fi(Y)) <Dy(fi(x1,-+ ,xn), fi(y1, %2, - Xn)
+2 Dy(fi(y1,%2, s Xn), [i(V1,2,%3, -+, Xn)
+g-
+2Dy(fi(y1, - Yn-1,%), fi(1, 5 Vn)

n
< Z%bi,kDV<xk7yk)u
k=1

then (13.41) follows.
If £ € 9" is a fixed point and [.# (F)]¥) = 0, then using (13.41) we have
Dy(FY(X),8) < [£(F)W x5 Dy(X.&) =0

for any X € 2". That means for any initial state X, after at most k steps, the state
will converge to &. O

Ones can see that the condition in Theorem 13.7 is coordinate-independent, since
if L¥ is a constant mapping (all the columns are the same), then so.is 7' LFT for any
coordinate transformation 7. But this is not true for the condition in Theorem 13.8.
We give an example to illustrate these.

Example 13.9. Consider the following system

xi(t+1) = [y (1) A (e (8) Vaxs () ]V (= () A x3(2)),
x(t+1) =[x (#) A (=x2(2))] V(=x1 Axa), (13.42)
x3(t+1) = e (A (S0 () Axa(1)))] V [ (1) A (a2 (2) V xs (2))]-

Setting x(¢) = x; (#)x2(¢)x3(2), wehave x(¢ + 1) = Lx(r), where

L=08[83151538].

Then by Theorem 12.2, we know that the only fixed point of this system is 52? ~
(0,0,0)7 := &. By direct calculation, we have

— 5[88888888].

Thus, by Theorem 13.7 we can conclude that this system is globally stable.
Next, we try to use Theorem 13.8. The incidence matrix of network graph of this
systemis

111
S(F)=|110
111
We can see that [.# (F)]%) = 13,3 for k > 2, then Theorem 13.8 can not be employed

directly.
However, we consider a coordinate transformation as
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21 = [ A= ()] V [(mxn) A (x2Vixs )]
= [x1 A\ (XZ\7)C3)] \Y [(—‘xl) /\X3}
73 = X2.

In the vector form, we can easily calculated that
z=27212023 = Tx,

where
T=238[71645328].

Then in coordinate frame z we have

2(t+1) = TLT 2(t) := Lz(t),

where
Z:68[66557788].

Retrieve this back to logical form, we have

z1(t+1)=0
2(t+1)=z1(2)
z(t+1)=z1(t) V22 (2):
Then its incidence matrix is
000
J(F) = (100},
110

13 Boolean Control System

(13.43)

which is strictly lower triangular, hence [.#(F)]®) = 0. And we can see Z(r) =
(z1(2),22(1),23(¢))T = (0,0,0)7 is the only fixed point of system (13.43), thus we
can conclude by Theorem 13.8 that system (13.43) globally converge to Zg =
(0,0,0)7. Equivalently, system (13.42) globally converge to Xy = (0,0,0).

For Boolean control networks, it is clear that if we can
u(t) (or feedback control u(tr) = Gx(t)) and a proper co

find a control sequence
ordinate transformation

z(t) = Tx(t) such that the incidence matrix of network graph of the system un-
der frame z(z) satisfies (13.40), then the system can be stabilized (or stabilized by
feedback control). However, so far we have no good method to find out such u(r).
Thus in general case, when such control sequence can not be observed directly,

Theorem 13.7 may be more usefull.

Next, we give an example for stabilization of Boolean control network.

Example 13.10. Consider the following system
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xl(t+ 1) = (u1 (l‘) <—>x2(t)) /\X3(l‘)
ot 1) = x3(1) (13.44)

x3(t+ 1) = (ua(0)(V)x1 (1)) = x2(1).

If we choose u; (1) = —x»(¢) and up(t) = x1 (), then under this feedback control,
the system becomes

xi(t+1)=0
X2(l+l) :76)(30)
)C3(t+1) =1,

whose incidence matrix of network graph is

000
J(F)= 1001
000

We conclude that the system is globally stabilized to X = (0,0,1)7 ~ §/ by the
given feedback control.

If we can not observe such feedback control, we can also use Theorem 13.7
to verify whether the system is globally stabilizable by open loop control or by
feedback control. Here we take the case of open loop control as an example. Setting
x(t) = x1(t)x2(¢)x3(¢) and u(t) = w1 (¢)uy(r), we have

x(t 4+ 1) = Lu(f)x(z),

where
L=08[3575358635863575

1535754675467535].

Then, : ;
00000000

00000000
10101010
00100010
01010101
00010001
10101010

00100010]

and
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[00000000]
00000000
IBRRRBEE
10101010
00110011
00100010
IRERRREE

10101010]

Hence, we can conclude that the system can be stabilized to &3 or & .

13.5.2 Optimal Control

The infinite horizon optimal control problem is considered. For Boolean control
network (13.34), our purpose is to find a control sequence u(¢) to maximize the
objective function,

T
TE%ZPmmmm. (13.45)

el T

J(u) =

N—_

The next result make the optimal control problem be converted to finding the
cycles of Boolean control network, then we can use the technic developed in Section
1.

Theorem 13.9. For the Boolean control network (13.34) with the objective func-
tion (13.45), there exists an optimal control u*(t) such that the objective function
is maximized and the trajectory of s*(t) = u*(t)x*(¢t) will become periodic after a
finite time. And there exists a logical matrix G*, such that u* can be expressed as

w (t+1) = Gu" (t)x*(z). (13.46)
For a length-/ cycle, denote

P(C) = % ;P(x(t),u(t)).

We have

Proposition 13.4. Any cycle C contains a simple cycle Cs such that
P(Cs) > P(C) (13.47)

According to this proposition, we can find an optimal cycle C* only from all the
simple cycles which can be reached from the initial state. We give an example to
describe how to find an optimal control.
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Example 13.11. We consider infinitely repeated prisoners’ dilemma. Assume player
1 is a machine and player 2 is a person. Their actions can be

0 : the player cooperates with the partner,
1 : the player defects the partner.

The payoff bi-matrix is assumed to be

Table 13.1 Payoff bi-matrix

P\P| O |1
0 13,305
1 |50(1,1

Assume player 1 (the machine) fixes its strategy as “One Tit For One Tat”, which
means player 1 will defect only if player 2 defects in last step. Denote by x(¢) the
action of player 1 at ¢-th step, and u(z) the action of player 2. The game can be
described as the following Boolean control network.

x(t+ 1) = Lu(t)x(t), (13.48)

where
L=[1122].

Player 2 (the person) choose his-actions u(t), to maximize his own payoff

where
pifal).u0) =10 |3 ] 0

Since the length of simple cycle can not be bigger than 2, we can only find all
the fixed points and length-2 cycles. By Theorem 13.2 and checking _# (5), we can
obtained the simple cycles that can be reached from the initial state x(0) = &, are

C1:62X52((]a1))’ C2:62X62((272))’ C3:62><82((1a2)7(2a1))'

It is easy to see that P(Cy) is the largest. Let u(0) = 35, the trajectory can enter
C directly from initial state.
Finally, we can see that player 2 can take such strategy

W+ 1) = Gt (1)x (1),

where
G* = &[1 % x|, x*is arbitrary in 2.
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For example, we can take G* = &,[1 1 1 1] which means player 2 always cooperates;
or G* = &1 2 12], which is also “One Tit for One Tat” strategy.

13.5.3 Identification

At the end of this chapter, we consider how to identify a Boolean control net-
work from observed data. First, we give the rigorous definition of identification for
Boolean control networks.

Definition 13.10. Assume we have a Boolean control network with its dynamic
structure as (13.1)-(13.2). The identification problem is finding the functions f;,
i=1,---,n, hj, j=1,---, p (equivalently, (L,H) of the algebraic form), via certain
input-output data {U(0),U(1),--- }, {¥Y(0),Y(1),--- }. The identification problem is
said to be solvable if f; and &; can be uniquely determined by using designed inputs

{U(0).U(1),--}.

Here we use the following notations:

Note that if z = T'x is a coordinate transformation, the system under the new
frame becomes

2+ 1) = Lu(z(r) (13.49)
¥(@) = (1),
then (L,H) and (L,H) can not be distinguishable by any input-output data. So pre-
cisely speaking, we should say the pair (L,H) is identifiable up to a coordinate
transformation.

Firstly, assume the state can be observed, or say H = >, then we have

Theorem 13.10. System (13.1) is identifiable by input-state data, iff the system is
controllable.

Assume we have enough proper input data {U(0),U(1),---,U(T)} and the cor-
responding state data {X (0),X(1),---,X(7)} such that (in set sense)

{Uo x Xo,U; XX],---,UT_1><XT_1}:@n+m. (13.50)

Then L can be identified in the following way: In the vector form, if u(i)x(i) = 8y,
then Col (L) = x(i+1).

Then the key issue is how to design the input sequence. A reasonable method is
to choose inputs randomly, but this method can not ensure (13.50) be satisfied. For
this, we have the following method.
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Theorem 13.11. If system (13.1) is identifiable, the logical functions f; can be de-
termined uniquely by the inputs designed as following:

S, s st x(s) = x(1),u(s) = 8,
u(t) = Vi s <t <t,x(t") #x(1) (13.51)
8lu, otherwise,
when x(t) enters a cycle, stop the process.
We give an example to illustrate this.

Example 13.12. Consider the following Boolean control network

xi(t+1) =—x (1) Vao(r)
{XW +1) = u(t) A—xy (£) V (—u(t) Axi (1) A=xa(t) (13.52)

Setting x(t) = x?_,x;(t), u = x?_ u;(t), we have

x(t+1) = Lu(t)x(t) (13.53)

where
L=§24112322],

Checking the controllability matrix, we have

1

1
1
1 > 0.
1

HMN

s#10%

P
1
1
1

1
, (Blki( /“))—{ |
1

—_

We conclude that the system is identifiable.

We can choose a sequence of controls and the initial state randomly, then the
sequence of states can be determined. First, we choose 20 controls, the input-state
data are shown in Table 13.2.

Table 13.2 Input-state data
t |0[1]2]3|4 6|78
u(d)[ 11| 1[1]1 (1)1
x(®)[1]2 21411
t |10(11]1 16|17|18|19
B 21 12
Ol4]2 204273

|
N —|\O

IN
S}

o
—
w
—
~
—
n

[\
—_

NS
DO —
A —
—|

Where the number i in u(t) (x(t)) means &} (8}). We can get L as

L=56[24%123x%2].
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Some columns of L are not identified, because not all the input-state 62],,,“, are
reached by the sequence of control chosen randomly.
Then we use (13.51) to obtain the input-state data as Table 13.3.

Table 13.3 input-state data
t [0[1]2(3]4(5|6|7(8]|9[10|11
u(t)|L{1]|1212|t{1]1[2]2] 2 |1
x(r)|1|2]4]1(2]3]|1]2]4(2| 3|2

Hence, L can be identified as
L=§24112322).

When we consider input-output data, the case becomes much more complicated.
At present, there is no tricky method to identify the system. One can refer to [5] for
an effective algorithm which searches the identification solution one by one in an
particular order, but its computation complexity is huge. However, we have a suffi-
cient and necessary condition for identifiability, which is theoretically important.

Theorem 13.12. The Boolean control network (13.1)-(13.2) is identifiable, iff it is
controllable and observable.

Exercise 10

1. Consider the following system

x1(t+1) = x2(1) <> x3(7)
x{+1) =x3() Vu (1)
x3(t+1) = x1(t) Aua(t)
(1) =x1(7)

y2(t) = x2(t) Vxa (1)

Answer the following questions.

a. Is the system identifiable?

b. Can the system be stabilized? If so, find a control sequence or a feedback
control which stabilizes the system?

c. How many length-3 cycles does this system have?

2. Theorem 13.1 and 13.2 tell us the number of cycles of Boolean control network
(13.1). In fact, by checking _# (%), we can also find what the cycles are. Try to
find all the length-3 cycles in Exercise 1.
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3. The Boolean control network (13.1) can also be expressed in algebraic form as
x(t+1) = Lx(t)u(r),

where L = LWgn pm). Similar to the construction of input-state incidence matrix,
we can construct the state-input incidence matrix of (13.1) as

j = 12711 X I:,
where X is the right semi-tensor product of matrices. Prove,

(a) There exists _#§ such that

js = lzm X jos,sz 1.
(b) 7§ = F§, where Z§ is defined in (13.20).

4. Prove Theorem 13.6

. Prove Theorem 13.3

6. If x;(1),uj(t),ya(t) € Zx in (13.1) and (13.2), we call the system logical control
network. In fact, all the properties of Boolean control networks can be general-
ized to logical control networks.
Consider the following infinitely repeated game. Both of player 1 and player 2
have three actions, {L, M, R}. The payoff bi-matrix is assumed to be the Ta-
ble 13.4.

D

Table 13.4 Payoff bi-matrix
P\P| L M| R
L |3,3]0,4/9,2
M [4,0(4,4(5,3
R (2,9(3,5/6,6

Assume player 2’s strategy is fixed to play R in the first stage, in the ¢-th stage, if
the outcome in the (# — 1)-th stage is (R, R) then plays R, otherwise, plays M.

a. Represent the game into logical control network.
b. Find a best strategy of player 1 which maximizes his infinite horizon average
payoff.
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