Chapter 11 # **Lattice and Universal Algebra** Lattice and universal algebra are closely related. We refer to [2] for a general introduction. They are used in logic as well as some other disciplines, such as graph theory, abstract algebra, set theory, and topology etc. We refer to [1, 3] for their applications to logic, fuzzy logic, and reasoning. #### 11.1 Lattice To begin with, we introduce two equivalent definitions of lattice. They are convenient in certain different situations. **Definition 11.1.** A nonempty set L together with two binary operations: joint(\vee) and meet (\wedge) on L is called a lattice, if it satisfies the following identities: 1. (Commutative Laws) $$x \lor y = y \lor x; \tag{11.1}$$ $$x \wedge y = y \wedge y. \tag{11.2}$$ 2. (Associative Laws) $$x \lor (y \lor z) = (x \lor y) \lor z; \tag{11.3}$$ $$x \wedge (y \wedge z) = (x \wedge y) \wedge z. \tag{11.4}$$ 3. (Idempotent Laws) $$x \lor x = x; \tag{11.5}$$ $$x \wedge x = x. \tag{11.6}$$ 4. (Absorption Laws) $$x = x \lor (x \land y); \tag{11.7}$$ $$x = x \land (x \lor y). \tag{11.8}$$ *Example 11.1.* 1. (Boolean Algebra) Consider \mathscr{D} with the disjunction (\vee) as the joint, and the conjunction (\wedge) as the meet. 2. (Natural Number) Consider the set of natural numbers ℕ. Let the joint and meet be defined as $$\forall (a,b) = lcm(a,b);$$ $\land (a,b) = gcd(a,b).$ We leave the verification of the above lattices to the reader. To introduce the second definition of a lattice, we need the concept of partial order. **Definition 11.2.** A binary relation \leq defined on a set A is a partial order on the set A if the following conditions hold identically in A: - (i) (reflexivity) - $a \leq a$; - (ii) (antisymmetry) $a \le b$ and $b \le a$ imply a = b; (iii) (transitivity) $$a \le b$$ and $b \le c$ imply $a \le c$. If, in addition, for every a, b in A (iv) $a \le b$ or $b \le a$, then we say \leq is a total order on A. **Definition 11.3.** • A nonempty set with a partial order on it is called a partially ordered set, briefly, poset. - A nonempty set with a total order on it is called a totally ordered set, or linearly ordered set, or a chain. - In a partial ordered set, if $a \le b$ but $a \ne b$, then it is said that a < b. *Example 11.2.* 1. Let Su(A) denote the power set of A, and \leq be \subseteq . Then $(Su(A), \leq)$ is a partial ordered set. Note that power set of A is the set of all subsets of A. 2. Let \mathbb{N} be the set of natural numbers, and let \leq be the relation "divides". Then (\mathbb{N}, \leq) is a partial ordered set. Note that if \leq has the conventional meaning as $2 \leq 3$, then (\mathbb{N}, \leq) is a totally ordered set. ### **Definition 11.4.** Let *A* be a subset of a poset *P*. - 1. $p \in P$ is an upper bound (a lower bound) of A, if $a \le p$ ($p \le a$) for all $a \in A$. - 2. $p \in P$ is the least upper bound of A, or supremum of A (denoted by $p = \sup A$), if p is an upper bound of A, and for any other upper bound of A, say, b, we have $p \le b$. 11.1 Lattice 213 3. $p \in P$ is the greatest lower bound of A, or infimum of A denoted by $p = \inf A$, if p is a lower bound of A, and and for any other lower bound of A, say, b, we have p > b. - 4. For $a, b \in P$, we say b covers a, or a is covered by b (denoted by $a \prec b$), if a < b, and whenever $a \le c \le b$ it follows that a = c or c = b. - 5. An interval is defined as: $[a,b] = \{c \in P \mid a \le c \le b\}$. - 6. An open interval is defined as: $(a,b) = \{c \in P | a < c < b\}$. **Definition 11.5.** A finite poset P can be described by a directed graph $(\mathcal{N}, \mathcal{E})$, where \mathcal{N} is the set of nodes and \mathcal{E} is the set of edges. The graph is constructed as following: - (i) $\mathcal{N} = P$; - (ii) $\mathscr{E} \subset P \times P$, and $(a,b) \in \mathscr{E}$ (i.e., there is an edge from a to b), iff b < a. Such a graph is called the Hasse diagram of poset *P*. Fig. 11.1 Examples of Hasse diagrams Fig 11.1 describes Hasse diagrams of four posets A, B, M_5 and N_5 . Now we are ready to introduce the second definition of a lattice **Definition 11.6.** A poset *L* is a lattice iff for any two elements $a, b \in L$ both $\sup\{a, b\}$ and $\inf\{a, b\}$ exist. Consider Fig 11.1, we can see A, C, D are lattices, but B is not, because in B the $\sup\{b,c\}$ does not exist. Definition 11.1 and Definition 11.6 are equivalent in the following sense: if L is a lattice by one of the two definitions then we can construct in a simple and uniform fashion on the same set L a lattice by the other definition. We state it as a theorem. **Theorem 11.1.** (i) If L is a lattice by Definition 11.1, define \leq on L as follows: $a \leq b$ iff $a = a \wedge b$, then L satisfies the conditions in Definition 11.6. (ii) If L is a lattice by Definition 11.6, define the operations \vee and \wedge by $a \vee b = \sup\{a,b\}$, and $a \wedge b = \inf\{a,b\}$, then L satisfies the conditions in Definition 11.1. *Proof.* (i) We need to show that \leq is partial order and $\sup\{a,b\}$, $\inf\{a,b\}$ exist. - (reflexivity) $a \wedge a = a$ implies $a \leq a$. - (antisymmetry) Assume $a \le b$ and $b \le a$. Then we have $a = a \land b$, and $b = a \land b$, thus a = b. - (transitivity) Assume $a \le b$ and $b \le c$. Then we have $a = a \land b$ and $b = b \land c$. By associativity, $$a = a \wedge (b \wedge c) = (a \wedge b) \wedge c = a \wedge c.$$ Hence, $a \le c$. We conclude that \leq is partial order. Next, we prove $\sup\{a,b\}$ and $\inf\{a,b\}$ exist. Using absorption laws, we have $a = a \land (a \lor b)$. So $a \le a \lor b$. Similarly, $b \le a \lor b$. Hence, $a \lor b$ is an upper bound of $\{a,b\}$. For arbitrary upper bound u of $\{a,b\}$, since $a \le u$, $b \le u$, we have $a \lor u = (a \land u) \lor u = u$ (by L4(a)), similarly $b \lor u = u$. Then $a \lor b \lor u = a \lor u = u$. Using absorption laws again, we have $(a \lor b) \land u = (a \lor b) \land [(a \lor b) \lor u] = a \lor b$, then $a \lor b \le u$. Thus $\sup\{a,b\} = a \lor b$. A similar argument shows that $\inf\{a,b\} = a \wedge b$. (ii) A straightforward computation shows that the defined \vee and \wedge satisfy equations (11.1)-(11.8). 11.2 Isomorphic Lattices and Sublattices **Definition 11.7.** Two lattices L_1 and L_2 are isomorphic if there is a bijective α from L_1 to L_2 such that for every $a, b \in L_1$ the following two equations hold: (i) $$\alpha(a \lor b) = \alpha(a) \lor \alpha(b)$$; (ii) $\alpha(a \land b) = \alpha(a) \land \alpha(b)$. Such an α is called an isomorphism. One would naturally like to reformulate the definition of isomorphism in terms of the corresponding order relations. **Definition 11.8.** If P_1 and P_2 are two posets and α is a map from P_1 to P_2 , then we say α is **order-preserving** if $\alpha(a) \le \alpha(b)$ holds in P_2 whenever $a \le b$ holds in P_1 . But a bijection α which is order-preserving may not be isomorphism, see Fig 11.2 for example. Fig. 11.2 An order-preserving bijection **Theorem 11.2.** Two lattices L_1 and L_2 are isomorphic iff there is a bijection α from L_1 to L_2 such that both α and α^{-1} are order-preserving. *Proof.* (Necessity) For $a \le b$ in L_1 , since α is isomorphism, $\alpha(a) = \alpha(a \land b) = \alpha(a) \land \alpha(b)$. Thus $\alpha(a) \le \alpha(b)$, α is order-preserving. As α^{-1} is also an isomorphism, it is also order-preserving. (Sufficiency) Let α be a bijection from L_1 to L_2 such that both α and α^{-1} are order-preserving. We want to prove $\alpha(a \lor b) = \alpha(a) \lor \alpha(b)$, that is to say $\alpha(a \lor b)$ is the supremum of $\{\alpha(a), \alpha(b)\}$. Since $a \le a \lor b$ in L_1 , we have $\alpha(a) \le \alpha(a \lor b)$. Similarly, $\alpha(b) \le \alpha(a \lor b)$. Thus $\alpha(a \lor b)$ is an upper bound of $\{\alpha(a), \alpha(b)\}$. Next, for arbitrary $u \in L_2$ such that $\alpha(a) \leq u$, $\alpha(b) \leq u$. Since α^{-1} is order-preserving, $a \leq \alpha^{-1}(u)$. Similarly, $b \leq \alpha^{-1}(u)$. Thus $a \vee b \leq \alpha^{-1}(u)$, then $\alpha(a \vee b) \leq u$. This implies that $\alpha(a \vee b) = \alpha(a) \vee \alpha(b)$. Similarly, it can be argued that $\alpha(a \wedge b) = \alpha(a) \wedge \alpha(b)$. **Definition 11.9.** If *L* is a lattice and $H \neq \emptyset$ is a subset of *L* such that for every pair of elements $a, b \in H$ both $a \lor b$ and $a \land b$ are in *H*, then we say that *H* with the same operations (restricted to *H*) is a sublattice of *L*. **Definition 11.10.** A lattice L_1 can be embedded into a lattice L_2 if there is a sublattice of L_2 isomorphic to L_1 ; in this case we also say L_2 contains a copy of L_1 as a sublattice. # 11.3 Matrix Expression of Finite Lattice Assume $L = \{v_1, \dots, v_n\}$ is a finite set and there exists an r-ary operators $\pi : L \times \dots \times L \to L$. To use matrix approach we simply identify $$v_i \sim \delta_n^i, \quad i = 1, \cdots, n.$$ (11.9) $\delta_n^i \in \Delta_n$ is called the vector form of v_i . Denote $$\pi(v_{i_1}, \dots, v_{i_k}) = v_{\mu(i_1, \dots, i_k)}, \quad 1 \le i_1, \dots, i_k \le k.$$ Then we can construct a matrix, called the structure matrix of π as $$M_{\pi} = \delta_n \left[\mu(1, 1, \dots, 1) \ \mu(1, 1, \dots, 2) \ \dots \ \mu(1, 1, \dots, n) \ \dots \ \mu(n, n, \dots, n) \right]. \tag{11.10}$$ It is easy to check that in vector form we have $$\pi(x_1, \dots, x_k) = M_{\pi} \ltimes_{i=1}^k x_i, \quad x_i \in \Delta_n.$$ (11.11) *Example 11.3.* Consider Galois field \mathbb{Z}_5 . We identify $$i \sim \delta_5^{i+1}, \quad i = 0, 1, 2, 3, 4.$$ Then for addition $+ \pmod{5}$, the structure matrix is $$M_a = \delta_5 [1\ 2\ 3\ 4\ 5\ 2\ 3\ 4\ 5\ 1\ 3\ 4\ 5\ 1\ 2\ 4\ 5\ 1\ 2\ 3\ 5\ 1\ 2\ 3\ 4].$$ For product \times (mod 5), the structure matrix is $$M_p = \delta_5 [1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 2 \ 3 \ 4 \ 5 \ 1 \ 3 \ 5 \ 2 \ 4 \ 1 \ 4 \ 2 \ 5 \ 3 \ 1 \ 5 \ 4 \ 3 \ 2].$$ Now assume $L = \{v_1, \dots, v_n\}$ is given and there are two binary operators \vee and \wedge . Assume the structure matrices of these two operators are M_d and M_c respectively. Then we have the following result. **Theorem 11.3.** Let L be described as above. (L, \vee, \wedge) is a lattice, iff 1. (Commutative Laws) $$M_d(I - W_{[n]}) = 0;$$ (11.12) $$M_c(I - W_{[n]}) = 0.$$ (11.13) 2. (Associative Laws) $$M_d(I_n \otimes M_d) = M_d^2; \tag{11.14}$$ $$M_c(I_n \otimes M_c) = M_c^2. \tag{11.15}$$ 3. (Idempotent Laws) $$M_d M_r^n = I; (11.16)$$ $$M_c M_r^n = I. (11.17)$$ Note that where $M_{r,n}$ is the order reducing matrix. 4. (Absorption Laws) $$Blk_i\left(M_d(I_n\otimes M_c)M_r^nW_{[n]}\right)=I_n;\quad i=1,\cdots,n;$$ (11.18) $$Blk_i\left(M_c(I_n\otimes M_d)M_r^nW_{[n]}\right)=I_n.\quad i=1,\cdots,n. \tag{11.19}$$ *Proof.* (11.12)-(11.19) are one-one corresponding to (11.1)-(11.8). We prove one of them, say, (11.19). Note that in vector form the equation (11.19) can be expressed as $$x = M_c x M_d x y = M_c (I_n \otimes M_d) x^2 y$$ = $M_c (I_n \otimes M_d) M_r^n x y = M_c (I_n \otimes M_d) M_r^n W_{[n]} y x$. Then we have $$M_c(I_n \otimes M_d)M_r^nW_{[n]}y = I_n, \quad \forall y \in \Delta_n.$$ Let $y = \delta_n^i$. Then we have $$\operatorname{Blk}_i\left(M_c(I_n\otimes M_d)M_r^nW_{[n]}\right)=I_n.$$ Next, we consider when a Hasse diagram represents a lattice. A Hasse diagram, denoted by $\mathcal{H} = (\mathcal{N}, \mathcal{E})$, can be described by a matrix, denoted by $M_{\mathcal{H}}$ and called its incidence matrix, or Hasse matrix. Let $|\mathcal{N}| = n$, then $M_{\mathcal{H}} \in \mathcal{B}_{n \times n}$, which is defined by its entries $m_{i,j}$ as follows: $$m_{i,j} = \begin{cases} 1, & (i,j) \in \mathscr{E} \\ 0, & \text{otherwise.} \end{cases}$$ We consider the incidence matrices of the diagrams in Fig. 11.1. Example 11.4. Consider the figures A, B, C, and D in Fig. 11.1. We construct the incidence matrix of A first. Consider the first column, which indicates a. Now since both b > a we have $m_{2,1} = 1$. Similarly, since c > a, we have $m_{3,1} = 1$. For column 2, which indicates b. Since only d > b, we have $m_{4,2} = 1$. Continuing this procedure column by column, the incidence matrix of A is constructed as $$\mathcal{J}_A = \begin{bmatrix} a & b & c & d \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix}$$ Similarly, the incidence matrices of B, C, and D can be constructed as $$\mathscr{J}_B = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \end{bmatrix}.$$ $$\mathscr{J}_C = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \end{bmatrix}.$$ $$\mathcal{J}_D = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \end{bmatrix}.$$ Next, we consider when a Boolean matrix is a Hasse matrix. We have the following result. **Proposition 11.1.** A Boolean matrix $H \in \mathcal{B}_{n \times n}$ is a Hasse matrix, iff $$h_{i,j}h_{i,j} = 0, \quad i, j = 1, \dots, n.$$ (11.20) *Proof.* Denote the corresponding nodes as N_1, \dots, N_n . (Necessity) If H is a Hasse matrix, then it is clear that (i) $h_{i,i} = 0$, $i = 1, \dots, n$; (ii) if $h_{i,j} = 1$, then $N_j < N_i$, and hence $h_{j,i} = 0$. Hence, (11.20) is true. (Sufficiency) If $h_{i,j} = 1$ draw a directed edge from i to j. Since there is no a pair of points, which have more than one edges, the graph is a Hasse one. Finally, we consider when a Hasse matrix is a lattice. Precisely, the Hasse graph corresponding to this Hasse matrix is a lattice. Let \(\mathcal{I} \) be a Hasse matrix. Then we define a matrix $$U_{\mathscr{J}} := \sum_{k=0}^{n-1} \mathscr{J}^{(k)}. \tag{11.21}$$ Note that here we use Boolean power. **Lemma 11.1.** $N_i \ge N_j$, iff $u_{i,j} = 1$. *Proof.* Denote by $U_s = \mathscr{J}^{(s)}$. then it is easy to see that $u_{i,j}^s = 1$ means on the graph there is a path, starting from N_i , reaches N_j at s steps. That is, there is a path from N_i to N_j with length s. It follows that $N_i \ge N_j$. The lemma follows immediately. \square **Definition 11.11.** 1. Let $X = (x_1, \dots, x_n) \in \mathcal{B}_{1 \times n}$ (X could be a row or a column.) The support of X, denoted by $\operatorname{supp}(X)$ is an index set $\{i_1, \dots, i_k\} \subset \{1, 2, \dots, n\}$, such that $i_j \in \operatorname{supp}(X)$, iff $x_{i_j} = 1$. 2. Let $W \in M_{n \times n}$ and $I = \{i_1, \dots, i_k\} \subset \{1, 2, \dots, n\}$ be a subindex. then the submatrix W_I of W is defined as $$W_{I} = \begin{bmatrix} w_{i_{1},i_{1}} & w_{i_{1},i_{2}} & \cdots & w_{i_{1},i_{k}} \\ w_{i_{2},i_{1}} & w_{i_{2},i_{2}} & \cdots & w_{i_{2},i_{k}} \\ \vdots & & & & \\ w_{i_{k},i_{1}} & w_{i_{k},i_{2}} & \cdots & w_{i_{k},i_{k}} \end{bmatrix}.$$ Now we are ready to present the condition for a Hasse matrix to be a lattice. Let $\mathcal{J} \in \mathcal{B}_{n \times n}$ be a Hasse matrix and $U_{\mathcal{J}}$ be defined by (11.22). For any $1 \le i < j \le n$ we define two index sets: $$C^{i,j} := \operatorname{supp} \left(\operatorname{Col}_i(U_{\mathscr{J}}) \wedge \operatorname{Col}_j(U_{\mathscr{J}}) \right);$$ $$R^{i,j} := \operatorname{supp} \left(\operatorname{Row}_i(U_{\mathscr{J}}) \wedge \operatorname{Row}_j(U_{\mathscr{J}}) \right).$$ Using them, we construct two sub-matrices correspondingly as $$M_{C^{i,j}}; \quad M_{R^{i,j}}.$$ Then we have the following: **Theorem 11.4.** \mathcal{J} is a lattice, iff for each pair (i, j) $(i \neq j)$, we have - (i) $|C^{i,j}| := \alpha \ge 1$, $|R^{i,j}| := \beta \ge 1$; - (ii) $M_{C^{i,j}}$ has a row, which equals $\mathbf{1}_{\alpha}^{T}$; - (iii) $M_{R^{i,j}}$ has a column, which equals $\mathbf{1}_{\beta}$. *Proof.* Consider its corresponding graph, where *i* corresponds a node N_i , $i = 1, \dots, n$. We have to show that any two nodes N_i and N_j have the $\sup\{N_i, N_j\}$ and $\inf\{N_i, N_i\}$. We first consider the existence of $\sup\{N_i, N_i\}$. From the construction it is clear that $s \in C^{i,j}$ implies that N_s is a common upper bound of N_i and N_j . If $|C^{i,j}| = \alpha^{i,j} = 0$, it is obvious that N_i and N_j have no common upper bound. Now assume $\alpha^{i,j} > 0$ and $C^{i,j} = \{u_1, \dots, u_{\alpha^{i,j}}\}$. Then we can construct the matrix $M_{C^{i,j}}$, which corresponds to the set of common upper bounds of N_i and N_j . Now if a column equals $\mathbf{1}_{\alpha^{i,j}}$ then it corresponds the least common upper bound, we denote its index by $u_{i,j}$. Note that if such column exists, it is unique. If there is no such a column, which equals to $\mathbf{1}_{\alpha^{i,j}}$, then it is clear that the least common upper bound does not exist. A similar argument shows that $\inf N_i, N_j$ exists, iff there exists a unique row of index $\ell_{i,j}$ in $M_{R^{i,j}}$, which equals $\mathbf{1}_{R^{i,j}}^T$. From the constructive proof of Theorem 11.4 one sees easily that if matrix H is a lattice, then its structure matrices corresponding to \vee and \wedge are as follows. $$M_d = \delta_n[u_{11} \cdots u_{1n} \cdots u_{nn}];$$ $$M_c = \delta_n[\ell_{11} \cdots \ell_{1n} \cdots \ell_{nn}];$$ (11.22) We give some examples to illustrate it. Fig. 11.3 ? Example 11.5. 1. Consider graph A in Fig. 11.3. The incidence matrix is $$\mathcal{J}_A = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \end{bmatrix}.$$ By direct computation we have $$U_{\mathscr{J}_A} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 1 \end{bmatrix}.$$ Then c and e are upper bound of $\{a,b\}$. Since $$U_{3,5} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix},$$ there is no smallest elements of $\{c,e\}$, which means $\{a,b\}$ has no sup. A is not a lattice. 2. Consider the graph B in Fig. 11.3. We have $$\mathscr{J}_B = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 \end{bmatrix}.$$ We can calculate that $$U_{\mathscr{J}_B} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1 \end{bmatrix}.$$ Thus e is the largest element and d is the smallest. It is easy to see that $$a \lor b = e \ a \lor c = e \ a \lor d = a \ a \lor e = e \ b \lor c = e$$ $b \lor d = b \ b \lor e = e \ c \lor d = c \ c \lor e = e \ d \lor e = e.$ Thus $$M_d = \delta_5 [1551552525553351234555555].$$ Similarly, we can get $$M_c = \delta_5[1444142442443434444412345]$$ # 11.4 Distributive and Modular Lattices **Definition 11.12.** A distributive lattice is a lattice which satisfies either of the distributive laws: (i) $$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z); \tag{11.23}$$ (ii) $$x \lor (y \land z) = (x \lor y) \land (x \lor z). \tag{11.24}$$ This definition is well posed, because we have the following equivalence. **Theorem 11.5.** A lattice satisfies (11.23) if and only if it satisfies (11.24). *Proof.* We prove $(11.24) \Rightarrow (11.23)$, and leave the proof of $(11.23) \Rightarrow (11.24)$ to the reader. Assume (11.24) holds. Then $$x \wedge (y \vee z) = (x \wedge (x \vee z)) \wedge (y \vee z) \qquad (by (11.8))$$ $$= x \wedge ((x \vee z) \wedge (y \vee z)) \qquad (by (11.4))$$ $$= x \wedge (z \vee (x \wedge y)) \qquad (by (11.24))$$ $$= (x \vee (x \wedge y)) \wedge (z \vee (x \wedge y)) \qquad (by (11.7))$$ $$= (x \wedge y) \vee (x \wedge z). \qquad (by (11.24))$$ Remark 11.1. 1. Every lattice satisfies the following two inequalities: $$(x \wedge y) \vee (x \wedge z) \le x \wedge (y \vee z); \tag{11.25}$$ $$x \lor (y \land z) \le (x \lor y) \land (x \lor z). \tag{11.26}$$ We leave the proof to the reader. 2. For finite lattices, (11.23) and (11.24) have the following equivalent forms (11.27) and (11.28) respectively. $$M_c(I_n \otimes M_d) = M_d M_c(I_{n^2} \otimes M_c)(I_n \otimes W_{[n]}) M_r^n; \qquad (11.27)$$ $$M_d(I_n \otimes M_c) = M_c M_d(I_{n^2} \otimes M_c)(I_n \otimes W_{[n]}) M_r^n.$$ (11.28) **Definition 11.13.** A modular lattice is any lattice which satisfies the following modular law: $$x \le y \text{ implies } x \lor (y \land z) = y \land (x \lor z).$$ (11.29) Remark 11.2. It is easy to see that every lattice satisfies $$x \le y$$ implies $x \lor (y \land z) \le y \land (x \lor z)$. **Proposition 11.2.** Every distributive lattice is a modular lattice. *Proof.* Using (11.24) and noticing that $x \lor y = y$ whenever $x \le y$, the conclusion follows. Example 11.6. Recall Fig 11.1, we can check that - 1. In C (which will be called M_5 in the sequel), $a \lor (b \land c) = a \lor d = a$, but $(a \lor b) \land (a \lor c) = e \land e = e$. Hence M_5 is not distributive. - 2. It is easy to verify that M_5 does satisfy the modular law, and hence is a modular. - 3. In D, (which will be called N_5 in the sequel), $a \le b$, $a \lor (b \land c) = a \lor d = a$, but $b \land (a \lor c) = b \land e = b$. Hence N_5 is not modular and therefore, is not distributive. The following two theorems are important in verifying modular and/or distributive lattice. **Theorem 11.6 (Dedekind [2]).** L is a non-modular lattice iff N_5 can be embedded into L. **Theorem 11.7 (Birkhoff [2]).** *L* is a non-distributive lattice iff M5 or N5 can be embedded into L. 11.5 Algebra 223 ## 11.5 Algebra **Definition 11.14.** A type of algebras is a set \mathscr{F} of function symbols such that a nonnegative integer n is assigned to each member f of \mathscr{F} . This integer is called the arity of f, and f is said to be an n-ary function symbol. The subset of n-ary function symbols in \mathscr{F} is denoted by \mathscr{F}_n . **Definition 11.15.** If \mathscr{F} is a type of algebras then an algebra \mathbf{A} of type \mathscr{F} is an ordered pair $\langle A, F \rangle$ where A is a nonempty set and F is a family of finitary operations on A indexed by the type \mathscr{F} such that corresponding to each n-ary function symbol f in \mathscr{F} there is an n-ary operation $f^{\mathbf{A}}$ on A. The set A is call the underlying set of $\mathbf{A} = \langle A, F \rangle$, and the $f^{\mathbf{A}}s$ are called the fundamental operations of \mathbf{A} . In addition, - (i) **A** is unary, if all of its operations are unary, and it is mono-unary if it has just one unary operation. - (ii) A is groupoid, if it has just one binary operation. - (iii) **A** is finite if |A| is finite, and trivial if |A| = 1. *Example 11.7.* 1. A group **G** is an algebra $\langle G, \cdot, ^{-1}, 1 \rangle$ with a binary, a unary, and a nullary operations in which the following identities are true: (i) $$x \cdot (y \cdot z) = (x \cdot y) \cdot z. \tag{11.30}$$ (ii) $$x \cdot 1 = 1 \cdot x = x. \tag{11.31}$$ (iii) $$x \cdot x^{-1} = x^{-1} \cdot x \approx 1. \tag{11.32}$$ 2. A group **G** is Abelian (or commutative) if the following identity is true: (iv) $$x \cdot y = y \cdot x. \tag{11.33}$$ - 3. A semigroup is a groupoid $\langle G, \cdot \rangle$ in which (11.30) is true. - 4. A ring is an algebra $\langle R, +, \cdot, -, 0 \rangle$, where + and \cdot are binary, is unary and 0 is nullary, satisfying the following conditions: - (i) $\langle R, +, -, 0 \rangle$ is an Abelian group - $(ii)\langle R, \cdot \rangle$ is a semigroup - (iii) $$x \cdot (y+z) = (x \cdot y) + (x \cdot z). \tag{11.34}$$ $$(x+y) \cdot z = (x \cdot z) + (y \cdot z).$$ (11.35) 5. A semi-lattice is a semigroup $\langle S, \cdot \rangle$ which satisfies the commutative law (11.33) and the idempotent law $$x \cdot x = x. \tag{11.36}$$ - 6. An algebra $\langle L, \vee, \wedge \rangle$ with two binary operations satisfying (11.1)-(11.8) is a lattice. - 7. An algebra $\langle L, \vee, \wedge, 0, 1 \rangle$ with two binary and two nullary operations is a bounded lattice, if it satisfies: - (i) $\langle L, \vee, \wedge \rangle$ is a lattice (ii) $x \wedge 0 \approx 0$; $x \vee 1 \approx 1$. - 8. A Boolean algebra is an algebra $\langle B, \vee, \wedge, \neg, 0, 1 \rangle$ with two binary, one unary, and two nullary operations which satisfy: - (i) $\langle B, \vee, \wedge \rangle$ is a distributive lattice (ii) $$x \land 0 = 0; \quad x \lor 1 = 1.$$ (11.37) (iii) $$x \wedge (\neg x) = 0; \quad x \vee (\neg x) = 1. \tag{11.38}$$ **Definition 11.16.** Let **A** and **B** be two algebras of the same type \mathscr{F} . Then a function $\alpha: A \to B$ is an isomorphism from **A** to **B** if α is one-to-one and onto, and for every n-ary $f \in \mathscr{F}$, for $a_1, \dots, a_n \in A$, we have $$\alpha f^{\mathbf{A}}(a_1, \dots, a_n) = f^{\mathbf{B}}(\alpha a_1, \dots, \alpha a_n). \tag{11.39}$$ We say **A** is isomorphic to **B**, written $\mathbf{A} \cong B$, if there is an isomorphism from **A** to **B**. If α is an isomorphism from **A** to **B** we may simply say " $\alpha : \mathbf{A} \to \mathbf{B}$ is an isomorphism". **Definition 11.17.** Let **A** and **B** be two algebras of the same type. Then **B** is a subalgebra of A if $B \subseteq A$ and every fundamental operation of **B** is the restriction of the corresponding operation of **A**, i.e., for each function symbol f, f^B is f^A restricted to B; we write simply $B \subseteq A$. Consider finite algebras. The following result is obvious. **Proposition 11.3.** Let **A** and **B** be two finite algebras of the same type \mathscr{F} . $\alpha: \mathbf{A} \to \mathbf{B}$ is an isomorphism, iff for each $f \in \mathscr{F}$ the structure matrices of f^A and f^B (corresponding to $\{a_1, \dots, a_n\}$ and $\{b_1 = \alpha(a_1), \dots, b_n = \alpha(a_n)\}$) are the same. References 225 #### **Exercise 8** - 1. Verify that the two objects in Example 11.1 are lattice. - 2. For a given lattice prove that $(11.23) \Rightarrow (11.24)$. - 3. For any lattice prove (11.25) and (11.26). - 4. Prove that a *n*-elements lattice is modular, iff $$\operatorname{Col}_i(M_dM_c) = \operatorname{Col}_i(M_cM_dW_{[n]}), i \in \{(j-1)n + k | \operatorname{Col}_j(D_{n,n}W_{[n]}) = \operatorname{Col}_j(M_c), 1 \leq k \leq n\},$$ where $D_{n,n}$ is the dummy matrix defined in (6.27). ### References - Barnes, D., Mac, J.: An Algebraic Introduction to Mathematical Logic. Springer-Verlag, New York (1975) - 2. Burris, S., Sankappanavar, H.: A Course in Universal Algebra. Number 78 in Graduate Texts in Mathematics. Springer-Verlag (1981) - 3. Kerre, E., Huang, C., Ruan, D.: Fuzzy Set Theory and Approximate Reasoning. Wuhan University Press (2004)