Chapter 11
Lattice and Universal Algebra

Lattice and universal algebra are closely related. We refer to [2] for a general in-
troduction. They are used in logic as well as some other disciplines, such as graph
theory, abstract algebra, set theory, and topology etc. We refer to [1, 3] for their
applications to logic, fuzzy logic, and reasoning.

11.1 Lattice

To begin with, we introduce two equivalent definitions of lattice. They are conve-
nient in certain different situations.

Definition 11.1. A nonempty set L together with two binary operations: joint( V)
and meet (A) on L is called a lattice, if it satisfies the following identities:

1. (Commutative Laws)

xVy=yVux; (11.1)
XAy =YyAYy. (11.2)

2. (Associative Laws)
V(yVz)=(xVy)Vz (11.3)
xAN(yAz)=(xAy) Az (11.4)

3. (Idempotent Laws)
xVXx=x; (11.5)
XAx=x. (11.6)

4. (Absorption Laws)
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x=xV(xAy); (11.7)
x=xA(xVy). (11.8)

Example 11.1. 1. (Boolean Algebra) Consider & with the disjunction (V) as the
joint, and the conjunction (A) as the meet.
2. (Natural Number) Consider the set of natural numbers N. Let the joint and meet
be defined as
V(a,b) = lem(a,b);
N(a,b) = ged(a,b).

We leave the verification of the above lattices to the reader.

To introduce the second definition of a lattice, we need the concept of partial
order.

Definition 11.2. A binary relation < defined on a setA is a partial order on the set
A if the following conditions hold identically in A:

(1) (reflexivity)
a<a,
(1) (antisymmetry)
a<band b <aimply a=b;
(iii) (transitivity)
a<band b <cimplya <c.

If, in addition, for every a,bin A
(ivya<borb<a,

then we say < is a total order on A.

Definition 11.3. ¢ A nonempty set with a partial order on it is called a partially
ordered set, briefly, poset.

e A nonempty set with a total order on it is called a totally ordered set, or linearly
ordered set, or a chain.

e In a partial ordered set, if a < b but a # b, then it is said that a < b.

Example 11.2. 1. Let Su(A) denote the power set of A, and < be C. Then (Su(A), <
) is a partial ordered set. Note that power set of A is the set of all subsets of A.

2. Let N be the set of natural numbers, and let < be the relation “divides”. Then
(N, <) is a partial ordered set. Note that if < has the conventional meaning as
2 < 3, then (N, <) is a totally ordered set.

Definition 11.4. Let A be a subset of a poset P.

1. p € P is an upper bound (a lower bound) of A, if a < p (p < a) for all a € A.

2. p € P is the least upper bound of A, or supremum of A (denoted by p = supA),
if p is an upper bound of A, and for any other upper bound of A, say, b, we have
p<b.
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3. p € P is the greatest lower bound of A, or infimum of A denoted by p = infA, if
p is a lower bound of A, and and for any other lower bound of A, say, b, we have
p=>b.

4. Fora,b € P, we say b covers a, or a is covered by b (denoted by a < b), if a < b,
and whenever a < ¢ < b it follows thata = c or ¢ = b.

5. An interval is defined as: [a,b] = {c € P|a < ¢ < b}.

6. An open interval is defined as: (a,b) = {c € Pla < ¢ < b}.

Definition 11.5. A finite poset P can be described by a directed graph (4, &),
where ./ is the set of nodes and & is the set of edges. The graph is constructed as
following:

i) A =P
(ii) & C P x P, and (a,b) € & (i.e., there is an edge from a to b), iff b < a.

Such a graph is called the Hasse diagram of poset P.

L

A B C(Ms) D(Ns)

Fig. 11.1 Examples of Hasse diagrams

Fig 11.1 describes Hasse diagrams of four posets A, B, M5 and Ns.
Now we are ready to introduce the second definition of a lattice

Definition 11.6. A poset L is a lattice iff for any two elements a, b € L both sup{a,b}
and inf{a,b} exist.

Consider Fig 11.1, we can see A, C, D are lattices, but B is not, because in B the
sup{b,c} does not exist.

Definition 11.1 and Definition 11.6 are equivalent in the following sense: if L is
a lattice by one of the two definitions then we can construct in a simple and uniform
fashion on the same set L a lattice by the other definition. We state it as a theorem.

Theorem 11.1. (i) If L is a lattice by Definition 11.1, define < on L as follows: a < b
iff a = aAb, then L satisfies the conditions in Definition 11.6.
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(ii) If L is a lattice by Definition 11.6, define the operations \V and N by aV b =
sup{a,b}, and aAb =inf{a,b}, then L satisfies the conditions in Definition 11.1.

Proof. (i) We need to show that < is partial order and sup{a,b}, inf{a, b} exist.

o (reflexivity) aAa = a implies a < a.

e (antisymmetry) Assume a < b and b < a. Then we have a =aAb, and b =
a/Ab,thusa=b.

e (transitivity) Assume a < b and b < c. Then we havea =aAbandb="bAc.
By associativity,

a=aAN(bAc)=(anb)Nc=alc.

Hence, a <c.

We conclude that < is partial order.
Next, we prove sup{a,b} and inf{a,b} exist.
Using absorption laws, we have a =a A (aVb):So a < aVb. Similarly, b < aVb.
Hence, a VV b is an upper bound of {a,b}.
For arbitrary upper bound u of {a,b}, since a < uyb < u, we have aVu = (a A
u)Vu =u (by L4(a)), similarly bV u =u. Then aVbVu = aVu = u. Using
absorption laws again, we have (a\V.b) Au=(aVb)A[(@Vb)Vu] =aVb, then
aV b < u. Thus sup{a,b} =aVb.
A similar argument shows that inf{a,b} =a A b.

(i1) A straightforward computation shows that the defined V and A satisfy equations
(11.1)-(11.8).

O

11.2 Isomorphic Lattices and Sublattices

Definition 11.7. Two lattices L and L, are isomorphic if there is a bijective o from
L to L such that for every a,b € L, the following two equations hold:

() a(aVb)=ala)Va(d);
(iDo(aAd) = a(a) Aa(b).

Such an @ is called an isomorphism.

One would naturally like to reformulate the definition of isomorphism in terms
of the corresponding order relations.

Definition 11.8. If P; and P> are two posets and « is a map from P; to P», then we
say o is order-preserving if a(a) < a(b) holds in P, whenever a < b holds in P;.

But a bijection @ which is order-preserving may not be isomorphism, see Fig
11.2 for example.
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L] L2

Fig. 11.2 An order-preserving bijection

Theorem 11.2. Two lattices Ly and Ly are isomorphic iff there is a bijection o from
L; to Ly such that both ot and o~ are order-preserving.

Proof. (Necessity) For a < b in L;, since a is isomorphism, a(a) = a(a Ab) =
a(a) Aa(b). Thus a(a) < a(b), « is order-preserving. As o~! is also an isomor-
phism, it is also order-preserving.

(Sufficiency) Let o be a bijection from L to L, such that both o and o~ ! are
order-preserving. We want to prove a(aV b) = a(a) V o(b), that is to say a(aV b)
is the supremum of {a(a), ot (b)}.

Since a <aVbin L, we have a(a) < af

o(a V b) is an upper bound of {o(a),a(b)}.

Next, for arbltrary u € Ly such that o(a ) u, o(b) < u. Since o~! is order-
preserving, a < o~ (u). Similarly, » < o~ !(u). Thus aVb < a~'(u), then a(aV
b) < u. This implies that oc(aV b) = a(a) V a(b). Similarly, it can be argued that
o(anb) = ala) Aa(b). O

aVb). Similarly, a(b) < ot(aVb). Thus

Definition 11.9. If L is a lattice and H # 0 is a subset of L such that for every pair
of elements a,b € H both aV b and a Ab are in H, then we say that H with the same
operations (restricted to H) is a sublattice of L.

Definition 11.10. A lattice L; can be embedded into a lattice L, if there is a sublat-
tice of Ly isomorphic to Ly; in this case we also say L, contains a copy of L as a
sublattice.
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11.3 Matrix Expression of Finite Lattice

Assume L = {vy,---,v,} is a finite set and there exists an r-ary operators T :
L x .-+ x L — L. To use matrix approach we simply identify
———

r
vi~n S i=1,-- 0. (11.9)
5,’; € A, is called the vector form of v;. Denote
(Vi i) = Viliymi)s L S i < k.
Then we can construct a matrix, called the structure matrix of 7 as

My =6, [“(171,...71) (1, 2) oo (1,1, ) e ﬂ("ﬂ%"'yn)]-

(11.10)
It is easy to check that in vector form we have
m(xp,-- - xx) =My XA x;, “xi €A, (11.11)
Example 11.3. Consider Galois field Zs. We identify
i~ 8 i=0,1,2,3,4.
Then for addition + (mod 5), the structure matrix is
M, =05[1234523451345124512351234].
For product x (mod 5), the structure matrix is
M,=4085[1111112345135241425315432].
Now assume L = {vy,--+,v, } is given and there are two binary operators V and

A. Assume the structure matrices of these two operators are M, and M, respectively.
Then we have the following result.

Theorem 11.3. Let L be described as above. (L,V,\) is a lattice, iff

1. (Commutative Laws)

Md(I_W[n]):O; (11]2)

M (I—W,) =0 (11.13)
2. (Associative Laws)

My(l, @ My) = M7; (11.14)

M (I, ®M,) = M>. (11.15)

c
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3. (Idempotent Laws)

M M" =T, (11.16)
MM =1. (11.17)

Note that where M., is the order reducing matrix.
4. (Absorption Laws)

BIk; (My(l, @ M)MIWy) = 1n; i=1,---,m; (11.18)
BIk; (M. (I, @ Mg)M! Wy, ) =1, i=1,---,n. (11.19)

Proof. (11.12)-(11.19) are one-one corresponding to (11.1)-(11.8). We prove one of
them, say, (11.19). Note that in vector form the equation (11.19) can be expressed
as
x = MxMxy = M (I © Mg)xy
= M (I, ® Mg)M'xy = M.(I, ®Md)M;WV[n]yx~

Then we have
M. (1, ®Md)MfW[n]y =1, VyeA,.
Lety = &;. Then we have
BIk; (M, (I, © Mg)M] W) = Iy
O

Next, we consider when a Hasse diagram represents a lattice. A Hasse diagram,
denoted by %7 = (A4, &), can be described by a matrix, denoted by M, and called
its incidence matrix, or Hasse matrix.

Let |.4'| = n, then My € P, xn, Which is defined by its entries m; ; as follows:

I, (ij)eé
mi’j_{ (i, ))

0, otherwise.

We consider the incidence matrices of the diagrams in Fig. 11.1.

Example 11.4. Consider the figures A, B, C, and D in Fig. 11.1. We construct the
incidence matrix of A first. Consider the first column, which indicates a. Now since
both b > a we have my 1 = 1. Similarly, since ¢ > a, we have m3 ; = 1. For column
2, which indicates b. Since only d > b, we have my > = 1. Continuing this procedure
column by column, the incidence matrix of A is constructed as

abcd
0000]| a
Fa=11000] b
1000 ¢
0110( d
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Similarly, the incidence matrices of B, C, and D can be constructed as

[00000]
10000
p=110000
01100
01100]

[00010]
00010
Fc=100010
00000
111100

[00010]
10000
p=100010
00000
01100]

Next, we consider when a Boolean matrix is a Hasse matrix. We have the follow-
ing result.

Proposition 11.1. A Boolean matrix H € By, is a Hasse matrix, iff
hijhji=0, ij=1,"--,n. (11.20)

Proof. Denote the corresponding nodes as Ny, ---, N,,.
(Necessity) If 'H is a Hasse matrix, then it is clear that (i) #;; =0,i=1,--- ,n;
(ii) if h; ; = 1, then N; < N;, and hence h;; = 0. Hence, (11.20) is true.
(Sufficiency) If h;; = 1 draw a directed edge from i to j. Since there is no a pair
of points, which have more than one edges, the graph is a Hasse one. a

Finally, we consider when a Hasse matrix is a lattice. Precisely, the Hasse graph
corresponding to this Hasse matrix is a lattice.
Let 7 be a Hasse matrix. Then we define a matrix

n—1
Uy=Y #®. (11.21)
k=0

Note that here we use Boolean power.
Lemma 11.1. N,‘ > Nj, iﬁ‘u,}j =1.

Proof. Denote by Uy = ¢ (%), then it is easy to see that u; ;= 1 means on the graph

there is a path, starting from N, reaches N; at s steps. That is, there is a path from
N; to N; with length s. It follows that N; > N;. The lemma follows immediately. O
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Definition 11.11. 1. Let X = (x1,--- ,x,) € B« (X could be a row or a column.)
The support of X, denoted by supp(X) is an index set {iy,--- it} C {1,2,--- ,n},
such that i; € supp(X), iff x;, = 1.

2. Let W € My, and I = {iy, - iy} C {1,2,---,n} be a subindex. then the sub-
matrix Wy of W is defined as

Wiriy Wigip **° Wiy

Wia,iy Wig,ip *** Winiy
W =

Wiriv Wigjip ** " Wiy

Now we are ready to present the condition for a Hasse matrix to be a lattice.
Let 7 € %yxn be a Hasse matrix and U » be defined by (11.22). For any I <
i < j < n we define two index sets:

C™ := supp (Col;(U 4 ) ACol(U #));
R := supp (Row;(U ») ARow;(U )).

Using them, we construct two sub-matrices correspondingly as
Mecij;  Mpij.
Then we have the following:

Theorem 11.4. 7 is a lattice, iff for each pair (i) (i # j), we have

(i) |CH|:=a>1, |RH|[:= > I;
(ii) Mcij has a row, which equals 17;
(iii) Myi; has a column, which equals lﬁ.

Proof. Consider its corresponding graph, where i corresponds a node N;, i =
1,---,n. We have to show that any two nodes N; and N; have the sup{N;,N;} and
inf{NV;,N;}. We first consider the existence of sup{N;,N;}.

From the construction it is clear that s € C"/ implies that N is a common upper
bound of N; and N;. If |C*/| = &/ = 0, it is obvious that N; and N; have no common
upper bound. Now assume &’/ > 0 and C*/ = {uy, -+ ,u,; }. Then we can construct
the matrix M, which corresponds to the set of common upper bounds of N; and
N;. Now if a column equals 1 then it corresponds the least common upper bound,
we denote its index by u; ;. Note that if such column exists, it is unique. If there is
no such a column, which equals to 1, then it is clear that the least common upper
bound does not exist.

A similar argument shows that inf N;, N; exists, iff there exists a unique row of
index {; ; in My ;, which equals lTl-Aj. a

From the constructive proof of Theorem 11.4 one sees easily that if matrix H is
a lattice, then its structure matrices corresponding to V and A are as follows.
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My = 5n[“11 o Ulp cc unn]§
(11.22)
Mc = 6n[€11 gln Enn};

We give some examples to illustrate it.

Fig. 11.3 ?

Example 11.5. 1. Consider graph A in Fig. 11.3. The incidence matrix is

00000
00000
Ja={11000
01000
10010

By direct computation we have

10000
01000
Ug=[11100
01010
11011

Then ¢ and e are upper bound of {a,b}. Since

10
Uss = [O 1},

there is no smallest elements of {c, e}, which means {a,b} has no sup. A is not a
lattice.

2. Consider the graph B in Fig. 11.3. We have
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00010
00010

= 100010].
00000
11100

We can calculate that
10010

01010
Uyy=00110].

00010

11111

Thus e is the largest element and d is the smallest. It is easy to see that

aVb=e aVc=eaVd=aaVe=ebVc=ce
bvd=bbVe=ecVd=ccVe=edVe=ce.

Thus
My=065[1551552525553351234555555].

Similarly, we can get

M,=85[1444142442443434444412345]

11.4 Distributive and Modular Lattices

Definition 11.12. A distributive lattice is a lattice which satisfies either of the dis-
tributive laws:

@
xA(yVz)=(xAY)V(xA2); (11.23)
(ii)
xV(Az)=(xVy)A(xVz). (11.24)
This definition is well posed, because we have the following equivalence.
Theorem 11.5. A lattice satisfies (11.23) if and only if it satisfies (11.24).

Proof. We prove (11.24) = (11.23), and leave the proof of (11.23) = (11.24) to the
reader.
Assume (11.24) holds. Then
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xA(YVzZ) =@xAVZ))A(YVZ) (
=xA((xVz)A(yV2)) (
=xA(zV(xAy)) (b
=(xV(xAy))A(zV(xAy)) (
= (xAy)V(xAz). (

Remark 11.1. 1. Every lattice satisfies the following two inequalities:

(xAy)V(xAz) <xA(yVz); (11.25)
xV(AZ) < (xVy)A(xVz). (11.26)

We leave the proof to the reader.
2. For finite lattices, (11.23) and (11.24) have the following equivalent forms
(11.27) and (11.28) respectively.

MC(In®Md) :MdMC(I 2 ®MC)(In®W[n])M;1, (11.27)

n

My (L, ® M) = McMy(Lp © M) (I & Wi, ) M2 (11.28)

n

Definition 11.13. A modular lattice is.any lattice which satisfies the following mod-
ular law:

x <y implies xV(yAz) =yA(xVz). (11.29)

Remark 11.2. 1t is easy to-see that every lattice satisfies
x <y implies xV.(yAz) <yA(xVz).

Proposition 11.2. Every distributive lattice is a modular lattice.

Proof. Using (11.24) and noticing that x Vy = y whenever x <y, the conclusion
follows. O

Example 11.6. Recall Fig 11.1, we can check that

1. In C (which will be called M5 in the sequel), aV (bAc) =aVd=a,but (aVb)A
(aV.c) = e Ne= e. Hence Ms is not distributive.

2. It is easy to verify that Ms does satisfy the modular law, and hence is a modular.

3. In D, (which will be called Ns in the sequel), a < b, aV (bAc)=aVd = a, but
bA(aVc)=bAe=b.Hence Ns is not modular and therefore, is not distributive.

The following two theorems are important in verifying modular and/or distribu-
tive lattice.

Theorem 11.6 (Dedekind [2]). L is a non-modular lattice iff Ns can be embedded
into L.

Theorem 11.7 (Birkhoff [2]). L is a non-distributive lattice iff M5 or N5 can be
embedded into L.
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11.5 Algebra

Definition 11.14. A type of algebras is a set .# of function symbols such that a
nonnegative integer n is assigned to each member f of .%. This integer is called the
arity of f, and f is said to be an n-ary function symbol. The subset of n-ary function
symbols in .# is denoted by .%,.

Definition 11.15. If .# is a type of algebras then an algebra A of type <% is an
ordered pair (A, F) where A is a nonempty set and F is a family of finitary operations
on A indexed by the type .# such that corresponding to each n-ary function symbol
f in .7 there is an n-ary operation fA on A. The set A is call the underlying set of
A =(A,F), and the fAs are called the fundamental operations of A. In addition,

(i) A is unary, if all of its operations are unary, and it is mono-unary if it has just one
unary operation.
(i1) A is groupoid, if it has just one binary operation.
(iii) A is finite if |A| is finite, and trivial if |A| = 1.

Example 11.7. 1. A group G is an algebra (G,-, !, 1) with a binary, a unary, and a
nullary operations in which the following identities are true:

(1)
x-(y-z)=(x-y)ez (11.30)

(i)
x-1=1-x=x (11.31)

(iii)
xx '=xlax~l. (11.32)

2. A group G is Abelian (or commutative) if the following identity is true:
(iv)
X-y=y-X. (11.33)
3. A semigroup is a groupoid (G, -) in which (11.30) is true.

4. A ring is an algebra (R,+,-,—,0), where + and - are binary, — is unary and 0 is
nullary, satisfying the following conditions:

(i) (R,+,—,0) is an Abelian group

(ii)(R,-) is a semigroup

(iii)
x-(y+2)=(-y)+ (x-2). (11.34)
(x+y)-z=(x2)+(y-2). (11.35)
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5. A semi-lattice is a semigroup (S, -) which satisfies the commutative law (11.33)
and the idempotent law

X X=X (11.36)

6. An algebra (L,V,A) with two binary operations satisfying (11.1)-(11.8) is a lat-
tice.

7. An algebra (L, V, A, 0, 1) with two binary and two nullary operations is a bounded
lattice, if it satisfies:

(1) (L,V,A) is a lattice
{AxNA0O~0;xV1~1.
8. A Boolean algebra is an algebra (B,V,A,—,0, 1) with two binary, one unary, and
two nullary operations which satisfy:
() (B,V, A) is a distributive lattice
(1)
xAN0=0; xVvVI1=1. (11.37)
(iii)
XA (—x) =0; xV(—x)=1. (11.38)

Definition 11.16. Let A and B be two algebras of the same type .%. Then a function
o : A — B is an isomorphism from A to B if « is one-to-one and onto, and for every
n-ary f € %, foray, - ,a, € A, we have

aftar, - an) = fP(aay, - oay). (11.39)

We say A is isomorphic to B, written A = B, if there is an isomorphism from A
to B. If « is an isomorphism from A to B we may simply say “a: A — B is an
isomorphism”.

Definition 11.17. Let A and B be two algebras of the same type. Then B is a sub-
algebra of A if B C A and every fundamental operation of B is the restriction of the
corresponding operation of A, i.e., for each function symbol f, £ is f4 restricted
to B; we write simply B < A.

Consider finite algebras. The following result is obvious.

Proposition 11.3. Let A and B be two finite algebras of the same type F. o, : A — B
is an isomorphism, iff for each f € .F the structure matrices of f4 and f® (corre-
sponding to {ay,--- ,a,} and {b; = a(ay),--- ,by, = o&t(ay)}) are the same.
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Exercise 8

Verify that the two objects in Example 11.1 are lattice.
For a given lattice prove that (11.23) = (11.24).

For any lattice prove (11.25) and (11.26).

Prove that a n-elements lattice is modular, iff

L=

Col; (MM, ) = COli(MchW[n]), S {(]— 1)n+k\ COlj(Dn,nW[n]) = COIJ'(MC)7 1<k< n},

where D), , is the dummy matrix defined in (6.27).
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