Chapter 12
Boolean Network

Boolean network was firstly introduced by Kauffman to formulate the cell networks.
Then, it has been developed by [1, 2, 16, 11, 3, 15,8, 13] and many others, becomes
a powerful tool in describing, analyzing, and simulating the cell networks, and also
be used as models of some complex systems such as neural networks, social and
economic networks.

In this chapter, using the logical expression of logic, discussed in Chapter 5,
the dynamics of a Boolean network is converted into an equivalent algebraic form
as a standard discrete-time linear system. And then the topological structure (fixed
points, cycles, transient period, etc.), subspace, input-state description of Boolean
networks and higher-order Boolean network are investigated.

12.1 An Introduction

In Boolean networks, gene state is quantized to only two levels: True and False.
Then the state of each gene is determined by the states of its neighborhood genes,
using logical rules. Precisely speaking, a Boolean network is a directed network
graph, ¥ = {4, &}, consists of a set of nodes, A4 = {x;|i=1,--- ,n} and a set of
edges, denoted by & C {x1,--- ,x,} x {x1,---,x,}. If (x;,xj) € &, there is an edge
from x; to x;, which means node x; is affected by node x;.

The dynamics of Boolean networks can be expressed as logical dynamic equa-
tions. Following is the rigorous definition of dynamics of Boolean networks.

Definition 12.1. [9] A Boolean network is a set of nodes x,xp,- -+ ,x,, which in-
teract with each other in a synchronous manner. At each given timer =0,1,2,--- a
node has only one of two different values: 1 or 0. Thus the network can be described
by a set of equations:
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(12.1)
xn<t+ 1) = fn(xl (t)7x2(l)v e 7xn(t))7
where f;,i=1,2,--- ,n are n-ary logical functions.
We give a simple example to show these.

Example 12.1. Consider a Boolean network, X = (.4, &) of three nodes as
A(t+1)=B(t) NC(r)
B(t+1)=-A(r) (12.2)
Ct+1)=B(r)VC(r).

Its set of nodes is A = {x; := A, x; := B, x3 := C}, set of edges is & =
{(x1,%2), (x2,x1), (x2,%3), (x3,x1), (x3,x3) }. Its network graph is depicted in Fig
12.1.

Fig. 12.1 Network Graph of (12.1)

Our first purpose is to convert Boolean network dynamics (12.1) into an algebraic
form. Precisely, express it as a conventional discrete-time linear system. Using the
technique developed in Chapter 5, we use vector form x;(¢) € A, and define

x(t) = x1(O)x2(2) -+ - x,(2) 1= X x:(2).
Using Lemma 5.2, there exist structure matrices, M; = My, i = 1,--- ,n, such that
xi(t+1)=Mix(t), i=1,2,--- ,n. (12.3)

Remark 12.1. Note that usually the right hand side of i-th equation of (12.1) may
not have all x;, j = 1,2,---,n. Say, in the previous example, for node A we have

A(t+1)=B(t) NC(2).

In matrix form it is
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A(t+1)=M,B(1)C(z). (12.4)
To get the form of (12.3), using dummy matrix D, , (6.27), we can rewrite (12.4) as
A(t+1) =MpDA(1)B(1)C(t) = MAD 2 x(1).
Multiplying the equations in (12.3) together yields

x(t+1) = Mix(t)Max(t) - - - Mux(2). (12.5)

Using Theorem 6.4, equation (12.5) can be expressed as
x(t+1) = Lx(z), (12.6)

where
n

on n—1
L=T] (v o0) (M)
i=1

is called the transition matrix. Thus, we have the following result.

Theorem 12.1. The dynamics of Booleannetwork (12.1) is uniquely determined by
linear dynamic system (12.6).

Definition 12.2. Equation (12.6) is called the algebraic form of network (12.1).
Equation (12.3) is called the component-wise algebraic form of network (12.1).

In fact, a direct computation by using Corollary 6.3 can produce the algebraic
form easily. We give a simple example to see how to get algebraic form of the
dynamics of Boolean networks.

Example 12.2. Recall the Boolean network in Example 12.1. Its dynamics is de-
scribed as (12.2). In algebraic form, we have

B(1+1) = M_A(1) (12.7)

Using dummy. matrix D, 4, it is easy to convert (12.7) to its component-wise
algebraic form

At+1)=[12221222]A(t)B(t)C(r)
B(t+1)=8[22221111]JA()B@)C() (12.8)
Clt+1)=8&[11121112JA(1)B()C(t).

Then, setting x(r) = A(¢)B(¢)C(t), and by Corollary 6.3 we can get the algebraic

form of (12.7):
x(t+1) = Lx(¢),

where L=03[37781556].
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Remark 12.2. Equation (12.6) is a standard linear system with L being a square
Boolean matrix. So all classical methods and conclusions for linear systems can
be used for analyzing the dynamics of the Boolean network.

12.2 Fixed Points and Cycles

In this section, we consider the structure of a Boolean network, which is described
in terms of its cycles and the transient states that lead to them. Two different meth-
ods, iteration and scalar form, were developed in [12] to determine cyclic structure
and the transient states that lead to them. In [9], a linear reduced scalar equation
is derived from a more rudimentary nonlinear scalar equation to get immediate in-
formation about both cycle and transient structure of the network. Several useful
Boolean networks have been analyzed and their cycles have been revealed (see, e.g.,
[12, 9] and references therein). It was pointed out in [17] that finding fixed points
and cycles of a Boolean network is an NP-complete problem.

Definition 12.3. 1. Given the system (12.6), the pair (4,,&) where
& ={(xi, x;)|xj = Lxi}

forms a directed graph, which is called the state transfer graph (STG).

2. (x0,x1,Xx2,---) is called apath of system (12.6), if x; = Lx;_1,i > 1

3. A cyclic path is called a cycle of system (12.6) with length k, if the smallest
period is k, a fixed point is a cycle of length 1.

Remark 12.3. For'Boolean network, we can see that the elements in a cycle (xo,
Lxg, -+ ,L*'xo) are pairwise distinct. But this is not true for higher order Boolean
network or Boolean control network, which will be considered latter.

The next two theorems are main results of this chapter, which show how many
fixed points and cycles of different lengths a Boolean network has.

Theorem 12.2. Consider Boolean network (12.1). 55,1 is its fixed point, iff in its
algebraic form (12.6) the diagonal element (;; of the network transition matrix L
equals 1. It follows that the number of fixed points of network (12.1), denoted by N,,
equals the number of i, for which {;; = 1. Equivalently,

N, = tr(L). (12.9)

Proof. Assume 83, is its fixed point. Note that L83, = Col;(L). It is clear that &}, is
its fixed point, iff Col;(L) = 85, which completes the proof. O

For statement ease, if £;; = 1, the Col;(L) is called a diagonal nonzero column of
L.

Next, we consider the cycles of the Boolean network system (12.1). We need
a notation: Let k € Z. A positive integer s € Z is called a proper factor of k if
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s <kandk/s € Zy. The set of proper factors of k is denoted by & (k). For instance,
2(8)={1,2,4}, 7(12) = {1,2,3,4,6}, etc.

Using a similar argument as for Theorem 12.2, we can have the following theo-
rem.

Theorem 12.3. The number of length s cycles, denoted by N, is inductively deter-
mined by

N :Nw
u(L¥)— Y kN (12.10)
ke (s) 2§S§2n

s )

N =

The proof is left for exercise.
Next, we consider how to find the cycles. If

(L) — ) kNg >0, (12.11)
ke P(s)

then we call “s” a non-trivial power.
Assume s is a non-trivial power. Denote by ¢5; the (i,i)-th entry of matrix L°.
Then we define
CS:{i‘Zfizl}» s=1,2,---,2%

and
Dy=Cs () €.
i€ P(s)
where Cf is the compliment of C;.
From the above argument the following result is obvious.

Proposition 12.1. Let xo = 8%, Then (xo,Lxo, -+ ,L*x0) is a cycle with length s, iff
i € D,

Theorem 12.3 and Proposition 12.1 provide a simple algorithm for constructing
cycles. We give an example to show the algorithm.

Example 12.3. Recall Example 12.1. It is easy to check that
tr(L') =0, <3,

and
tr(L’) =4, t>4.

Using Theorem 12.3, we conclude that there is only one cycle of length 4. Moreover,
note that
LY =&[13315773)].

Then each diagonal nonzero column can generate the cycle. For instance, choosing
Z = 581, then we have
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LZ=8, I’Z=§, L’Z=§&, L‘Z=2.

Converting the vector forms back to the scalar form of A(z), B(t), and C(r), we have

the cycle as ((1,1,1),(1,0,1),(0,0,1),(0,1,1),(1,1,1)).

We refer to [5, 7] for the transient period and basins of attractors of Boolean

network.

12.3 Invariant Subspace and Input-state Description

12.3.1 State Space and Subspaces

This section present a systematic description of state space and. subspaces of
Boolean (control) network. This state-space description makes a state-space ap-
proach, similar to that of the modern control theory, applicable to the analysis of
Boolean networks and the synthesis of Boolean control systems. This section is
based on [6]. Unlike the quantity-based dynamic (control) systems, the logic-based
dynamic (control) systems do not have a natural vector space structure. To use the
state-space approach, we have to define state space and its various subspaces.

Consider a Boolean network

xi(t+ 1) = £ 00(t), ()

Xu(t+ 1) = fu(x1(@),: - ,xa(1)), xi € 2,
or a Boolean control network

xi(t+1) = filxi(t), - xa(t),u1(2),- - um(t))

(t+l):fn( (t),---,xn(t),ul(t),---,um(t)),
yi(0) =hj(xi (), xa(1)),  Xisuiry; € 9.

We give the following definitions

(12.12)

(12.13)

Definition 12.4. Consider Boolean network (12.12) or Boolean control network

(12.13).

1. The state space 2 is defined as the set of all logical functions of xi,---

denoted by
X = f{{xh-" .,xn}.

{x1,-++,x,} is call the basis of 2 .

7xna

(12.14)
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2. Letzy, -,z € 2. The subspace 2 generated by zj,- - -,z is the set of logical
functions of z1,- -+, zx, denoted by

Z =Fdz, ) (12.15)

{z1,-++ ,zx} is called the basis of the subspace {Z}.

3. LetZ={z1,--+,z4} C Z . For notational ease, we also consider Z = (z1,--- ,z,)7
as a column vector. The mapping G : 2" — 2" defined by X = (x1,- -+ %)%
Z = (z1,-+- ,zn)7 is called a coordinate transformation, if G is one-to-one and
onto.

4. A subspace & = .7 {z1, -,z } C Z is called a regular subspace of dimension
k if there are {zxy1, - ,2n}, such that Z = (zj,---,z,) is.a coordinate frame.
Moreover, {z1,--- ,z} is called a regular basis of 2.

5. Consider system (12.12). If it can be expressed (under a suitable coordinate
frame) as

12.16
2+1)=F*z(t)), 2e€2". (12.16)

{Zl(t—i— 1) =F'(2 (1), ' € 2°
Then & = F{z'} = #{z}, -+ 2!} is called an invariant subspace of (12.12).
Remark 12.4. 1. Let £ € 2. Then & is a logical function of x1,--- ,x,. Say,
§=glx1, = yxn).
Then it can be uniquely expressed into an algebraic form as
& =M, xi_x;,
where Mg € £5xon. Now M, can be expressed as
&oliv iy -+ i,

where i can be either 1 or 2. It follows that there are 22" different functions. That
is,

|2 =2
2. Using set of functions to define a (sub) space is reasonable. For instance, in lin-
ear space R" with the coordinate frame {xi,---,x,}, we consider all the linear
functions over x;,, - -+ ,X;,, it is

k
L, = { chx,-j Cl,y -+ 7ck€R}
j=1

which is obviously a k-dimensional subspace. In fact, we can identify L; with
its domain, which is a k-dimensional subspace in state space R”, called the dual
space of L.
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The logical space (subspace) defined here is also in dual sense. Precisely, we
consider its domain as a subspace of the state space.

3. In vector space, the basis of a subspace can always be expanded to the basis of
the full space by adding some vectors in the basis. But this is no longer true in
logical space (the example of this is left for exercise).

The following result about coordinate transformation is obvious.

Theorem 12.4. G is a coordinate transformation, iff its structure matrix Tg is non-
singular.

Remark 12.5. If a matrix T € %« and it is nonsingular, then it is an orthogonal
matrix. Hence, if z = Tgx is a coordinate transformation then x'= TGT Z.

Next, we consider the logical coordinate transformation of the dynamics of a
Boolean network.
Consider a Boolean network in algebraic form as

x(t+1)=Lx(t),  x € Apn. (12.17)
Let z=Tx: Ayn — Apn be a logical coordinate transformation. Then
2(t+1) =Tx(t+ 1) = TLx(t) = TLT7'2(r).
That is, under z coordinate frame Boolean network dynamics (12.17) becomes
Z(t+1) = Lz(t), (12.18)
where
L=T1LT". (12.19)

Consider a Boolean control system in algebraic form as

(12.20)

x(t—|— 1) :LM(I)X(Z), X € Ay, u € Apm
y(t) = Hx(t), y € Ay

Let z = Tx : Apn — Aon be a logical coordinate transformation. A straightforward
computation shows that (12.20) can be expressed as

20+ 1) = Lu(t)2(0), 2 € Aor, € Agn (1221)
YO =Br).  yeay, |
where

L=TL(Im®TT)

it (12.22)

Next, we give criterions of regular subspace and invariant subspace.
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Given a set of functions z; as

Zi:gi(xla"'axn)a izla"’akv (1223)
and let Z = .% {21, -,z }. We would like to know when % is a regular subspace
with {z1,---,z} as its regular sub-basis. Set z = l><f:1zi and x = x!'_,x;. We can get

its algebraic form as

by bip - Lypon
cm L= | X, (12.24)

Cok g Lok o Lok g

where
k ok n—1
L=T] (1 & M) (M, ) : (12.25)
i=1
Theorem 12.5. Assume there is a set of dogical variables z1,-- -,z (k < n) satis-
fing (12.24). 2 = F{z1,--- ,z} is a regular subspace with regular sub-basis
{z1,-+ 21}, iff the corresponding coefficient matrix L satisfies
2”
Zgj,izzn_ka j:l’z,--~72k’ (1226)
i=1

where {;; are defined in (12.24).

Proof. (Sufficiency) Note that condition (12.26) means there are 2n=k different x
which makes z = 62/k, j=1,2,---,2% Now we can choose Zk+1 as follows. Set

Si={x|Lx=5J}, j=12, 2"

Then the cardinal number ’S,i‘ = 2"k For half of the elements of Si, define 3 =

0, and for the other half, set zz ;1 = 1. Then it is easy to see that for Z = |><§‘:+11 z; the
corresponding L satisfies (12.26) with k being replaced by k + 1.
Continue this process till k = n. Then (12.26) becomes

Zéj,izlﬂ j:1723'”72n* (1227)

(12.27) means the corresponding L contains all the columns of I, i.e., it is obtained
from lr» via a column permutation. It is, hence, a coordinate change.

(Necessity) Note that using the swap matrix, it is easy to see that the order of
z; does not affect the property of (12.26). First, we claim that if {z;|i =1,--- ,k}
satisfies (12.26), then any of its subset {z; } C {z;i|i=1,---,k} also satisfies (12.26)
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with k be replaced by |{z;}|. Since the order does not affect this property, it is
enough to show that a k — 1 subset {z;|i = 2,---,k} is a proper sub-basis, because
from k— 1 we can go to k— 2 and so on. Assume that 2= xfzzzi = Qx, and z; = Px.
Using Corollary 6.3, we have

Col;(L) = Col;(P)Col;(Q), i=1,---,2". (12.28)

Next, we split L into two equal-size blocks as

_|b
L= M .
Note that either Col;(P) = & or Col;(P) = 87. Using this fact to (12.28), one sees

easily that either Col;(L) = [COIE)(Q)} (as Col;(P) = §;) or Col;(L) = [Col(-)( Q)}

(as Col;(P) = 83). Hence, Col;(Q) = Col;(L;) + Col;(La). It follows that
O=Li+Ls (12.29)

Since L satisfies (12.26), (12.29) ensures that Q satisfies (12.26) too.

Now since {z;|i =1,---,k} is a proper sub-basis, so there exists {z;|i = k+
1,--,n} such that {z;|i = 1,--- ,n} is a coordinate transformation of x, it satisfies
(12.26). (Precisely, it satisfies (12.27) with row sum equal to 1.) According to the
claim, the subset {z;|i = 1,-+-,k} also satisfies (12.27). |

It is easy to see that (12.26) is equivalent to |{i| Col;(L) = £}| = 2"* for any
5 S Azk.

Example 12.4. Consider the state space 2 = .#,{x1,x2,x3}. And there is a sub-
space 2 = .F {21,220} C Z . Assume

A =xX90 (12.30)
22 = x2Vx3.

Then its algebraic form can be expressed as

Dz =Mx=58[21344312)x (12.31)

We can'see that |{i| Col;(M) = 54{}’ =2 for j=1,2,3,4, thus & is a regular sub-
space.

Then we want to find z3 such that {z;,z2,z3} form a coordinate frame, that is, to
make the columns algebraic form T of the coordinate transformation . By Corollary
6.3, we need to construct M., = &[c; ¢3 ¢3 ¢4 ¢5 ¢ ¢7 cg] such that

CO],'(M)C[ 75 COlj(M)Cj, 17'é ]

For this, we only need
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c1 # €g; €2 # €75 €3 7 C6; C4 7 C5.

Theorem 12.6. Consider system (12.12) with its algebraic form (12.17). Assume
that a regular subspace 2 = .F ({z1,--- ,zs} with z = x{_,z; has the following al-
gebraic form

2= 0Ox, (12.32)
where Q € Lasxon. Then & = F {z1,--- ,zs} is an invariant subspace of system
(12.12), iff

Row(QL) C SpangzRow(Q), (12.33)

where Span g means the coefficients are in 9; and L is as in (12.17), i.e., it is the
transition matrix of the algebraic form of system (12.12).

We refer to [7] for the proof of this theorem. Note that checking (12.33) is not
a straightforward computation. Since {2} is aregular subspace, Q is of full row
rank. Hence, we have

Corollary 12.1. % is an invariant subspace, iff
OL=0LQ" (00")"'0. (12.34)

Example 12.5. Consider the following Boolean network

xp(t+1) = (x1 (1) Axo (1) A=axa(2)) V (=1 (£) Axa (1))
x2(t+1) = x2(t) V(x3(r) < x4(2))
x3(t+1) = (1) Ao (2)) V (=x1(2) Axa (1)) V (mx1 () A —xa (1) Axa(t))
x4 (1 1) =x1 (1) A~ (1) Axa(1).
(12.35)
Let 2 = % ¢{z1,22,23}, where
Z]ZX1\7X4
=1 (12.36)

3 = X3 <> X4.
Setx = x% ,x;, z= x}_,z. Then we have
7=0x,

where
0=03%[837461524738251¢6],

and the algebraic form of (12.35) is

x(t+1) = Lx(z),



238 12 Boolean Network

where
L=3%[111111111315912129151311].

It is easy to calculate that
OL=38[3838321483834123]=0L0"(Q0")'0.

Hence 2 is an invariant subspace of (12.35).
In fact we can choose z4 = x4 such that

21 :x1\7X4

D = X

2T (12.37)
73 = X3 £ Ty

24 = X4

is a coordinate transformation. Moreover, under coordinate frame z, system (12.35)
can be expressed into the cascading form (12.16) as

4| (l+ 1) :Zl(l) — Zz(t)

2(t+1) =22(t) Aza(t)

S+ 1) ==zt (12.38)
z4(t+1) = z1(t) Vzo(t) Vza(t)

12.3.2 Input-State Description

Consider Boolean control network (12.13). In this chapter we assume the controls
are logical variables satisfying certain logical rule, called the input network, de-
scribed as

(12.39)

U (t 4+ 1) = gm(ur (£),u2(2), -+ ,up(2)).
Setting u(r) = x ,u;(t), its algebraic form is
u(t+1)=Gu(t), GEe€ Lomyom.

Then, we consider the cycles of system (12.13) with (12.39) (the case of free inputs
will be considered in next chapter). The state space is 2~ = .%#y{x1, -+ ,x, }, input
space is Z = Fo{uy,- -+ ,un}, input-state space is # = Fp{uy, -+ ;um, X1, ,Xn }-
It has been known that % is the invariant subspace of {# '}, we want to investigate
the relationship between the cycles in %/ and the cycles in #'.
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Assume there is a cycle of length k in the input-state space # . Say, it is

ij/: w(0) = wo = upxo = w(l) =w; =ujx; — ---
— w(k) = wy = wex = wo.

First of all, one sees easily that since uy = u, in the input space %, the sequence
{ug,u1,--- ,u;} contains, say, j folds of a cycle of length ¢, where j¢ = k. Hence
ug = up. Now let us see what condition the {x;} in the cycle Cf;/ should satisfy.
Define a network transition matrix as

Y= L(ug,l )L(ug,2> cee L(Lt])L(M()). (] 240)
Starting from wg = ugxg, we have x component of the cycle Cf;// as

xo — x1 = L(ug)xo — xp = L(u1)L(ug)xo — -+ — xp0.=¥xp —
Xi41 = L(u())lPX() — X2 = L(ul)L(uo)‘Pxo — s =Xy = 'PZ)C() —

: (12.41)
X(j=1)041 :'L(uo)'f’j_lxo — x(j_1yer2 =L(ur)L(ug) P ko = -+
—>ng = 'PJ)C() = XQ.
We conclude that xy € As» is a fixed point of the equation
x(t41) = Wx(r). (12.42)

For convenience, we assume j > 0 is the smallest positive integer, which makes xp
a fixed point of (12.42).
Conversely, assume xg € Ap» is a fixed point of (12.42) and ug is a point on a
cycle of control space Cf%/. Then it is obvious that we have the cycle (12.41).
Summarizing above arguments yields

Theorem 12.7. Consider Boolean control network (12.13) with (12.39). A set Cf;/ -
Asknim) IS a cycle in the input-state space W with length k, iff for any point wy =
Ugxg € ij/, there exists an { < k as a factor of k, such that ug,u; = Gug,up =
G?ug,- -+ ,up = Glug = ug is a cycle in the control space, and xq is a fixed point of
equation (12.42) with j = k/¢.

Theorem 12.7 shows how to find all the cycles in the input-state space. First, we
can find cycles in the input space. Pick a cycle in the input space, say szz, then for
each point up € Cf7/ we can construct an auxiliary system

x(t+1) =Px(t). (12.43)

Say, Cél = (uo,uy, -+ ,ug = up) is a cycle in %, and Cé» = (x0,X1, -+ ,Xj = Xo) is
a cycle of (12.43). Then there is a cycle CX,, k = ¢, in the input-state STP space,
which can be constructed by
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wo = Upgxg — w1 = ulL(uo)xo — Wy = uzL(ul)L(uo)xo — e —
Wy = UgX1 — Wyl = ulL(uo)xl — Wy = ugL(ul)L(uo)xl — s =

W(j—1)e = U0X(j—1) = Wiyt = i1 L(uo)xj-1) =
Wii—1ye2 = MZL(MI)L(MO)X(j—l) —> =
Wi = UpXj = ugxo = wo.
(12.44)

We call this C%, the composed cycle of C4, and C’j., denoted by Cl, = €5, oC/,.
Note that from a cycle C%/ we can choose any point as the starting point ug.
Then in equation (12.43) we have different ¥, which produces different CJ%. Itis

reasonable to guess that the composed cycle C’;,/ = C% o Cég is independent of the
choice of ug. In fact, this is true.

Definition 12.5. Let C¥, = {w(t)|t =0, 1,--- ,k} be a cycle in the input-state space,
and CY, be a cycle in the input space. Splitting w(r) = u(#)x(z), we said that C%, is
attached to Cé/ at up, if w(0) = ugxp, and

Lu(t)eCl,, with u(0)=ug;

2. x(0) = xo is a fixed point of (12.42) with j=4 € Z,.

Proposition 12.2. The sets of cycles in the input-state space, attached to any point
of a given cycle CJ% are the same.

We refer to [7] or [4] for the proof of Proposition 12.2. Next, we give an illustra-
tion.

Example 12.6. Consider system

xi(t+1)=u(t) = x(1)
x(t+1) =x1() Vas(t)
X3(t—|— 1) = ﬁ)Cl(l‘),
the control network is
u(t+1) = —u(r).

We have an obvious kernel cycle: 0 — 1 — 0 in %. Then we can easily calculate

that
L(0) = 8[22221313],
L(1) = &[22661357].

Hence we consider an auxiliary system
x(t+1) =Px(t),

where
Y =L(1)L(0)=63[22222626].
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A routine calculation shows: (1) non-trivial power of ¥ is 1 and tr(¥') = 2. So
there are two fixed points, which are 8§ ~ (1,1,0) and 8% ~ (0,1,0). The overall
composed cycles are depicted in Fig. 12.2, where the dash lines show the duplicated
cycles. Overall, we have a cycle in the input space and two product cycles of length
2 in the input-state space.

_--~n
-7 0x1101

Fig. 12.2 Cycles of a control system

12.4 Higher-order Boolean Networks
In this section we consider higher order Boolean networks. This section is based on
[14].

Definition 12.6. A Boolean network is called a u-th order network if the current
states depend on u length histories. Precisely, its dynamics can be described as

X+ =A@ —m+ 1), x =t 1), 20 (0), - x (1)),
R+ =L —m+ 1), x =t 1), 20 (1), - x (1)),

xn(t+]) :fn(xl(t_.u"" ])7"' 7xn(t_.u+])"" 7x1(t)7"' axn(t)>7 t>p—1,
(12.45)

where f; : P*" — 9, i=1,--- ,n are logical functions.

Note that same as for higher order discrete-time difference equations, to deter-
mine the solution (it is also called a trajectory) we need a set of initial conditions
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as
Xi(j):aijv i:lv"'vn;j:()a""u_l‘ (1246)

We give an example to illustrate this kind of systems. It is a biochemical network
of coupled oscillations in the cell cycle [10].

Example 12.7. Consider the following Boolean network

A(t+3)=—(A(t) AB(t+ 1)) (12.47)
B(t+3)=—=(A(t+1)AB(1)).
It can be easily converted into the canonical form (12.45) as
Alt+1)=-(A(r=2)AB(t—1))
{B(t—i—l)——\(At—l)/\Bt—Z))a 1>2 (1243)

This is a 3rd order Boolean network.

Now the first natural question is: Can we use the technique developed in the
previous sections of this chapter to investigate the structure of higher order Boolean
networks? The answer is “Yes”. In the following we will discuss two algebraic forms
of (12.45).

12.4.1 First Algebraic Form of Higher Order Boolean Networks

Using a vector form, we define

{x(t) — &1 x(1) € A

21) = (i) € Agun, 1=0,1,---.

Assume the structure matrix of f; is M; € %5 ,oun. Then we can express (12.45) into
its component-wise algebraic form as

xt+ 1) =Mizt—pu+1), i=1,-- - mr=p—1l,uu+1,--. (12.49)
Multiplying the equations in (12.49) together yields
x(t+1)=Loz(t —u+1), 1>p, (12.50)
where

Lo=My X", [(IW ®M,-)M,2””] . (12.51)
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Note that the L here can be calculated in a standard procedure as we used before.
Using some properties of the semi-tensor product of matrix, we have

(t+1) = xi 1K x(0)
= Dy < (i) (Lo T k(i)
= Dy(Ln ® Lo)M?" x4 x(i)
= Lz(1).

(12.52)

(12.52) is called the first algebraic form of network (12.45).

In fact, we can prove that the two Boolean networks have the same topological
structure, including fixed points, cycles, and transient time, for all points to enter the
set of cycles. So the first order Boolean network (12.52) provides all such results for
higher order Boolean network (12.50).

i—1

Definition 12.7. 1. (xo,x1,x2,---) is called a path of system (12.45), if x;=Lox'—;_,

Xj, i = [
2. A cyclic path is called a cycle of system (12.45) with length &, if the smallest
period is k, a fixed point is a cycle of length 1.

Theorem 12.8. There is a one-to-one correspondence between the cycles of (12.50)
and the cycles of (12.52).

We refer to [7] or [14] for the proof.

Example 12.8. Recall Example 12.7. Setx(r) = A(z)B(z). Using vector form, (12.48)
can be expressed as

x(t+1) = Lox(t — 2)x(t — 1)x(z), (12.53)

where
Lo=04[444422223333

1111
3333111133331111
2222222211111111
rrrtr1r11111r111111

Set z(¢) = x(¢)x(t + 1)x(¢ +2). Then

.

2(t+1) =Lz (o), (12.54)

where
L= 626[4 81216 18 22 26 30 35 39 43 47 49 53 57 61

37111517 212529 35394347 49 53 57 61
261014 182226 30 33 37 41 45 49 53 57 61
159 1317212529 3337414549 5357 61].

To find the cycles of (12.53), it is enough to find all the cycles in system (12.54).
We can check tr(Lk),k =1,2,---,64. They can be easily calculated as

w(L?) =2, w(l’)=5 w(L'")=17.
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Using Theorem 12.3, we conclude that the system does not have fixed point, but it
has one cycle of length 2, one cycle of length 5 and one cycle of length 10, which
are

26 _, §29
8614 N 64614’ 16 _, 561 _, §49

SRS T s s g g
Oa = Ogu = Ogu — 86y — 8y — 8y = 8oy — 8y — Oy — O4 -

Decompose z(t) into x(¢) ---x(t + 1 — 1), we have the cycles of (12.53):

85— 82,
5l — 8} =8} =8} — &},
8 =8 =8>8 >8 >8] =8 =8 =8>8

The result coincides with the one in [12].

12.4.2 Second Algebraic Form of Higher Order Boolean Networks

Define

w() = x(UO(T+ 1) x(ur+ (p—=1) =z(ur).  (12.59)
Then we have
w(t+1) =z(ut+pu) = L*z(ut) = L*w(1),

where L is obtained in (12.52). Therefore, we have
w(t+1) =Iw(1), (12.56)

where .
r— [D,,(Izwl ®L0)M,2“"] :

with initial value w(0) = x!= _le(i). We call (12.56) the second algebraic form of
the p-th order Boolean network (12.45).

In fact, by re-scheduling the sampling time, the second algebraic form provides
state variable, w(7), 7=0,1,-- -, as a set of non-overlapped segments of x(z). Hence,
there is an obvious one-to-one correspondence between the trajectories of (12.45)
and the trajectories of (12.56).

Proposition 12.3. There is an obvious one-to-one correspondence between the tra-
Jectories of (12.45) and the trajectories of its second algebraic form (12.56), by

w(t) = K(UOR(HT+ 1) x(WT+ (= 1)), T=0,1,--.

But there is no one-to-one correspondence between the cycles of (12.45) and the
cycles of (12.56). It is easy to give an counterexample, we left this for exercise.
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Exercise 9

—_

Proof Theorem 12.3.

. Give an example of 3 of Remark 12.4.
. Consider the following Boolean control network

x(@t+1) = (u1(r) Vua(r)) Ax(2),

where inputs u; (¢),uy(t) satisfy

Find out the cycles of this system.

. Consider the following 2-order Boolean network

A(t+1)=C(t—1)V(A(r) NB(1))
B(t+1)=—(C(t=1) NA(1))
C(t+1)=B(t—1)AB(1).

Find out its cycles and its second algebraic form’s cycles. Do they have one-to-
one correspondence?

. Consider the following Boolean network

xi(t 1) = [x1 () A (e (0) Vs (1)) V [ () Vxa (1))
Xt +1) = —(xp (1) Vs (1))
w3t +1) = [(x1 (1) Vs (1)) Voo ()] Axs ().

Try to find out its invariant subspace and the corresponding coordinate transfor-
mation.
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